Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242.472
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 244: 118825, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-32866803

RESUMO

Novel antiviral active molecule 2- [(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(4-fluoro- phenyl)acetamide has been synthesised and characterized by FT-IR and FT-Raman spectra. The equilibrium geometry, natural bond orbital calculations and vibrational assignments have been carried out using density functional B3LYP method with the 6-311G++(d,p) basis set. The complete vibrational assignments for all the vibrational modes have been supported by normal coordinate analysis, force constants and potential energy distributions. A detailed analysis of the intermolecular interactions has been performed based on the Hirshfeld surfaces. Drug likeness has been carried out based on Lipinski's rule and the absorption, distribution, metabolism, excretion and toxicity of the title molecule has been calculated. Antiviral potency of 2- [(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(4-fluoro-phenyl) acetamide has been investigated by docking against SARS-CoV-2 protein. The optimized geometry shows near-planarity between the phenyl ring and the pyrimidine ring. Differences in the geometries due to the substitution of the most electronegative fluorine atom and intermolecular contacts due to amino pyrimidine were analyzed. NBO analysis reveals the formation of two strong stable hydrogen bonded N-H···N intermolecular interactions and weak intramolecular interactions C-H···O and N-H···O. The Hirshfeld surfaces and consequently the 2D-fingerprint confirm the nature of intermolecular interactions and their quantitative contributions towards the crystal packing. The red shift in N-H stretching frequency exposed from IR substantiate the formation of N-H···N intermolecular hydrogen bond. Drug likeness and absorption, distribution, metabolism, excretion and toxicity properties analysis gives an idea about the pharmacokinetic properties of the title molecule. The binding energy -8.7 kcal/mol of the nonbonding interaction present a clear view that 2- [(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(4-fluoro- phenyl) acetamide can irreversibly interact with SARS-CoV-2 protease.


Assuntos
Antivirais/química , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Pandemias , Pneumonia Viral/tratamento farmacológico , Inibidores de Proteases/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/farmacocinética , Betacoronavirus/enzimologia , Cristalografia por Raios X , Cisteína Endopeptidases , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Dinâmica não Linear , Inibidores de Proteases/farmacocinética , Conformação Proteica , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Termodinâmica , Vibração
2.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 10): 483-487, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33006576

RESUMO

The replication of SARS-CoV-2 produces two large polyproteins, pp1a and pp1ab, that are inactive until cleavage by the viral chymotrypsin-like cysteine protease enzyme (3CL Mpro) into a series of smaller functional proteins. At the heart of 3CL Mpro is an unusual catalytic dyad formed by the side chains of His41 and Cys145 and a coordinated water molecule. The catalytic mechanism by which the enzyme operates is still unknown, as crucial information on the protonation states within the active site is unclear. To experimentally determine the protonation states of the catalytic site and of the other residues in the substrate-binding cavity, and to visualize the hydrogen-bonding networks throughout the enzyme, room-temperature neutron and X-ray data were collected from a large H/D-exchanged crystal of ligand-free (apo) 3CL Mpro.


Assuntos
Betacoronavirus/enzimologia , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/química , Pneumonia Viral/virologia , Proteínas não Estruturais Virais/química , Betacoronavirus/química , Betacoronavirus/genética , Domínio Catalítico , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Humanos , Modelos Moleculares , Difração de Nêutrons , Pandemias , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Temperatura , Proteínas não Estruturais Virais/genética
3.
Mol Cell ; 80(1): 127-139.e6, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007253

RESUMO

Human spliceosomes contain numerous proteins absent in yeast, whose functions remain largely unknown. Here we report a 3D cryo-EM structure of the human spliceosomal C complex at 3.4 Å core resolution and 4.5-5.7 Å at its periphery, and aided by protein crosslinking we determine its molecular architecture. Our structure provides additional insights into the spliceosome's architecture between the catalytic steps of splicing, and how proteins aid formation of the spliceosome's catalytically active RNP (ribonucleoprotein) conformation. It reveals the spatial organization of the metazoan-specific proteins PPWD1, WDR70, FRG1, and CIR1 in human C complexes, indicating they stabilize functionally important protein domains and RNA structures rearranged/repositioned during the Bact to C transition. Structural comparisons with human Bact, C∗, and P complexes reveal an intricate cascade of RNP rearrangements during splicing catalysis, with intermediate RNP conformations not found in yeast, and additionally elucidate the structural basis for the sequential recruitment of metazoan-specific spliceosomal proteins.


Assuntos
Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/metabolismo , Spliceossomos/metabolismo , Animais , Catálise , Células HeLa , Humanos , Íntrons/genética , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Estabilidade Proteica , RNA/química , RNA/metabolismo , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Fatores de Tempo
4.
Nat Commun ; 11(1): 5068, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033251

RESUMO

The mineralized collagen fibril is the basic building block of bone, and is commonly pictured as a parallel array of ultrathin carbonated hydroxyapatite (HAp) platelets distributed throughout the collagen. This orientation is often attributed to an epitaxial relationship between the HAp and collagen molecules inside 2D voids within the fibril. Although recent studies have questioned this model, the structural relationship between the collagen matrix and HAp, and the mechanisms by which collagen directs mineralization remain unclear. Here, we use XRD to reveal that the voids in the collagen are in fact cylindrical pores with diameters of ~2 nm, while electron microscopy shows that the HAp crystals in bone are only uniaxially oriented with respect to the collagen. From in vitro mineralization studies with HAp, CaCO3 and γ-FeOOH we conclude that confinement within these pores, together with the anisotropic growth of HAp, dictates the orientation of HAp crystals within the collagen fibril.


Assuntos
Colágeno/química , Minerais/química , Orientação Espacial , Osso e Ossos/química , Criança , Colágeno/ultraestrutura , Cristalização , Durapatita/química , Elétrons , Feminino , Humanos , Modelos Moleculares , Tomografia , Difração de Raios X
5.
Nat Commun ; 11(1): 5066, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033255

RESUMO

The inducible co-stimulator (ICOS) is a member of the CD28/B7 superfamily, and delivers a positive co-stimulatory signal to activated T cells upon binding to its ligand (ICOS-L). Dysregulation of this pathway has been implicated in autoimmune diseases and cancer, and is currently under clinical investigation as an immune checkpoint blockade. Here, we describe the molecular interactions of the ICOS/ICOS-L immune complex at 3.3 Å resolution. A central FDPPPF motif and residues within the CC' loop of ICOS are responsible for the specificity of the interaction with ICOS-L, with a distinct receptor binding orientation in comparison to other family members. Furthermore, our structure and binding data reveal that the ICOS N110 N-linked glycan participates in ICOS-L binding. In addition, we report crystal structures of ICOS and ICOS-L in complex with monoclonal antibodies under clinical evaluation in immunotherapy. Strikingly, antibody paratopes closely mimic receptor-ligand binding core interactions, in addition to contacting peripheral residues to confer high binding affinities. Our results uncover key molecular interactions of an immune complex central to human adaptive immunity and have direct implications for the ongoing development of therapeutic interventions targeting immune checkpoint receptors.


Assuntos
Anticorpos/uso terapêutico , Complexo Antígeno-Anticorpo/química , Ligante Coestimulador de Linfócitos T Induzíveis/química , Proteína Coestimuladora de Linfócitos T Induzíveis/química , Mimetismo Molecular/imunologia , Sequência de Aminoácidos , Complexo Antígeno-Anticorpo/metabolismo , Antígenos CD28/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Cinética , Ligantes , Modelos Moleculares , Ligação Proteica , Multimerização Proteica
6.
Nat Commun ; 11(1): 5080, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033258

RESUMO

Natural transformation is the process by which bacteria take up genetic material from their environment and integrate it into their genome by homologous recombination. It represents one mode of horizontal gene transfer and contributes to the spread of traits like antibiotic resistance. In Vibrio cholerae, a type IVa pilus (T4aP) is thought to facilitate natural transformation by extending from the cell surface, binding to exogenous DNA, and retracting to thread this DNA through the outer membrane secretin, PilQ. Here, we use a functional tagged allele of VcPilQ purified from native V. cholerae cells to determine the cryoEM structure of the VcPilQ secretin in amphipol to ~2.7 Å. We use bioinformatics to examine the domain architecture and gene neighborhood of T4aP secretins in Proteobacteria in comparison with VcPilQ. This structure highlights differences in the architecture of the T4aP secretin from the type II and type III secretion system secretins. Based on our cryoEM structure, we design a series of mutants to reversibly regulate VcPilQ gate dynamics. These experiments support the idea of VcPilQ as a potential druggable target and provide insight into the channel that DNA likely traverses to promote the spread of antibiotic resistance via horizontal gene transfer by natural transformation.


