Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 759
Filtrar
1.
Mol Pharmacol ; 98(2): 156-167, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32591477

RESUMO

The natural product (+)-discodermolide (DDM) is a microtubule stabilizing agent and potent inducer of senescence. We refined the structure of DDM and evaluated the activity of novel congeners in triple negative breast and ovarian cancers, malignancies that typically succumb to taxane resistance. Previous structure-activity analyses identified the lactone and diene as moieties conferring anticancer activity, thus identifying priorities for the structural refinement studies described herein. Congeners possessing the monodiene with a simplified lactone had superior anticancer efficacy relative to taxol, particularly in resistant models. Specifically, one of these congeners, B2, demonstrated 1) improved pharmacologic properties, specifically increased maximum response achievable and area under the curve, and decreased EC50; 2) a uniform dose-response profile across genetically heterogeneous cancer cell lines relative to taxol or DDM; 3) reduced propensity for senescence induction relative to DDM; 4) superior long-term activity in cancer cells versus taxol or DDM; and 5) attenuation of metastatic characteristics in treated cancer cells. To contrast the binding of B2 versus DDM in tubulin, X-ray crystallography studies revealed a shift in the position of the lactone ring associated with removal of the C2-methyl and C3-hydroxyl. Thus, B2 may be more adaptable to changes in the taxane site relative to DDM that could account for its favorable properties. In conclusion, we have identified a DDM congener with broad range anticancer efficacy that also has decreased risk of inducing chemotherapy-mediated senescence. SIGNIFICANCE STATEMENT: Here, we describe the anticancer activity of novel congeners of the tubulin-polymerizing molecule (+)-discodermolide. A lead molecule is identified that exhibits an improved dose-response profile in taxane-sensitive and taxane-resistant cancer cell models, diminished risk of chemotherapy-mediated senescence, and suppression of tumor cell invasion endpoints. X-ray crystallography studies identify subtle changes in the pose of binding to ß-tubulin that could account for the improved anticancer activity. These findings support continued preclinical development of discodermolide, particularly in the chemorefractory setting.


Assuntos
Alcanos/química , Carbamatos/química , Lactonas/síntese química , Neoplasias Ovarianas/metabolismo , Pironas/química , Neoplasias de Mama Triplo Negativas/metabolismo , Moduladores de Tubulina/síntese química , Células A549 , Área Sob a Curva , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Lactonas/química , Lactonas/farmacologia , Estrutura Molecular , Neoplasias Ovarianas/tratamento farmacológico , Taxoides/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia
2.
Eur J Med Chem ; 192: 112176, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32120327

RESUMO

We have synthesized a series of 2-phenyl-3-hydroxy-4(1H)-quinolinone derivatives substituted with one or more fluorine atoms on the quinolone backbone as well as on phenyl ring. The derivatives bearing more fluorine atoms were subjected to modification by nucleophilic substitutions by thiophenol, morpholine, and piperazine derivative. We have tested the prepared compounds in cytotoxic activity assay against cancer cell lines. Four derivatives exhibited micromolar values of IC50 against some of the cancer cell lines, and we have subjected them to cell cycle analysis on CCRF-CEM. Moreover, most active 7-fluoro-3-hydroxy-2-phenyl-6-(phenylthio)quinolin-4(1H)-one inhibits mitosis progression. Cell cycle analysis, in vitro tubulin polymerization assay, and tubulin imaging in cells indicated that the anticancer activity of thiophenol derivative is associated with its ability to inhibit microtubule formation.


Assuntos
Quinolonas/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Relação Dose-Resposta a Droga , Células HCT116 , Halogenação , Humanos , Estrutura Molecular , Polimerização/efeitos dos fármacos , Quinolonas/síntese química , Quinolonas/química , Relação Estrutura-Atividade , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química
3.
Chem Biol Interact ; 323: 109074, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32217108

RESUMO

Non-small-cell lung cancer (NSCLC) is one of the common malignant tumors, and multidrug resistance (MDR) and tumor metastasis limit the anticancer effect of NSCLC. Therefore, it is necessary to develop new anticancer drug that can inhibit MDR and metastasis of NSCLC. In the present study, we found that 5-(2-chlorophenyl)-4-(4-(3,5-dimethoxyphenyl)piperazine-1-carbonyl)-2H-1,2,3- triazole (MAY) displayed strong cytotoxic effect on A549 and taxol-resistant A549 cells (A549/Taxol cells). We further discovered that MAY led to G2/M phase arrest by inhibiting microtubule polymerization in both cells. Then MAY caused apoptosis by the mitochondrial pathway in A549 cells and through the extrinsic pathway in A549/Taxol cells. Interestingly, MAY was not a substrate for P-glycoprotein (P-gp), which was highly expressed in A549/Taxol cells, and MAY inhibited the expression and efflux function of P-gp. Furthermore, MAY inhibited epithelial-mesenchymal transition (EMT) by targeting Twist1 in A549/Taxol cells. In summary, our results suggest that MAY induces apoptosis in A549 and A549/Taxol cells and inhibits EMT in A549/Taxol cells. These findings suggest that MAY could provide a promising method for the treatment of NSCLC, especially for the treatment of resistant NSCLC.


Assuntos
Apoptose/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Paclitaxel/farmacologia , Triazóis/farmacologia , Moduladores de Tubulina/farmacologia , Células A549 , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Nucleares/metabolismo , Paclitaxel/química , Polimerização , Transdução de Sinais/efeitos dos fármacos , Triazóis/química , Moduladores de Tubulina/química , Proteína 1 Relacionada a Twist/metabolismo
4.
Biomed Chromatogr ; 34(4): e4749, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31743475

RESUMO

A sensitive method for quantitation of SK1326 in rat plasma has been established using ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI/MS/MS). SK1326 and the internal standard (tramadol) in plasma sample were extracted using acetonitrile. A centrifuged upper layer was then evaporated and reconstituted with a mobile phase of 0.5% formic acid-acetonitrile (35:65, v/v). The reconstituted samples were injected into a C18 reversed-phase column. Using MS/MS in the multiple reaction monitoring mode, SK1326 and tramadol were detected without severe interference from the rat plasma matrix. SK1326 produced a protonated precursor ion ([M + H]+ ) at m/z 432.3 and a corresponding product ion at m/z 114.4. The internal standard produced a protonated precursor ion ([M + H]+ ) at m/z 264.4 and a corresponding product ion at m/z 58.1. Detection of SK1326 in rat plasma by the UPLC-ESI/MS/MS method was accurate and precise with a quantitation limit of 1.0 ng/mL. The validation, reproducibility, stability and recovery of the method were evaluated. The method has been successfully applied to pharmacokinetic studies of SK1326 in rat plasma. The pharmacokinetic parameters of SK1326 were evaluated after intravenous (at a dose of 10 mg/kg) and oral (at a dose of 20 mg/kg) administration of SK1326 in rats. After oral administration (20 mg/kg) of SK1326, the F (fraction absorbed) value was ~77.1%.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Morfolinas/sangue , Morfolinas/farmacologia , Espectrometria de Massas em Tandem/métodos , Moduladores de Tubulina/sangue , Moduladores de Tubulina/farmacocinética , Animais , Disponibilidade Biológica , Modelos Lineares , Masculino , Morfolinas/química , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray/métodos , Moduladores de Tubulina/química
5.
Eur J Med Chem ; 186: 111865, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31735573

RESUMO

We here report the discovery of isoquinoline-based biaryls as a new scaffold for colchicine domain tubulin inhibitors. Colchicinoid inhibitors offer highly desirable cytotoxic and vascular disrupting bioactivities, but their further development requires improving in vivo robustness and tolerability: properties that both depend on the scaffold structure employed. We have developed isoquinoline-based biaryls as a novel scaffold for high-potency tubulin inhibitors, with excellent robustness, druglikeness, and facile late-stage structural diversification, accessible through a tolerant synthetic route. We confirmed their bioactivity mechanism in vitro, developed soluble prodrugs, and established safe in vivo dosing in mice. By addressing several problems facing the current families of inhibitors, we expect that this new scaffold will find a range of in vivo applications towards translational use in cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Isoquinolinas/farmacologia , Microtúbulos/efeitos dos fármacos , Moduladores de Tubulina/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Células HeLa , Humanos , Isoquinolinas/síntese química , Isoquinolinas/química , Microscopia Confocal , Microtúbulos/metabolismo , Estrutura Molecular , Polimerização/efeitos dos fármacos , Relação Estrutura-Atividade , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química
6.
Eur J Med Chem ; 186: 111846, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31740055

RESUMO

A series of 2-aryl-4-(3,4,5-trimethoxybenzoyl)-5-substituted-1,2,3-triazoles were designed, synthesized and evaluated for the anticancer activities. Based on the model of DMAM-colchicine-tubulin complex interactions, various saturated nitrogen-containing heterocycles were introduced to the C5-position of 1,2,3-triazol to interact with a tolerant region at the entrance of the binding-pocket and increase the aqueous solubility of the compounds. All designed compounds were concisely synthesized by one-pot oxidative cyclization. Most compounds exhibited moderate antiproliferative activity with IC50 values in the micromolar to sub-micromolar range. Among them, 5g posed N-acyl-piperazine moiety at the C5-position of B-ring showed most potent against cancer cells, with IC50 values of 0.084-0.221 µM 5g potently disrupted microtubule/tubulin dynamics, induced cell cycle arrest at G2/M phase in SGC-7901 cells. In addition, molecular modeling studies suggested that 5g probably binds to the colchicine site of tubulin.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Triazóis/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Modelos Moleculares , Estrutura Molecular , Polimerização/efeitos dos fármacos , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química , Células Tumorais Cultivadas
7.
Eur J Med Chem ; 187: 111968, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31865012

RESUMO

Tubulin inhibitors that bind to the colchicine site are widely studied anticancer agents. In continuous our researches, we designed a series of novel indazole derivatives as microtubule-targeting agents (MTAs). The structure-activity relationships (SARs) investigations indicated that a 3,4,5-trimethoxyphenyl moiety and a methyl or methoxy substitution were preferred for the better antiproliferative activity. The indazole derivatives 3c and 3f showed noteworthy low nanomolar potency against HepG2, HCT116, SW620, HT29 and A549 tumor cells. In mechanism studies, 3c and 3f were proved to target the colchicine site, inhibited tubulin polymerization and disrupted cellular microtubule networks, arrested HCT116 cell in G2/M phase and induced cell apoptosis. In the HCT116 xenografts mouse model, 3c and 3f suppressed tumor growth by 45.3% and 58.9% at an orally dose of 25 mg/kg without causing obvious weight loss. The indazole 3f may serve as a good lead or drug candidate for colorectal cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Colchicina/farmacologia , Descoberta de Drogas , Indazóis/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colchicina/síntese química , Colchicina/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indazóis/síntese química , Indazóis/química , Camundongos , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , Polimerização/efeitos dos fármacos , Relação Estrutura-Atividade , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química
8.
Eur J Med Chem ; 185: 111784, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669850

RESUMO

A new series of thiazole-2(3H)-thiones containing 4-(3,4,5-trimethoxyphenyl) moiety were synthesized as diaryl-heterocylic analogs of combretastatin A-4 with anticancer activity. The cytotoxicity evaluation of synthesized compounds against cancer cell lines (A549, MCF-7 and SKOV3) revealed that most of them had potent cytotoxic activity toward all tested cell lines (IC50s < 10 µg/mL). Among them, 3-(chlorobenzyl) derivatives 5c and 5d showed the best inhibitory effect on MCF-7 cells (IC50 values of 1.14 and 2.41 µg/mL, respectively). Furthermore, the ability of tubulin polymerization inhibition and apoptosis induction were evaluated for the promising compounds 5c and 5d. Results suggested that these compounds remarkably inhibit tubulin polymerization and induce apoptosis resulting in cell death. In vitro studies revealed that these compounds had no significant cytotoxicity against normal cells at the concentrations required for growth inhibition of cancer cells. In vitro biding assay and in silico docking study also confirmed the binding of prototype compound to the colchicine binding site of tubulin.


Assuntos
Antineoplásicos/farmacologia , Tiazóis/farmacologia , Tionas/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química , Tionas/síntese química , Tionas/química , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química
9.
Phytomedicine ; 67: 153152, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31887479

RESUMO

BACKGROUND: Lung cancer is the leading cause of cancer-related deaths worldwide. Several targets have been identified for lung cancer therapy, amongst which 'Microtubule' and its dynamics are the most widely studied and used in therapy. Tubulin-microtubule polymer dynamics are highly sought after targets in the field of anti-cancer drug designing. Natural compounds are important sources for developing anticancer therapeutics owing to their efficacy and lower cytotoxicity. Evidence suggested that therapeutic targeting of microtubule by natural compounds is amongst the most widely used interventions in numerous cancer therapies including lung cancer. PURPOSE: To determine the efficacy of apocynin (a natural compound) in suppressing the progression of lung carcinoma both in vitro and in vivo, along with the identification of targets and the underlying mechanism for developing a novel therapeutic approach. METHODS: We have demonstrated themicrotubule depolymerizing role of apocynin by established protocols in cellular and cell-free system. The efficacy of apocynin to inhibit lung carcinoma progression was studied on A549 cells.The tumoricidal ability of apocynin was studied in BALB/c mice model as well.Mice were classified into 4 groups namely-group II mice as tumor control; group III-IV mice asalso tumor-induced but treated with differential apocynin doses whereas group I mice were kept as normal. RESULTS: Apocynin, showed selective cytotoxicity towards lung cancer cells rather than normal lung fibroblast cells. Apocynin inhibited oncogenic properties including growth, proliferation (p < 0.05), colony formation (p < 0.05), invasion (p < 0.05) and spheroid formation (p < 0.05) in lung cancer cells. Apart from other established properties, apocynin was found to be a novel and potent component to bind with tubulin and depolymerize cellular microtubule network. Apocynin mediated cellular microtubule depolymerization was the driving mechanism to trigger autophagy-mediated apoptotic cell death (p < 0.05) which in turn retarded lung cancer progression. Furthermore, apocynin showed tumoricidal characteristics to inhibit lung tumorigenesis in mice as well. CONCLUSION: Targeting tubulin-microtubule equilibrium with apocynin could be the key regulator to catastrophe cellular catabolic processes to mitigate lung carcinoma. Thus, apocynin could be a potential therapeutic agent for lung cancer treatment.


Assuntos
Acetofenonas/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Moduladores de Tubulina/farmacologia , Células A549 , Acetofenonas/química , Animais , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos BALB C , Microtúbulos/metabolismo , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química
10.
J Enzyme Inhib Med Chem ; 35(1): 139-144, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31724435

RESUMO

A series of naphthalene-chalcone derivatives (3a-3t) were prepared and evaluated as tubulin polymerisation inhibitor for the treatment of breast cancer. All compounds were evaluated for their antiproliferative activity against MCF-7 cell line. The most of compounds displayed potent antiproliferative activity. Among them, compound 3a displayed the most potent antiproliferative activity with an IC50 value of 1.42 ± 0.15 µM, as compared to cisplatin (IC50 = 15.24 ± 1.27 µM). Additionally, the promising compound 3a demonstrated relatively lower cytotoxicity on normal cell line (HEK293) compared to tumour cell line. Furthermore, compound 3a was found to induce significant cell cycle arrest at the G2/M phase and cell apoptosis. Compound 3a displayed potent tubulin polymerisation inhibitory activity with an IC50 value of 8.4 µM, which was slightly more active than the reference compound colchicine (IC50 = 10.6 µM). Molecular docking analysis suggested that 3a interact and bind at the colchicine binding site of the tubulin.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Chalconas/farmacologia , Naftalenos/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chalconas/química , Colchicina/antagonistas & inibidores , Colchicina/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Naftalenos/química , Relação Estrutura-Atividade , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química
11.
Molecules ; 24(23)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779228

RESUMO

Colchicine site ligands suffer from low aqueous solubility due to the highly hydrophobic nature of the binding site. A new strategy for increasing molecular polarity without exposing polar groups-termed masked polar group incorporation (MPGI)-was devised and applied to nitrogenated combretastatin analogues. Bulky ortho substituents to the pyridine nitrogen hinder it from the hydrophobic pocket while increasing molecular polarity. The resulting analogues show improved aqueous solubilities and highly potent antiproliferative activity against several cancer cell lines of different origin. The more potent compounds showed moderate tubulin polymerization inhibitory activity, arrested the cell cycle of treated cells at the G2/M phase, and subsequently caused apoptotic cell death represented by the cells gathered at the subG0/G1 population after 48 h of treatment. Annexin V/Propidium Iodide (PI) double-positive cells observed after 72 h confirmed the induction of apoptosis. Docking studies suggest binding at the colchicine site of tubulin in a similar way as combretastatin A4, with the polar groups masked by the vicinal substituents. These results validate the proposed strategy for the design of colchicine site ligands and open a new road to increasing the aqueous solubility of ligands binding in apolar environments.


Assuntos
Bibenzilas/química , Nitrogênio/química , Moduladores de Tubulina/química , Tubulina (Proteína)/metabolismo , Apoptose/efeitos dos fármacos , Sítios de Ligação , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Colchicina/química , Desenho de Fármacos , Células HT29 , Células HeLa , Humanos , Ligantes , Células MCF-7 , Simulação de Acoplamento Molecular , Piridinas/química , Solubilidade/efeitos dos fármacos , Relação Estrutura-Atividade
12.
ACS Chem Biol ; 14(12): 2810-2821, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31714738

RESUMO

Because of its multifaceted role in cellular functions, tubulin is a validated and productive drug target for cancer therapy. While many tubulin inhibitors demonstrate clinical efficacy, they are often limited by the development of multidrug resistance. Therefore, implementation of tubulin inhibitors that can overcome resistance could provide significant therapeutic benefits. To optimize our previously reported tubulin inhibitor, 4a, we designed and synthesized two new analogues, SB202 and SB204, based on the crystal structure of 4a in complex with tubulin protein. SB202 and SB204 achieved enhanced binding at the colchicine site in tubulin and also showed improved metabolic stability and antiproliferative potency in vitro. Functional studies confirmed that SB202 and SB204 inhibit tubulin polymerization, arrest cells in the G2/M phase of the cell cycle, interfere with cancer cell migration and proliferation, and enhance apoptotic cascades. When evaluated in vivo, SB202 exhibited antitumor and vascular disrupting action against paclitaxel-resistant mouse xenograft models, strongly suggesting the potential of this scaffold to overcome multidrug resistance for cancer therapy.


Assuntos
Antineoplásicos/química , Cristalografia por Raios X/métodos , Descoberta de Drogas/métodos , Quinoxalinas/química , Moduladores de Tubulina/química , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Colchicina/química , Humanos , Camundongos , Polimerização , Quinoxalinas/farmacologia , Tubulina (Proteína)/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia
13.
Eur J Med Chem ; 183: 111697, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31536891

RESUMO

A series of cis restricted 1,2,4-triazole analogs of combretastatin A-4 (CA-4) were designed and synthesized. The antiproliferative activity of these compounds was measured on hepatocellular carcinoma HepG2, leukemia HL-60, and breast cancer MCF-7 cell lines. The obtained results showed a substantial ability of the synthesized anilides to inhibit tumor growth. On HepG2 cells, 5o and 5r showed potent IC50 values of 0.10 and 0.04 µM, respectively. While on HL-60 cells, the IC50 values were 0.004 and 0.01 µM for 5b and 5i, respectively. The inhibitory activity of tubulin polymerization was evaluated on HepG2 cells. The anilide 5r showed a remarkable tubulin inhibition compared to CA-4. Moreover, flow cytometry studies showed that HepG2 cells treated with the most potent compounds 5b and 5r were arrested in the G2/M phase of the cell cycle. This effect was accompanied by cellular apoptosis and activation of caspase-3. Molecular modeling showed several hydrogen bonding and van der Waals interactions with several important amino acids inside the colchicine binding site of tubulin.


Assuntos
Antineoplásicos/farmacologia , Simulação de Acoplamento Molecular , Estilbenos/farmacologia , Triazóis/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Estrutura Molecular , Estilbenos/síntese química , Estilbenos/química , Relação Estrutura-Atividade , Triazóis/química , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química
14.
Eur J Med Chem ; 182: 111670, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31499359

RESUMO

A series of novel structurally-related tubulin polymerization inhibitors based on benzodiazepine were designed, synthesized, and evaluated for anticancer activity. Extensive structure modifications were performed to investigate the detailed structure and activity relationships (SARs). Most compounds exhibited potent antiproliferative activity against a panel of cancer cell lines. Among these compounds, the optimal compound, 9a, possessed the most superior activity, including cytotoxicity against five cancer cell lines (IC50 = 6-15 nM) and inhibition of tubulin polymerization (IC50 = 1.65 ±â€¯0.11 µM). Mechanistic studies revealed that 9a could disrupt intracellular microtubule organization, arrest cell cycle at the G2/M phase and eventually induce cell apoptosis. Compound 9a exhibited good metabolic stability with a t1/2 of 161.2 min, which was much better than the reference compound CA-4. Moreover, the disodium salt of 9a, 9a-P, exhibited excellent in vivo antitumor activity in xenograft mice model with inhibitory rate of 89.3%, which was better than the reference compounds CA-4P (inhibitory rate: 52.8%) and Y-01P (inhibitory rate: 77.7%). Altogether, 9a could serve as a promising lead compound for the development of highly efficient anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Benzodiazepinas/farmacologia , Desenho de Fármacos , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Benzodiazepinas/química , Benzodiazepinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Polimerização/efeitos dos fármacos , Relação Estrutura-Atividade , Moduladores de Tubulina/química , Moduladores de Tubulina/metabolismo
15.
Eur J Pharm Sci ; 139: 105045, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31421253

RESUMO

A new set of 1,3-benzodioxoles and 1,4-benzodioxines was designed and synthesized starting from gallic acid as anticancer agents. The antiproliferative effect of the target compounds was evaluated against a panel of cancer cell lines (HepG2, PC-3, MCF-7 and A549) using MTT assay. The 1,4-benzodioxine derivative 11a manifested broad spectrum effect towards the four tested cancer cell lines (IC50 < 10 µM) with lower toxic effect on normal human cell line BJ1. Cell cycle progression of MCF-7 after treatment with compound 11a was studied where it induced cells accumulation at G2/M phase as well as increasing in the percentage of cells at pre-G1. Compound 11a is found to be a tubulin polymerization inhibitor with IC50 = 6.37 µM. Also, flow cytometeric analysis revealed that compound 11a could induce both early and late stage apoptosis in MCF-7 cell line. Moreover, the ability of this compound to stimulate apoptosis in the latter cell line was further confirmed by: increment of Bax/Bcl-2 ratio, increase the expression of tumor suppressor gene p53, boosting the levels of initiator and executioner caspases as well as raise in the amount of cytochrome C. In addition molecular docking study was accomplished on the colchicine binding site of tubulin (pdb: 1SA0) to illustrate the interactions of the most potent compound 11a to the receptor.


Assuntos
Antineoplásicos , Dioxinas , Dioxóis , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dioxinas/química , Dioxinas/farmacologia , Dioxóis/química , Dioxóis/farmacologia , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia , Proteína Supressora de Tumor p53/metabolismo
16.
Eur J Med Chem ; 181: 111584, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31419740

RESUMO

Developing new therapeutic strategies to overcome drug resistance of cancer cells is an ongoing endeavor. From among 2 million chemicals, we identified ethyl 4-oxo-2-phenyl-1,4-dihydroquinoline-6-carboxylate (AS1712) as a low-toxicity inhibitor of lung cancer cell proliferation and xenograft tumor growth. We show that AS1712 is active against broad cancer cell lines and is able to bind in the colchicine-binding pocket of ß-tubulin, thereby inhibiting microtubule assembly and, consequently, inducing mitotic arrest and apoptosis. Our cell-based structure-activity relationship study identified a new lead compound, RJ-LC-15-8, which had a greater anti-proliferative potency for H1975 cells than did AS1712, while maintaining a similar mechanism of action. Notably, AS1712 and RJ-LC-15-8 overcame P-glycoprotein efflux pump and ß-tubulin alterations that lead to acquired resistance against microtubule-targeting drugs of cancer cells. AS1712 and RJ-LC-15-8 may be lead compounds that overcome acquired resistance to microtubule-targeting agents of cancer cells.


Assuntos
Quinolonas/química , Quinolonas/farmacologia , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colchicina/metabolismo , Resistencia a Medicamentos Antineoplásicos , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Tubulina (Proteína)/química
17.
Expert Opin Ther Pat ; 29(9): 703-731, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31369715

RESUMO

Introduction: Combretastatins represent a potent class of phenolic-stilbene natural products that function as colchicine binding site inhibitors of tubulin polymerization and have been advanced as promising anticancer lead compounds. Among them, combretastatin A-4 is the most potent lead molecule due to its broad spectrum cytotoxicity against a variety of tumors. However, low water solubility due to its high lipophilic nature and inter-conversion of olefinic double bond from more active cis to less active trans-conformation poses limitations to its clinical utility. However, different approaches including prodrugs, salt formations, structural modifications, prevention of inter-conversion of the olefinic bond and changes to the substitution pattern on the rings of combretastatin A-4 were investigated and successfully resulted in different combretastatin-based molecules that demonstrated varying levels of potency against different types of tumors during their in-vitro and in-vivo studies. Areas covered: This review covers the patents over a period of 2008-2018. Expert opinion: Molecular hybridization and prodrug designing imparted multi-targeted actions to combretastatin derivatives. Currently, various combretastatin derivatives are under clinical trials. These derivatives could be used to treat disorders other than cancer, due to their vascular disrupting action.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Bibenzilas/farmacologia , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/química , Bibenzilas/química , Desenho de Fármacos , Humanos , Patentes como Assunto , Solubilidade , Relação Estrutura-Atividade , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia
18.
Eur J Med Chem ; 181: 111577, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400707

RESUMO

A series of 3-(3',4',5'-trimethoxyphenyl)-4-substituted 1H-pyrazole and their related 3-aryl-4-(3',4',5'-trimethoxyphenyl)-1-H-pyrazole regioisomeric derivatives, prepared as cis-rigidified combretastatin A-4 (CA-4) analogues, were synthesized and evaluated for their in vitro antiproliferative against six different cancer cell lines and, for selected highly active compounds, inhibitory effects on tubulin polymerization, cell cycle effects and in vivo potency. We retained the 3',4',5'-trimethoxyphenyl moiety as ring A throughout the present investigation, and a structure-activity relationship (SAR) information was obtained by adding electron-withdrawing (OCF3, CF3) or electron-releasing (alkyl and alkoxy) groups on the second aryl ring, corresponding to the B-ring of CA-4, either at the 3- or 4-position of the pyrazole nucleus. In addition, the B-ring was replaced with a benzo[b]thien-2-yl moiety. For many of the compounds, their activity was greater than, or comparable with, that of CA-4. Maximal activity was observed with the two regioisomeric derivatives characterized by the presence of a 4-ethoxyphenyl and a 3',4',5'-trimethoxyphenyl group at the C-3 and C-4 positions, and vice versa, of the 1H-pyrazole ring. The data showed that the 3',4',5'-trimethoxyphenyl moiety can be moved from the 3- to the 4-position of the 1H-pyrazole ring without significantly affecting antiproliferative activity. The most active derivatives bound to the colchicine site of tubulin and inhibited tubulin polymerization at submicromolar concentrations. In vivo experiments, on an orthotopic murine mammary tumor, revealed that 4c inhibited tumor growth even at low concentrations (5 mg/kg) compared to CA-4P (30 mg/kg).


Assuntos
Bibenzilas/química , Bibenzilas/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Bibenzilas/síntese química , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Camundongos , Modelos Moleculares , Pirazóis/síntese química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntese química
19.
Eur J Med Chem ; 181: 111583, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400710

RESUMO

3-(Alkyl(dialkyl)amino)benzothieno[2,3-f]quinazolin-1(2H)-ones (4-9) have been designed using Ellipticine structure as a model, replacing the carbazole core and the pyridine ring with a dibenzothiophene and a pyrimidine moiety, respectively. New benzothienoquinazolinones (4-9) have been synthesized by a simple one-pot reaction employing 3-aminodibenzothiophene as starting material. The benzothienoquinazolinones obtained (4-9), were evaluated for their anticancer activity against two breast cancer cell lines, MDA-MB-231 and MCF-7. The results revealed that compounds 4 and 7 presented a good antitumor activity toward the triple negative MDA-MB-231, without cytotoxicity against non-tumoral cells. Furthermore, the compounds 4 and 7 can be considered important molecular multi-target tools for their dual inhibition of different cellular proteins, i.e. Tubulin and human Topoisomerase I, involved in relevant cellular processes, as predicted by in silico studies and demonstrated by in vitro assays (for compound 4).


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Inibidores da Topoisomerase I/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Desenho de Fármacos , Feminino , Humanos , Simulação de Acoplamento Molecular , Quinazolinonas/química , Quinazolinonas/farmacologia , Tiofenos/química , Tiofenos/farmacologia , Inibidores da Topoisomerase I/química , Moduladores de Tubulina/química
20.
Expert Opin Ther Pat ; 29(8): 623-641, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31353978

RESUMO

Introduction: About 20 patents have been published from 2013 to 2018 for developing advanced cancer therapeutics by targeting tubulin polymerization. Currently, there are several tubulin inhibitors that are in the drug development pipeline for various cancers alone or in combination including antibody-conjugated drugs (ACDs). Areas covered: Important patents focusing on the development of tubulin inhibitors published from 2013 to 2018 are covered. This review mainly focuses on the tubulin inhibitors that are being synthesized and studied in cancer research along with their structures and their phases of development in preclinical and clinical research. Expert opinion: Regulation of microtubules is important for cell division, cell motility, intracellular transport, and cell shape maintenance. Modulating its activity proved to be very effective in various diseases including different types of cancers. Microtubules are composed of two units, namely, alpha and beta-tubulin, and modifications at these ends affect both its functions and dynamics. A number of compounds that have been designed and synthesized bearing various heterocyclic scaffolds have been proven to modulate its activity and have emerged as potent tubulin inhibitors. This encourages more to study microtubules in order to find a variety of novel, potent compounds as anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Moduladores de Tubulina/farmacologia , Animais , Antineoplásicos/química , Desenho de Fármacos , Desenvolvimento de Medicamentos/métodos , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Neoplasias/patologia , Patentes como Assunto , Relação Estrutura-Atividade , Tubulina (Proteína)/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA