RESUMO
Poly(ethylene terephthalate)-PET-is one of the most frequently used polymers in biomedical applications. Due to chemical inertness, PET surface modification is necessary to gain specific properties, making the polymer biocompatible. The aim of this paper is to characterize the multi-component films containing chitosan (Ch), phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), immunosuppressant cyclosporine A (CsA) and/or antioxidant lauryl gallate (LG) which can be utilized as a very attractive material for developing the PET coatings. Chitosan was employed owing to its antibacterial activity and also its ability to promote cell adhesion and proliferation favorable for tissue engineering and regeneration purposes. Moreover, the Ch film can be additionally modified with other substances of biological importance (DOPC, CsA and LG). The layers of varying compositions were prepared using the Langmuir-Blodgett (LB) technique on the air plasma-activated PET support. Then their nanostructure, molecular distribution, surface chemistry and wettability were determined by atomic force microscopy (AFM), time-of-flight secondary ion mass spectrometry (TOF-SIMS), X-ray photoelectron spectroscopy (XPS), contact angle (CA) measurements and the surface free energy and its components' determination, respectively. The obtained results show clearly the dependence of the surface properties of the films on the molar ratio of components and allow for a better understanding of the coating organization and mechanisms of interactions at the molecular level both inside the films and between the films and the polar/apolar liquids imitating the environment of different properties. The organized layers of this type can be helpful in gaining control over the surface properties of the biomaterial, thus getting rid of the limitations in favor of increased biocompatibility. This is a good basis for further investigations on the correlation of the immune system response to the presence of biomaterial and its physicochemical properties.
Assuntos
Quitosana , Quitosana/química , Materiais Biocompatíveis/química , Molhabilidade , Propriedades de Superfície , Fosfolipídeos , Polímeros , Microscopia de Força AtômicaRESUMO
The utilisation of plants directly as quantifiable natural sensors is proposed. A case study measuring surface wettability of Aucuba japonica, or Japanese Laurel, plants using a novel smartphone field interrogator is demonstrated. This plant has been naturalised globally from Asia. Top-down contact angle measurements map wettability on-site and characterise a range of properties impacting plant health, such as aging, solar and UV exposure, and pollution. Leaves at an early age or in the shadow of trees are found to be hydrophobic with contact angle θ ~ 99°, while more mature leaves under sunlight are hydrophilic with θ ~ 79°. Direct UVA irradiation at λ = 365 nm is shown to accelerate aging, changing contact angle of one leaf from slightly hydrophobic at θ ~ 91° to be hydrophilic with θ ~ 87° after 30 min. Leaves growing beside a road with heavy traffic are observed to be substantially hydrophilic, as low as θ ~ 47°, arising from increased wettability with particulate accumulation on the leaf surface. Away from the road, the contact angle increases as high as θ ~ 96°. The results demonstrate that contact angle measurements using a portable diagnostic IoT edge device can be taken into the field for environmental detection, pollution assessment and more. Using an Internet connected smartphone combined with a plant sensor allows multiple measurements at multiple locations together in real-time, potentially enabling tracking of parameter change anywhere where plants are present or introduced. This hybrid integration of widely distributed living organic systems with the Internet marks the beginning of a new bionic Internet-of-things (b-IoT).
Assuntos
Biônica , Smartphone , Molhabilidade , Plantas , Monitoramento AmbientalRESUMO
Surface chemistry plays an important role in the adsorption and immobilization of enzymes and antibodies. Gas plasma technology performs surface preparation that assists in the attachment of molecules. Surface chemistry helps to manage a material's wetting, joining, or the reproducibility of surface interactions. There are numerous examples of commerically available products that utilize gas plasma in their manufacturing process. Examples of products treated by gas plasma are well plates, microfluidic devices, membranes, fluid dispensers, and some medical devices. This chapter presents an overview of gas plasma technology and provides a guide for using gas plasma for designing surfaces in product development or research.
Assuntos
Bioensaio , Propriedades de Superfície , Reprodutibilidade dos Testes , Molhabilidade , Interações Hidrofóbicas e HidrofílicasRESUMO
BACKGROUND: Climate change and depleting water sources demand scarce natural water supplies like air moisture to be used as an irrigation water source. Wheat production is threatened by the climate variability and extremes climate events especially heat waves and drought. The present study focused to develop the wheat plant for self-irrigation through optimizing leaf architecture and surface properties for precise irrigation. METHODS: Thirty-four genotypes were selected from 1796 genotypes with all combinations of leaf angle and leaf rolling. These genotypes were characterized for morpho-physiological traits and soil moisture content at stem-elongation and booting stages. Further, a core set of ten genotypes was evaluated for stem flow efficiency and leaf wettability. RESULTS: Biplot, heat map, and correlation analysis indicated wide diversity and traits association. The environmental parameters indicated substantial amount of air moisture (> 60% relative humidity) at the critical wheat growth stages. Leaf angle showed negative association with leaf rolling, physiological and yield traits, adaxial and abaxial contact angle while leaf angle showed positive association with the stem flow water. The wettability and air moisture harvesting indicated that the genotypes (coded as 1, 7, and 18) having semi-erect to erect leaf angle, spiral rolling, and hydrophilic leaf surface (<90o) with contact angle hysteresis less than 10o had higher soil moisture content (6-8%) and moisture harvesting efficiency (3.5 ml). CONCLUSIONS: These findings can provide the basis to develop self-irrigating, drought-tolerant wheat cultivars as an adaptation to climate change.
Assuntos
Folhas de Planta , Triticum , Molhabilidade , Triticum/genética , Genótipo , SoloRESUMO
Cerato-ulmin (CU) is a 75-amino-acid-long protein that belongs to the hydrophobin family. It self-assembles at hydrophobic-hydrophilic interfaces, forming films that reverse the wettability properties of the bound surface: a capability that may confer selective advantages to the fungus in colonizing and infecting elm trees. Here, we show for the first time that CU can elicit a defense reaction (induction of phytoalexin synthesis and ROS production) in non-host plants (Arabidopsis) and exerts its eliciting capacity more efficiently when in its soluble monomeric form. We identified two hydrophobic clusters on the protein's loops endowed with dynamical and physical properties compatible with the possibility of reversibly interconverting between a disordered conformation and a ß-strand-rich conformation when interacting with hydrophilic or hydrophobic surfaces. We propose that the plasticity of those loops may be part of the molecular mechanism that governs the protein defense elicitation capability.
Assuntos
Plumbaginaceae , Plumbaginaceae/metabolismo , Cobre , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Molhabilidade , Interações Hidrofóbicas e HidrofílicasRESUMO
Aerial seeding can quickly cover large and physically inaccessible areas1 to improve soil quality and scavenge residual nitrogen in agriculture2, and for postfire reforestation3-5 and wildland restoration6,7. However, it suffers from low germination rates, due to the direct exposure of unburied seeds to harsh sunlight, wind and granivorous birds, as well as undesirable air humidity and temperature1,8,9. Here, inspired by Erodium seeds10-14, we design and fabricate self-drilling seed carriers, turning wood veneer into highly stiff (about 4.9 GPa when dry, and about 1.3 GPa when wet) and hygromorphic bending or coiling actuators with an extremely large bending curvature (1,854 m-1), 45 times larger than the values in the literature15-18. Our three-tailed carrier has an 80% drilling success rate on flat land after two triggering cycles, due to the beneficial resting angle (25°-30°) of its tail anchoring, whereas the natural Erodium seed's success rate is 0%. Our carriers can carry payloads of various sizes and contents including biofertilizers and plant seeds as large as those of whitebark pine, which are about 11 mm in length and about 72 mg. We compare data from experiments and numerical simulation to elucidate the curvature transformation and actuation mechanisms to guide the design and optimization of the seed carriers. Our system will improve the effectiveness of aerial seeding to relieve agricultural and environmental stresses, and has potential applications in energy harvesting, soft robotics and sustainable buildings.
Assuntos
Materiais Biomiméticos , Sementes , Agricultura/métodos , Germinação , Sementes/química , Sementes/metabolismo , Solo , Luz Solar , Madeira/análise , Madeira/química , Molhabilidade , Fertilizantes , Materiais Biomiméticos/análise , Materiais Biomiméticos/química , Tamanho da PartículaRESUMO
Gelatin (GE) is a renewable biopolymer with abundant active groups that are beneficial for manufacturing functional biomaterials via GE modification. An antibacterial fibrous GE film was prepared by electrospinning the modified GE in an aqueous solution. The original GE was modified by reacting it with N,N-dimethyl epoxypropyl octadecyl ammonium chloride (QAS), and then it was cross-linked with transglutaminase (TGase). FTIR analysis illustrated that QAS was grafted onto GE through the epoxy ring-opening reaction, and the modification did not influence the main GE skeleton structure. The investigation of the solution properties showed that the grafted cationic QAS group was the main factor that decreased the surface tension of the solution, increased the electrical conductivity of the solution, and endowed GE with antibacterial activity. TGase cross-linking clearly influenced the rheological properties such that the flow pattern of the spinning solution varied from Newton-type to shear thinning, and the aqueous solution of GE-QAS-TGs transformed from liquid-like to solid-like and even induced gelatinization with increasing TGase content. A satisfactory fibrous morphology of 200-500 nm diameter was obtained using a homemade instrument under the optimized electrospinning conditions of a temperature of 35 °C, a distance between electrodes of 12 cm, and a voltage of 15 kV. The study of film properties showed that the antibacterial activity of the fibrous GE film depended only on the grafted quaternary ammonium, whereas the thermostability, wettability, and permeability were greatly influenced by both the TGase cross-linking and film-forming methods. Cytotoxicity was tested using the CCK-8 and live/dead kit staining methods in vitro, which showed that the modified GE had good biocompatibility.
Assuntos
Materiais Biocompatíveis , Gelatina , Gelatina/química , Molhabilidade , Tensão Superficial , Água/química , Antibacterianos/toxicidade , Antibacterianos/químicaRESUMO
PURPOSE: To evaluate the effect of the topical instillation of hyaluronic acid eye drops with different viscosity on soft contact lens wettability and comfort. METHODS: A randomized and participant-masked study was performed, involving 20 participants (25.4±2.6 years). One eye wore hydrogel (ocufilcon D) contact lenses, and another eye wore silicone-hydrogel (somofilcon A) contact lenses. The in vivo wettability tear film surface quality (TFSQ) index and comfort were measured before and after the instillation of different eye drops: saline solution (control) and 0.1%, 0.2%, and 0.3% hyaluronic acid. RESULTS: Compared with saline solution, the instillation of 0.1%, 0.2%, and 0.3% hyaluronic acid improved the in vivo wettability of the hydrogel contact lenses by decreasing their TFSQ mean for 5, 10, and 30 min, respectively ( P <0.05). During silicone-hydrogel contact lens wear, the hyaluronic acid did not affect wettability because there were no changes in TFSQ mean ( P ≥0.05), but the 0.3% hyaluronic acid produced a decrease in comfort for the first 3 min ( P <0.05). CONCLUSIONS: The instillation of hyaluronic acid eye drops increased the in vivo wettability of the hydrogel contact lens, and the duration of this effect was directly related to its concentration and viscosity.
Assuntos
Lentes de Contato Hidrofílicas , Ácido Hialurônico , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato , Hidrogéis , Soluções Oftálmicas , Solução Salina , Silicones , MolhabilidadeRESUMO
Recently, bacterial cellulose and related materials attracted significant attention for applications such as leather-like materials, wound healing materials, etc., due to their abundance in pure form and excellent biocompatibility. Chemical modification of bacterial cellulose further helps to improve specific properties for practical utility and economic viability. However, in most cases, chemical modification of cellulose materials involves harsh experimental conditions such as higher temperatures or organic solvents, which may destroy the 3-dimensional network of bacterial cellulose, thereby altering its characteristic properties. Hence, in this work, we have adopted the Suzuki coupling methodology, which is relatively unexplored for chemically modifying cellulose materials. As the Suzuki coupling reaction is tolerable against air and water, modification can be done under mild conditions so that the covalently modified cellulose materials remain intact without destroying their 3-dimensional form. We performed Suzuki coupling reactions on cellulose surfaces using a recently developed thermoresponsive catalyst consisting of poly(N-isopropylacrylamide) (PNIPAM)-tagged N-heterocyclic carbene (NHC)-based palladium(II) complex. The thermoresponsive nature of the catalyst particularly helped to perform reactions in a water medium under mild conditions considering the biological nature of the substrates, where separation of the catalyst can be easily achieved by tuning temperature. The boronic acid derivatives have been chosen to alter the wettability behavior of bacterial cellulose. Bacterial cellulose (BC) obtained from fermentation on a lab scale using a cellulose-producing bacterium called Gluconacetobacter kombuchae (MTCC 6913) under Hestrin-Schramm (HS) medium, or kombucha-derived bacterial cellulose (KBC) obtained from kombucha available in the market or cotton-cellulose (CC) was chosen for the surface functionalization to find the methodology's diversity. Movie files in the Supporting Information and figures in the manuscript demonstrated the utility of the methodology for fluorescent labeling of bacterial cellulose and related materials. Finally, contact angle analysis of the surfaces showed the hydrophobic natures of some functionalized BC-based materials, which are important for the practical use of biomaterials in wet climatic conditions.
Assuntos
Celulose , Molhabilidade , Celulose/química , Catálise , TemperaturaRESUMO
Pressure-driven distillation (PD) is a novel desalination technology based on hydraulic pressure driving force and vapor transport across a hydrophobic porous membrane. In theory, PD offers near-perfect rejection for nonvolatile solutes, chlorine resistance, and the ability to decouple water and solute transport. Despite its advantages, pore wetting and the development of a reverse transmembrane temperature difference are potential critical concerns in PD, with the former compromising the salt rejection and the latter reducing or even eliminating the driving force for vapor transport. We herein present an analysis to evaluate the practical viability and membrane design principles of PD with a focus on the dependence of flux and salt rejection (SR) on membrane properties. By modeling the mass transfer in a PD process under different conditions, we arrive at two important conclusions. First, a practically detrimental reverse transmembrane temperature difference does not develop in PD under all relevant circumstances and is thus not a practical concern. Second, for a PD process to achieve an acceptable SR, the membrane pores should be at the nanometer scale with a highly uniform pore size distribution. This analysis demonstrates the practical viability of PD and provides the principles for designing robust and high-performance PD membranes.
Assuntos
Destilação , Purificação da Água , Cloreto de Sódio , Água/química , Molhabilidade , Temperatura , Membranas ArtificiaisRESUMO
Complex coacervates are liquid-like droplets that can be used to create adaptive cell-like compartments. These compartments offer a versatile platform for the construction of bioreactors inspired by living cells. However, the lack of a membrane significantly reduces the colloidal stability of coacervates in terms of fusion and surface wetting, which limits their suitability as compartments. Here, we describe the formation of caged-coacervates surrounded by a semipermeable shell of silica nanocapsules. We demonstrate that the silica nanocapsules create a protective shell that also regulates the molecular transport of water-soluble compounds as a function of nanocapasule size. The adjustable semipermeability and intrinsic affinity of enzymes for the interior of the caged-coacervates allowed us to assemble biomimetic microreactors with enhanced colloidal stability.
Assuntos
Biomimética , Nanocápsulas , Água , MolhabilidadeRESUMO
In the preparation of a superamphiphobic surface, the most basic method is to reduce the surface free energy of the interface. The C-F bond has a very low surface free energy, which can significantly change the wettability of the solid-liquid interface and make it a hydrophobic or oleophobic, or even superamphiphobic surface. Based on the analysis of a large number of research articles, the preparation and application progress in fluoropolymer emulsion were summarized. After that, some corresponding thoughts were put forward combined with our professional characteristics. According to recent research, the status of the fluoropolymer emulsion preparation system was analyzed. In addition, all related aspects of fluoropolymer emulsion were systematically classified in varying degrees. Furthermore, the interaction between fluoropolymer structure and properties, especially the interaction with nanomaterials, was also explored. The aim of this review is to try to attract more scholars' attention to fluorocarbon interfacial materials. It is expected that it will make a certain theoretical and practical significance in the preparation and application of fluoropolymer.
Assuntos
Polímeros de Fluorcarboneto , Nanoestruturas , Molhabilidade , Emulsões/química , Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas/químicaRESUMO
The effect of substrate hydrophobicity on the dynamics of water nano-droplets is computationally studied using the molecular dynamics method. It is observed that the droplet moves upward by increasing the substrate hydrophobicity and then falls down onto the substrate, and during this process, the droplet-substrate interfacial area effectively declines. Moreover, the results indicate that above a critical substrate hydrophobicity, which depends on the droplet radius, the droplet completely detaches from the substrate. The droplet behavior is described at the molecular level using van der Waals attractions for the liquid-solid interface.
Assuntos
Simulação de Dinâmica Molecular , Molhabilidade , Interações Hidrofóbicas e HidrofílicasRESUMO
Nanomaterial-incorporated surfaces with microstructures have been widely used for marine antifouling coatings, yet limited green antifouling coatings are currently available for sustainable application, given the potential environmental effects of nanomaterial-based nanofillers. Here, by using natural sourced nanomaterials (cellulose nanocrystals, CNCs) as nanofillers, a nanocomposite superhydrophobic coating was fabricated via a simple sol-gel synthesis method. Notably, CNCs were firstly applied in the marine antifouling realm to form uniform and stable coatings, which were condensed with hydroxyl groups of hydrolyzed tetrapropyl zirconate, 3-glycidyloxypropyltrimethoxysilane, and methyltrimethoxysilane. The synthesized coatings gained a biomimetic microscopic ridge-like surface, where more CNCs contents contributed to finer microstructures. As a result of the influence of CNCs content on surface wettability and antifouling properties, the coating with CNCs accounting for 20 wt% of the total solid content (CNC20) delivered the best antifouling performance. Furthermore, 90-day marine field tests verified CNC20's excellent antifouling ability, reducing fouling by 82 % in comparison to the control group. Such a biomimicry study provides a novel strategy for the development of environmentally friendly coatings with CNCs nanofillers.
Assuntos
Incrustação Biológica , Nanopartículas , Celulose/química , Incrustação Biológica/prevenção & controle , Molhabilidade , Nanopartículas/químicaRESUMO
Wound infection and inflammation hinder the process of wound healing and bother human beings chronically. As a naturally degradable macromolecule, chitosan (CS) has been widely used in antibacterial wound dressings. However, the antibacterial property of chitosan is inhibited by its water insolubility. In this study, we prepared a bilayered asymmetric nanofibrous membrane with the hydrophilic CS/chitosan oligosaccharide (COS) nanofibrous membrane as the bottom layer and the hydrophobic polycaprolactone (PCL) nanofibrous membrane as the top layer. Results showed that incorporating COS improved the CS membrane's wettability, and adding 0.5 % COS increased the inhibition zone diameter of Escherichia coli and Staphylococcus aureus by 23 % and 26 %, respectively. Moreover, the PCL layer could prevent the adhesion of water and bacteria. The PCL-CS/COS0.5% membrane showed relatively good mechanical properties, excellent water absorptivity (460 %), and appropriate cytocompatibility. This asymmetric wettable membrane has a massive potential to serve as a new antibacterial dressing for wound healing.
Assuntos
Quitosana , Nanofibras , Humanos , Quitosana/farmacologia , Quitosana/química , Molhabilidade , Nanofibras/química , Antibacterianos/farmacologia , Antibacterianos/química , Água/química , Bandagens , Oligossacarídeos/farmacologiaRESUMO
An in-depth study into the physical substrate characteristics such as substrate surface roughness, topography, and physicochemical characteristics like wettability and surface free energy (SFE) was conducted to investigate the impact on the deposition and adherence of touch and salivary deposits on aluminium and polypropylene. A robust protocol was established to generate a set of substrates with a controlled linear surface roughness range (0.5-3.5 µm) in order to identify the impact of surface roughness on DNA transfer, persistence, prevalence, and recovery (DNA-TPPR). The polypropylene substrate was shown to produce fibres when artificially roughened, becoming more prominent at a higher surface roughness range, and has shown to have a direct impact on the distribution of salivary and touch deposits. At the low to moderate surface roughness range 0.5-2.0 µm, salivary and touch deposits have generally shown to follow the topographical features of the substrate they were deposited on, before a plateau of the surface roughness measure on the deposit was observed, indicating that a saturation point was reached and the grooves in the substrate were beginning to fill. Touch deposits have shown to maintain a consistent deposition height pre-surface roughness threshold, irrespective of substrate surface roughness while the deposition height of salivary deposits was heavily influenced by substrate surface roughness and topography. The substrate SFE, wettability, hydrophobicity, and the surface tension of the deposit was shown to drive the adhesion properties of the saliva and touch deposits on the respective substrates, and it was observed that this may be of importance for the improvement of the current DNA-TPPR understanding, DNA sampling protocols, and DNA transfer considerations within casework.
Assuntos
Polipropilenos , Tato , Molhabilidade , DNA/genética , Tensão Superficial , Propriedades de SuperfícieRESUMO
In this paper, buckwheat protein colloidal particles (BPCPs) were prepared by heat treatment to stabilize oil-water interface. The results of particle size, surface hydrophobicity and wettability indicated that the prepared BPCPs could be used as novel Pickering emulsifier. The effects of BPCPs concentration, ionic strength and heat treatment on the structure and properties of Pickering emulsions were explored. The microstructure results showed that BPCPs could tightly coated on the surface of oil droplets to form a tight interfacial film, confirming that BPCPs could be used as an effective Pickering-like stabilizer. With the increase of BPCPs concentration, the droplet size of the Pickering emulsion gradually decreased, and the viscoelasticity and storage stability of the emulsion were effectively improved. Different from the effect of ionic strength, heat treatment was beneficial to increasing the viscoelasticity of BPCPs-stabilized Pickering emulsion. The Pickering emulsions exhibited certain flocculation at different temperatures and ionic strengths, while still maintained good solid-like behavior. These results suggest that the structure and properties of BPCPs-stabilized Pickering emulsion could be regulated by changing the ionic strength and temperature.
Assuntos
Fagopyrum , Emulsões/química , Emulsificantes/química , Temperatura , Molhabilidade , Tamanho da PartículaRESUMO
HYPOTHESIS: Classical (solid particles stabilized) Pickering emulsions have been widely studied due to the irreversible adsorption of solid particles at the oil-water interface. Mesoporous hollow silica microspheres (MHSMs) are promising stabilizers for Pickering emulsion owing to its larger specific surface area and lower apparent density. However, this type of Pickering emulsion has not attracted enough attention. The stabilization mechanism of Pickering emulsion by MHSMs has not been studied in detail yet. EXPERIMENTS: Herein, stable Pickering emulsions were prepared using only MHSMs as stabilizers. In order to investigate its stabilization mechanism, the effect factors of size, shell thickness, wettability and concentration of MHSMs, and oil/water ratio on the stability of Pickering emulsions were analyzed deeply. FINDINGS: As a result, the stability of Pickering emulsion can be improved by MHSMs with smaller particle size and shell thickness. Also, MHSMs with the intermediate hydrophobicity and suitable oil/water ratio actually do favour for the stability of Pickering emulsion. As expected, the stability of Pickering emulsion can be enhanced by increasing the concentration of MHSMs in a certain range. The Pickering emulsions tend to achieve excellent stable state when the concentration of MHSMs is 1.25 mg/mL. All those results suggested that the stability of Pickering emulsions correlates directly to particle size, shell thickness, wettability and concentration of MHSMs, and oil/water ratio. This research paves a way for the fabrication of functional materials via Pickering emulsions.
Assuntos
Dióxido de Silício , Emulsões , Microesferas , Molhabilidade , Interações Hidrofóbicas e Hidrofílicas , Tamanho da PartículaRESUMO
The oil/water separation has received significant attention due to its critical environmental impact. The special wettable surfaces are highly desired to deal with the oil/water mixtures. This work demonstrates a simple two-step method to develop a superhydrophobic Azadirachta indica leaves like Ag-decorated electrochemically copper-coated stainless-steel mesh (SH-AIL-Ag-EC-Cu-Mesh) for efficient separation of oil/water mixtures. In the first step, the electrodeposition of the copper took place on the mesh surface at a suitable applied potential. In the second step, the galvanic replacement reaction between the Ag+ and electrodeposited Cu produced the fascinating superhydrophobic Ag leaves on the mesh surface. The SH-AIL-Ag-EC-Cu-Mesh was thoroughly characterized by the X-ray photoelectron spectroscopy (XPS), Energy Dispersive X-Ray Spectroscopy (EDX), elemental mapping, surface wettability analysis, and the contact analyzer. The morphological analysis has shown the unique leafy structures of the reduced Ag on the surface of the mesh. The XPS analysis has confirmed that most of the Ag present on the surface is in zerovalent form. The combination of the electrodeposition and the displacement reaction between the copper and the silver turned the surface superhydrophobic, and the water contact angle was significantly improved from 115° to 158°. The designed SH-AIL-Ag-EC-Cu-Mesh has shown excellent selectivity for oil in oil/water mixtures with a separation efficiency of 99.1% with an exceptionally high flux of 8963 L m-2h-1. The SH-AIL-Ag-EC-Cu-Mesh has shown excellent reusability, and after 15 cycles of separation, no significant decrease in the oil/water separation efficiency was observed.