Assuntos
Sistemas de Secreção Bacterianos/ultraestrutura , Microscopia Crioeletrônica , Fímbrias Bacterianas/ultraestrutura , Secretina/química , Vibrio cholerae/metabolismo , Vibrio cholerae/ultraestrutura , Cisteína/genética , Proteínas de Membrana/ultraestrutura , Modelos Moleculares , Mutação/genética , Filogenia , Domínios Proteicos , Transformação Bacteriana
7.
Mediators Inflamm ; 2020: 8198963, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33029105

RESUMO

The novel coronavirus is not only causing respiratory problems, but it may also damage the heart, kidneys, liver, and other organs; in Wuhan, 14 to 30% of COVID-19 patients have lost their kidney function and now require either dialysis or kidney transplants. The novel coronavirus gains entry into humans by targeting the ACE2 receptor that found on lung cells, which destroy human lungs through cytokine storms, and this leads to hyperinflammation, forcing the immune cells to destroy healthy cells. This is why some COVID-19 patients need intensive care. The inflammatory chemicals released during COVID-19 infection cause the liver to produce proteins that defend the body from infections. However, these proteins can cause blood clotting, which can clog blood vessels in the heart and other organs; as a result, the organs are deprived of oxygen and nutrients which could ultimately lead to multiorgan failure and consequent progression to acute lung injury, acute respiratory distress syndrome, and often death. However, there are novel protein modification tools called the QTY code, which are similar in their structure to antibodies, which could provide a solution to excess cytokines. These synthetic proteins can be injected into the body to bind the excess cytokines created by the cytokine storm; this will eventually remove the excessive cytokines and inhibit the severe symptoms caused by the COVID-19 infection. In this review, we will focus on cytokine storm in COVID-19 patients, their impact on the body organs, and the potential treatment by QTY code-designed detergent-free chemokine receptors.


Assuntos
Infecções por Coronavirus/complicações , Infecções por Coronavirus/imunologia , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/terapia , Pneumonia Viral/complicações , Pneumonia Viral/imunologia , Receptores de Quimiocinas/uso terapêutico , Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/terapia , Síndrome da Liberação de Citocina/imunologia , Citocinas/antagonistas & inibidores , Desenho de Fármacos , Humanos , Mediadores da Inflamação/sangue , Mediadores da Inflamação/imunologia , Modelos Moleculares , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/imunologia , Insuficiência de Múltiplos Órgãos/terapia , Pandemias , Pneumonia Viral/terapia , Engenharia de Proteínas , Modificação Traducional de Proteínas , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo
8.
Nature ; 586(7829): 457-462, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32999458

RESUMO

TASK2 (also known as KCNK5) channels generate pH-gated leak-type K+ currents to control cellular electrical excitability1-3. TASK2 is involved in the regulation of breathing by chemosensory neurons of the retrotrapezoid nucleus in the brainstem4-6 and pH homeostasis by kidney proximal tubule cells7,8. These roles depend on channel activation by intracellular and extracellular alkalization3,8,9, but the mechanistic basis for TASK2 gating by pH is unknown. Here we present cryo-electron microscopy structures of Mus musculus TASK2 in lipid nanodiscs in open and closed conformations. We identify two gates, distinct from previously observed K+ channel gates, controlled by stimuli on either side of the membrane. Intracellular gating involves lysine protonation on inner helices and the formation of a protein seal between the cytoplasm and the channel. Extracellular gating involves arginine protonation on the channel surface and correlated conformational changes that displace the K+-selectivity filter to render it nonconductive. These results explain how internal and external protons control intracellular and selectivity filter gates to modulate TASK2 activity.


Assuntos
Microscopia Crioeletrônica , Ativação do Canal Iônico , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/ultraestrutura , Potássio/metabolismo , Animais , Concentração de Íons de Hidrogênio , Camundongos , Modelos Moleculares , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Domínios Proteicos , Relação Estrutura-Atividade
9.
Nat Commun ; 11(1): 4948, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009415

RESUMO

The tripartite multidrug efflux system MexAB-OprM is a major actor in Pseudomonas aeruginosa antibiotic resistance by exporting a large variety of antimicrobial compounds. Crystal structures of MexB and of its Escherichia coli homolog AcrB had revealed asymmetric trimers depicting a directional drug pathway by a conformational interconversion (from Loose and Tight binding pockets to Open gate (LTO) for drug exit). It remains unclear how MexB acquires its LTO form. Here by performing functional and cryo-EM structural investigations of MexB at various stages of the assembly process, we unveil that MexB inserted in lipid membrane is not set for active transport because it displays an inactive LTC form with a Closed exit gate. In the tripartite complex, OprM and MexA form a corset-like platform that converts MexB into the active form. Our findings shed new light on the resistance nodulation cell division (RND) cognate partners which act as allosteric factors eliciting the functional drug extrusion.


Assuntos
Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Chaperonas Moleculares/metabolismo , Pseudomonas aeruginosa/metabolismo , Regulação Alostérica , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Transporte Biológico , Modelos Moleculares , Domínios Proteicos
10.
PLoS One ; 15(10): e0240004, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33002032

RESUMO

The SARS-CoV-2 virus has caused a pandemic and is public health emergency of international concern. As of now, no registered therapies are available for treatment of coronavirus infection. The viral infection depends on the attachment of spike (S) glycoprotein to human cell receptor angiotensin-converting enzyme 2 (ACE2). We have designed a protein inhibitor (ΔABP-D25Y) targeting S protein using computational approach. The inhibitor consists of two α helical peptides homologues to protease domain (PD) of ACE2. Docking studies and molecular dynamic simulation revealed that the inhibitor binds exclusively at the ACE2 binding site of S protein. The computed binding affinity of the inhibitor is higher than the ACE2 and thus will likely out compete ACE2 for binding to S protein. Hence, the proposed inhibitor ΔABP-D25Y could be a potential blocker of S protein and receptor binding domain (RBD) attachment.


Assuntos
Antivirais/química , Betacoronavirus/efeitos dos fármacos , Desenho de Fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Homologia Estrutural de Proteína , Sítios de Ligação , Simulação por Computador , Infecções por Coronavirus , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias , Peptidil Dipeptidase A/química , Pneumonia Viral , Domínios Proteicos
11.
Nat Commun ; 11(1): 4941, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009412

RESUMO

Methods to directly inhibit gene expression using small molecules hold promise for the development of new therapeutics targeting proteins that have evaded previous attempts at drug discovery. Among these, small molecules including the drug-like compound PF-06446846 (PF846) selectively inhibit the synthesis of specific proteins, by stalling translation elongation. These molecules also inhibit translation termination by an unknown mechanism. Using cryo-electron microscopy (cryo-EM) and biochemical approaches, we show that PF846 inhibits translation termination by arresting the nascent chain (NC) in the ribosome exit tunnel. The arrested NC adopts a compact α-helical conformation that induces 28 S rRNA nucleotide rearrangements that suppress the peptidyl transferase center (PTC) catalytic activity stimulated by eukaryotic release factor 1 (eRF1). These data support a mechanism of action for a small molecule targeting translation that suppresses peptidyl-tRNA hydrolysis promoted by eRF1, revealing principles of eukaryotic translation termination and laying the foundation for new therapeutic strategies.


Assuntos
Terminação Traducional da Cadeia Peptídica , Preparações Farmacêuticas/metabolismo , Linhagem Celular , Humanos , Modelos Moleculares , Mutação/genética , Conformação Proteica , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Ribossomos/ultraestrutura
12.
J Transl Med ; 18(1): 329, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867854

RESUMO

BACKGROUND: The new Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which was first detected in Wuhan (China) in December of 2019 is responsible for the current global pandemic. Phylogenetic analysis revealed that it is similar to other betacoronaviruses, such as SARS-CoV and Middle-Eastern Respiratory Syndrome, MERS-CoV. Its genome is ∼ 30 kb in length and contains two large overlapping polyproteins, ORF1a and ORF1ab that encode for several structural and non-structural proteins. The non-structural protein 1 (nsp1) is arguably the most important pathogenic determinant, and previous studies on SARS-CoV indicate that it is both involved in viral replication and hampering the innate immune system response. Detailed experiments of site-specific mutagenesis and in vitro reconstitution studies determined that the mechanisms of action are mediated by (a) the presence of specific amino acid residues of nsp1 and (b) the interaction between the protein and the host's small ribosomal unit. In fact, substitution of certain amino acids resulted in reduction of its negative effects. METHODS: A total of 17,928 genome sequences were obtained from the GISAID database (December 2019 to July 2020) from patients infected by SARS-CoV-2 from different areas around the world. Genomes alignment was performed using MAFFT (REFF) and the nsp1 genomic regions were identified using BioEdit and verified using BLAST. Nsp1 protein of SARS-CoV-2 with and without deletion have been subsequently modelled using I-TASSER. RESULTS: We identified SARS-CoV-2 genome sequences, from several Countries, carrying a previously unknown deletion of 9 nucleotides in position 686-694, corresponding to the AA position 241-243 (KSF). This deletion was found in different geographical areas. Structural prediction modelling suggests an effect on the C-terminal tail structure. CONCLUSIONS: Modelling analysis of a newly identified deletion of 3 amino acids (KSF) of SARS-CoV-2 nsp1 suggests that this deletion could affect the structure of the C-terminal region of the protein, important for regulation of viral replication and negative effect on host's gene expression. In addition, substitution of the two amino acids (KS) from nsp1 of SARS-CoV was previously reported to revert loss of interferon-alpha expression. The deletion that we describe indicates that SARS-CoV-2 is undergoing profound genomic changes. It is important to: (i) confirm the spreading of this particular viral strain, and potentially of strains with other deletions in the nsp1 protein, both in the population of asymptomatic and pauci-symptomatic subjects, and (ii) correlate these changes in nsp1 with potential decreased viral pathogenicity.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Deleção de Sequência , Proteínas não Estruturais Virais/genética , Sequência de Aminoácidos , Sequência de Bases , Betacoronavirus/patogenicidade , Doenças Transmissíveis Emergentes/virologia , Infecções por Coronavirus/epidemiologia , Frequência do Gene , Genoma Viral , Geografia , Humanos , Lisina/genética , Modelos Moleculares , Pandemias/estatística & dados numéricos , Fenilalanina/genética , Pneumonia Viral/epidemiologia , Domínios Proteicos/genética , Serina/genética , Proteínas não Estruturais Virais/química , Virulência/genética , Replicação Viral/genética
13.
Signal Transduct Target Ther ; 5(1): 212, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963228

RESUMO

The outbreaks of severe acute respiratory syndrome (SARS) and Coronavirus Disease 2019 (COVID-19) caused by SARS-CoV and SARS-CoV-2, respectively, have posed severe threats to global public health and the economy. Treatment and prevention of these viral diseases call for the research and development of human neutralizing monoclonal antibodies (NMAbs). Scientists have screened neutralizing antibodies using the virus receptor-binding domain (RBD) as an antigen, indicating that RBD contains multiple conformational neutralizing epitopes, which are the main structural domains for inducing neutralizing antibodies and T-cell immune responses. This review summarizes the structure and function of RBD and RBD-specific NMAbs against SARS-CoV and SARS-CoV-2 currently under development.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Síndrome Respiratória Aguda Grave/prevenção & controle , Glicoproteína da Espícula de Coronavírus/química , Anticorpos Monoclonais/biossíntese , Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Reações Cruzadas , Epitopos/química , Epitopos/imunologia , Epitopos/metabolismo , Humanos , Modelos Moleculares , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/imunologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Ligação Proteica , Estrutura Secundária de Proteína , Receptores Virais/química , Receptores Virais/imunologia , Receptores Virais/metabolismo , Vírus da SARS/efeitos dos fármacos , Vírus da SARS/imunologia , Vírus da SARS/patogenicidade , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/virologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Vírion/imunologia , Vírion/ultraestrutura
14.
Sci Signal ; 13(651)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994211

RESUMO

There are currently no antiviral therapies specific for SARS-CoV-2, the virus responsible for the global pandemic disease COVID-19. To facilitate structure-based drug design, we conducted an x-ray crystallographic study of the SARS-CoV-2 nsp16-nsp10 2'-O-methyltransferase complex, which methylates Cap-0 viral mRNAs to improve viral protein translation and to avoid host immune detection. We determined the structures for nsp16-nsp10 heterodimers bound to the methyl donor S-adenosylmethionine (SAM), the reaction product S-adenosylhomocysteine (SAH), or the SAH analog sinefungin (SFG). We also solved structures for nsp16-nsp10 in complex with the methylated Cap-0 analog m7GpppA and either SAM or SAH. Comparative analyses between these structures and published structures for nsp16 from other betacoronaviruses revealed flexible loops in open and closed conformations at the m7GpppA-binding pocket. Bound sulfates in several of the structures suggested the location of the ribonucleic acid backbone phosphates in the ribonucleotide-binding groove. Additional nucleotide-binding sites were found on the face of the protein opposite the active site. These various sites and the conserved dimer interface could be exploited for the development of antiviral inhibitors.


Assuntos
Betacoronavirus/enzimologia , Infecções por Coronavirus/tratamento farmacológico , Metiltransferases/química , Pneumonia Viral/tratamento farmacológico , Proteínas não Estruturais Virais/química , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/farmacologia , Betacoronavirus/efeitos dos fármacos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Dimerização , Genes Virais/genética , Humanos , Metilação , Metiltransferases/antagonistas & inibidores , Modelos Moleculares , Fases de Leitura Aberta/genética , Pandemias , Ligação Proteica , Conformação Proteica , Análogos de Capuz de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Viral/metabolismo , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo
15.
Cell Mol Immunol ; 17(10): 1095-1097, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32895485
16.
Nat Commun ; 11(1): 4775, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963221

RESUMO

Enterovirus 71 (EV71) poses serious threats to human health, particularly in Southeast Asia, and no drugs or vaccines are available. Previous work identified the stem loop II structure of the EV71 internal ribosomal entry site as vital to viral translation and a potential target. After screening an RNA-biased library using a peptide-displacement assay, we identify DMA-135 as a dose-dependent inhibitor of viral translation and replication with no significant toxicity in cell-based studies. Structural, biophysical, and biochemical characterization support an allosteric mechanism in which DMA-135 induces a conformational change in the RNA structure that stabilizes a ternary complex with the AUF1 protein, thus repressing translation. This mechanism is supported by pull-down experiments in cell culture. These detailed studies establish enterovirus RNA structures as promising drug targets while revealing an approach and mechanism of action that should be broadly applicable to functional RNA targeting.


Assuntos
Enterovirus Humano A/genética , Enterovirus Humano A/fisiologia , Infecções por Enterovirus/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Sítios Internos de Entrada Ribossomal/fisiologia , Replicação Viral/fisiologia , Regiões 5' não Traduzidas , Linhagem Celular , Infecções por Enterovirus/virologia , Regulação Viral da Expressão Gênica , Ribonucleoproteína Nuclear Heterogênea D0/metabolismo , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , RNA Viral/química , Proteínas Virais/metabolismo
17.
Nat Commun ; 11(1): 4784, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963245

RESUMO

Genomic integrity is threatened by cytotoxic DNA double-strand breaks (DSBs), which must be resolved efficiently to prevent sequence loss, chromosomal rearrangements/translocations, or cell death. Polymerase µ (Polµ) participates in DSB repair via the nonhomologous end-joining (NHEJ) pathway, by filling small sequence gaps in broken ends to create substrates ultimately ligatable by DNA Ligase IV. Here we present structures of human Polµ engaging a DSB substrate. Synapsis is mediated solely by Polµ, facilitated by single-nucleotide homology at the break site, wherein both ends of the discontinuous template strand are stabilized by a hydrogen bonding network. The active site in the quaternary Pol µ complex is poised for catalysis and nucleotide incoporation proceeds in crystallo. These structures demonstrate that Polµ may address complementary DSB substrates during NHEJ in a manner indistinguishable from single-strand breaks.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Polimerase Dirigida por DNA/química , DNA/química , Cristalografia por Raios X , Dano ao DNA , Reparo do DNA por Junção de Extremidades , DNA Ligase Dependente de ATP/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/química , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Conformação Proteica
18.
Nat Commun ; 11(1): 4795, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963252

RESUMO

Varicella-zoster virus (VZV), a member of the Alphaherpesvirinae subfamily, causes severe diseases in humans of all ages. The viral capsids play critical roles in herpesvirus infection, making them potential antiviral targets. Here, we present the 3.7-Å-resolution structure of the VZV A-capsid and define the molecular determinants underpinning the assembly of this complicated viral machinery. Overall, the VZV capsid has a similar architecture to that of other known herpesviruses. The major capsid protein (MCP) assembles into pentons and hexons, forming extensive intra- and inter-capsomer interaction networks that are further secured by the small capsid protein (SCP) and the heterotriplex. The structure reveals a pocket beneath the floor of MCP that could potentially be targeted by antiviral inhibitors. In addition, we identified two alphaherpesvirus-specific structural features in SCP and Tri1 proteins. These observations highlight the divergence of different herpesviruses and provide an important basis for developing antiviral drugs.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/química , Microscopia Crioeletrônica/métodos , Herpesvirus Humano 3/metabolismo , Linhagem Celular , Humanos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
19.
Nat Commun ; 11(1): 4817, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968056

RESUMO

Lysozymes are among the best-characterized enzymes, acting upon the cell wall substrate peptidoglycan. Here, examining the invasive bacterial periplasmic predator Bdellovibrio bacteriovorus, we report a diversified lysozyme, DslA, which acts, unusually, upon (GlcNAc-) deacetylated peptidoglycan. B. bacteriovorus are known to deacetylate the peptidoglycan of the prey bacterium, generating an important chemical difference between prey and self walls and implying usage of a putative deacetyl-specific "exit enzyme". DslA performs this role, and ΔDslA strains exhibit a delay in leaving from prey. The structure of DslA reveals a modified lysozyme superfamily fold, with several adaptations. Biochemical assays confirm DslA specificity for deacetylated cell wall, and usage of two glutamate residues for catalysis. Exogenous DslA, added ex vivo, is able to prematurely liberate B. bacteriovorus from prey, part-way through the predatory lifecycle. We define a mechanism for specificity that invokes steric selection, and use the resultant motif to identify wider DslA homologues.


Assuntos
Bdellovibrio bacteriovorus/enzimologia , Bdellovibrio bacteriovorus/metabolismo , Muramidase/química , Muramidase/metabolismo , Periplasma/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bdellovibrio bacteriovorus/genética , Parede Celular , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Muramidase/genética , Mutação , Peptidoglicano/metabolismo , Fenótipo , Conformação Proteica , Especificidade por Substrato
20.
Nat Commun ; 11(1): 4820, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973160

RESUMO

Protein tyrosine O-sulfation (PTS) plays a crucial role in extracellular biomolecular interactions that dictate various cellular processes. It also involves in the development of many human diseases. Regardless of recent progress, our current understanding of PTS is still in its infancy. To promote and facilitate relevant studies, a generally applicable method is needed to enable efficient expression of sulfoproteins with defined sulfation sites in live mammalian cells. Here we report the engineering, in vitro biochemical characterization, structural study, and in vivo functional verification of a tyrosyl-tRNA synthetase mutant for the genetic encoding of sulfotyrosine in mammalian cells. We further apply this chemical biology tool to cell-based studies on the role of a sulfation site in the activation of chemokine receptor CXCR4 by its ligand. Our work will not only facilitate cellular studies of PTS, but also paves the way for economical production of sulfated proteins as therapeutic agents in mammalian systems.


Assuntos
Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/metabolismo , Tirosina/análogos & derivados , Tirosina/genética , Tirosina/metabolismo , Animais , Sistemas CRISPR-Cas , Quimiocinas/metabolismo , Cristalografia por Raios X , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Conformação Proteica , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Tirosina-tRNA Ligase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA