Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57.317
Filtrar
1.
Ann Palliat Med ; 10(8): 9069-9077, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34488392

RESUMO

BACKGROUND: This study sought to examine fluid resuscitation in septic shock patients by monitoring their sublabial point of care microcirculation score (POEM) scores (a 3.5 cut-off value was used as the end point of recovery). It also sought to explore the effectiveness and safety of using the POEM score in the fluid resuscitation of septic shock. METHODS: Patients were randomly allocated to the experimental group or the control group. In the experimental group, a POEM score >3 was used as the end point of fluid resuscitation. In the control group, the doctor just monitor, don't know the data. Patients' heart rates, mean arterial pressure (MAP), Acute Physiology and Chronic Health Disease Classification System II (APACHE II) scores, Sequential Organ Failure Assessment (SOFA) scores, and oxygenation index scores were recorded at 2, 24, 48, 72 h, and on the 7th day after admission to the study. Statistically significant differences between the 2 groups were examined. RESULTS: Thirty-one septic shock patients (comprising 14 patients in the experimental group and 17 patients in the control group) participated in our study. Patients' parameters upon admission to the study, including MAP, blood lactate and APACHE score, SOFA score, POEM score, cardiac output (CO), and central venous pressure (CVP), were recorded at 2 h; There was no significant difference in the APACHE II scores, SOFA scores, and oxygenation index scores at 48 h between the 2 groups; however, at 72 h, the scores of the experimental group were significantly better than those of the control group (P<0.05). CONCLUSIONS: Under the guidance of POEM scores, limited fluid resuscitation reduced the intake of fluid any unnecessary amounts of fluids. POEM scores also offered certain protective effects to organ function at the early stage of septic shock, and did not affect patients' circulation. TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR2100049510).


Assuntos
Choque Séptico , Estudos de Viabilidade , Hidratação , Humanos , Microcirculação , Monitorização Fisiológica , Choque Séptico/terapia
2.
Sensors (Basel) ; 21(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502590

RESUMO

The development of health indicators (HI) of diagnostic and prognostic potential from generally uninformative raw sensor data is both a challenge and an essential feature for data-driven diagnostics and prognostics of composite structures. In this study, new damage-sensitive features, developed from strains acquired with Fiber Bragg Grating (FBG) and acoustic emission (AE) data, were investigated for their suitability as HIs. Two original fatigue test campaigns (constant and variable amplitude) were conducted on single-stringer composite panels using appropriate sensors. After an initial damage introduction in the form of either impact damage or artificial disbond, the panels were subjected to constant and variable amplitude compression-compression fatigue tests. Strain sensing using FBGs and AE was employed to monitor the damage growth, which was further verified by phased array ultrasound. Several FBGs were incorporated in special SMARTapesTM, which were bonded along the stiffener's feet to measure the strain field, whereas the AE sensors were strategically placed on the panels' skin to record the acoustic emission activity. HIs were developed from FBG and AE raw data with promising behaviors for health monitoring of composite structures during service. A correlation with actual damage was attempted by leveraging the measurements from a phased array camera at several time instances throughout the experiments. The developed HIs displayed highly monotonic behaviors while damage accumulated on the composite panel, with moderate prognosability.


Assuntos
Tecnologia de Fibra Óptica , Fibras Ópticas , Acústica , Monitorização Fisiológica
3.
Sensors (Basel) ; 21(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502601

RESUMO

Smart sensors, coupled with artificial intelligence (AI)-enabled remote automated monitoring (RAMs), can free a nurse from the task of in-person patient monitoring during the transportation process of patients between different wards in hospital settings. Automation of hospital beds using advanced robotics and sensors has been a growing trend exacerbated by the COVID crisis. In this exploratory study, a polynomial regression (PR) machine learning (ML) RAM algorithm based on a Dreyfusian descriptor for immediate wellbeing monitoring was proposed for the autonomous hospital bed transport (AHBT) application. This method was preferred over several other AI algorithm for its simplicity and quick computation. The algorithm quantified historical data using supervised photoplethysmography (PPG) data for 5 min just before the start of the autonomous journey, referred as pre-journey (PJ) dataset. During the transport process, the algorithm continued to quantify immediate measurements using non-overlapping sets of 30 PPG waveforms, referred as in-journey (IJ) dataset. In combination, this algorithm provided a binary decision condition that determined if AHBT should continue its journey to destination by checking the degree of polynomial (DoP) between PJ and IJ. Wrist PPG was used as algorithm's monitoring parameter. PPG data was collected simultaneously from both wrists of 35 subjects, aged 21 and above in postures mimicking that in AHBT and were given full freedom of upper limb and wrist movement. It was observed that the top goodness-of-fit which indicated potentials for high data accountability had 0.2 to 0.6 cross validation score mean (CVSM) occurring at 8th to 10th DoP for PJ datasets and 0.967 to 0.994 CVSM at 9th to 10th DoP for IJ datasets. CVSM was a reliable metric to pick out the best PJ and IJ DoPs. Central tendency analysis showed that coinciding DoP distributions between PJ and IJ datasets, peaking at 8th DoP, was the precursor to high algorithm stability. Mean algorithm efficacy was 0.20 as our proposed algorithm was able to pick out all signals from a conscious subject having full freedom of movement. This efficacy was acceptable as a first ML proof of concept for AHBT. There was no observable difference between subjects' left and right wrists.


Assuntos
COVID-19 , Dispositivos Eletrônicos Vestíveis , Algoritmos , Inteligência Artificial , Hospitais , Humanos , Aprendizado de Máquina , Monitorização Fisiológica , SARS-CoV-2 , Processamento de Sinais Assistido por Computador , Punho
4.
Sensors (Basel) ; 21(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502645

RESUMO

The purposes of this pilot study are to utilize digital remote monitoring to (a) evaluate the usability and satisfaction of a wireless blood pressure (BP) and heart rate (HR) monitor and (b) determine whether these data can enable safe mobilization at home after same-day discharge (SDD) joint replacement. A population of 23 SDD patients undergoing unicompartmental knee arthroplasty (UKA), total knee arthroplasty (TKA), or total hip arthroplasty (THA) were given a cellular BP/HR monitor, with real-time data capture. Patients took three readings after surgery, observing for specific blood pressure decreases, HR increases, or hypotensive symptoms. If any criteria applied, patients followed a hydration protocol and delayed ambulation. Home coaching was also provided to each patient. Patient experience was surveyed, and responses were assessed using descriptive statistics. Of 18 patients discharged (78%), 17 returned surveys, of which 100% reported successful device operation. The mean "ease of use" rating was 8.9/10; satisfaction with home coaching was 9.7/10; and belief that the protocol improved patient safety was 8.4/10. A total of 27.8% (n = 5) had hypotensive readings and appropriately delayed ambulation. Our pilot findings support the feasibility of and confirm the satisfaction with remote monitoring after SDD arthroplasty. All patients with symptoms of hypotension were successfully remotely managed using a standardized hydration protocol prior to safe mobilization.


Assuntos
Artroplastia de Quadril , Artroplastia do Joelho , Humanos , Monitorização Fisiológica , Alta do Paciente , Projetos Piloto
5.
Sensors (Basel) ; 21(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34502701

RESUMO

This paper presented the architecture and construction of a novel smart building system that could monitor and control buildings' use in a safe and optimal way. The system operates on a Raspberry local server, which could be connected via the cloud technology to a central platform. The local system includes nine modules that inter-communicate. The system detects sensor faults, and provides a friendly interface to occupants. The paper presented the software architecture IoT used for the building monitoring and the use of this system for the management of fifteen social housing units during a year. The system allowed the investigation of indoor comfort and both energy and hot water consumptions. Data analysis resulted in the detection of abnormal energy consumptions. The system could be easily used in buildings' management. It works in a plug-and-play mode.


Assuntos
Habitação , Software , Monitorização Fisiológica
6.
Sensors (Basel) ; 21(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34502802

RESUMO

This paper reports the design, fabrication and measured performance of a passive microelectromechanical transducer for the wireless monitoring of high irradiation doses in nuclear environments. The sensing device is composed of a polymer material (high-density polyethylene) sealed inside a cavity. Subjected to ionizing radiation, this material releases various gases, which increases the pressure inside the cavity and deflects a dielectric membrane. From the measurement of the deflection, the variation of the applied pressure can be estimated, and, in turn, the dose may be determined. The microelectromechanical structure can also be used to study and validate the radiolysis properties of the polymer through its gas emission yield factor. Measurement of the dielectric membrane deflection is performed here to validate on the one hand the required airtightness of the cavity exposed to doses about 4 MGy and on the other hand, the functionality of the fabricated dosimeter for doses up to 80 kGy. The selection of appropriate materials for the microelectromechanical device is discussed, and the outgassing properties of the selected high-density polyethylene are analysed. Moreover, the technological fabrication process of the transducer is detailed.


Assuntos
Dosímetros de Radiação , Transdutores , Monitorização Fisiológica , Polímeros
8.
Nat Commun ; 12(1): 5008, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429436

RESUMO

Capabilities for continuous monitoring of pressures and temperatures at critical skin interfaces can help to guide care strategies that minimize the potential for pressure injuries in hospitalized patients or in individuals confined to the bed. This paper introduces a soft, skin-mountable class of sensor system for this purpose. The design includes a pressure-responsive element based on membrane deflection and a battery-free, wireless mode of operation capable of multi-site measurements at strategic locations across the body. Such devices yield continuous, simultaneous readings of pressure and temperature in a sequential readout scheme from a pair of primary antennas mounted under the bedding and connected to a wireless reader and a multiplexer located at the bedside. Experimental evaluation of the sensor and the complete system includes benchtop measurements and numerical simulations of the key features. Clinical trials involving two hemiplegic patients and a tetraplegic patient demonstrate the feasibility, functionality and long-term stability of this technology in operating hospital settings.


Assuntos
Técnicas Biossensoriais/métodos , Fontes de Energia Elétrica , Pressão , Temperatura , Tecnologia sem Fio , Adulto , Idoso , Idoso de 80 Anos ou mais , Técnicas Biossensoriais/instrumentação , Desenho de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica , Pele , Termografia/instrumentação , Termografia/métodos
9.
BMJ Open ; 11(8): e051844, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433611

RESUMO

OBJECTIVES: Our recent systematic review determined that remote patient monitoring (RPM) interventions can reduce acute care use. However, effectiveness varied within and between populations. Clinicians, researchers, and policymakers require more than evidence of effect; they need guidance on how best to design and implement RPM interventions. Therefore, this study aimed to explore these results further to (1) identify factors of RPM interventions that relate to increased and decreased acute care use and (2) develop recommendations for future RPM interventions. DESIGN: Realist review-a qualitative systematic review method which aims to identify and explain why intervention results vary in different situations. We analysed secondarily 91 studies included in our previous systematic review that reported on RPM interventions and the impact on acute care use. Online databases PubMed, EMBASE and CINAHL were searched in October 2020. Included studies were published in English during 2015-2020 and used RPM to monitor an individual's biometric data (eg, heart rate, blood pressure) from a distance. PRIMARY AND SECONDARY OUTCOME MEASURES: Contextual factors and potential mechanisms that led to variation in acute care use (hospitalisations, length of stay or emergency department presentations). RESULTS: Across a range of RPM interventions 31 factors emerged that impact the effectiveness of RPM innovations on acute care use. These were synthesised into six theories of intervention success: (1) targeting populations at high risk; (2) accurately detecting a decline in health; (3) providing responsive and timely care; (4) personalising care; (5) enhancing self-management, and (6) ensuring collaborative and coordinated care. CONCLUSION: While RPM interventions are complex, if they are designed with patients, providers and the implementation setting in mind and incorporate the key variables identified within this review, it is more likely that they will be effective at reducing acute hospital events. PROSPERO REGISTRATION NUMBER: CRD42020142523.


Assuntos
Hospitalização , Autogestão , Serviços de Saúde , Necessidades e Demandas de Serviços de Saúde , Humanos , Monitorização Fisiológica
10.
Comput Methods Programs Biomed ; 209: 106334, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34450483

RESUMO

Introduction Intracranial pressure (ICP) monitoring and analysis are techniques that are, each year, applied to millions of patients with pathologies with million of patients annually. The detection of the so called A and B-waves, and the analysis of subtle changes in C-waves, which are present in ICP waveform, may indicate decreased intracranial compliance, and may improve the clinical outcome. Despite the advances in the field of computerized data analysis, the visual screening of ICP continues to be the means principally employed to detect these waves. To the best of our knowledge, no review study has addressed automated ICP analysis in sufficient detail and a need to research the state of the art of ICP analysis has, therefore, been identified. Methodology This paper presents a systematic mapping study to provide answers to 7 research questions: publication time, venue and source trends, medical tasks undertaken, research methods used, computational systems developed, validation methodology, tools and systems employed for evaluation and research problems identified. An ICP software prototype is presented and evaluated as a consequence of the results. Results A total of 23 papers, published between 1990 and 2020, were selected from 6 online databases. After analyzing these papers, the following information was obtained: diagnosis and monitoring medical tasks were addressed to the same extent, and the main research method used was evaluation research. Several computational systems were identified in the papers, the main one being image classification, while the main analysis objective was single pulse analysis. Correlation with expert analysis was the most frequent validation method, and few of the papers stated the use of a published dataset. Few authors referred to the tools used to build or evaluate the proposed solutions. The most frequent research problem was the need for new analysis methods. These results have inspired us to propose a software prototype with which provide an automated solution that integrates ICP analysis and monitoring techniques. Conclusions The papers in this study were selected and classified with regard to ICP automated analysis methods. Several research gaps were identified, which the authors of this study have employed as a based on which to recommend future work. Furthermore, this study has identified the need for an empirical comparison between methods, which will require the use and development of certain standard metrics. An in-depth analysis conducted by means of systematic literature review is also required. The software prototype evaluation provided positive results, showing that the prototype may be a reliable system for A-wave detection.


Assuntos
Pressão Intracraniana , Software , Bases de Dados Factuais , Humanos , Monitorização Fisiológica
11.
Nat Commun ; 12(1): 4876, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385436

RESUMO

While the printed circuit board (PCB) has been widely considered as the building block of integrated electronics, the world is switching to pursue new ways of merging integrated electronic circuits with textiles to create flexible and wearable devices. Herein, as an alternative for PCB, we described a non-printed integrated-circuit textile (NIT) for biomedical and theranostic application via a weaving method. All the devices are built as fibers or interlaced nodes and woven into a deformable textile integrated circuit. Built on an electrochemical gating principle, the fiber-woven-type transistors exhibit superior bending or stretching robustness, and were woven as a textile logical computing module to distinguish different emergencies. A fiber-type sweat sensor was woven with strain and light sensors fibers for simultaneously monitoring body health and the environment. With a photo-rechargeable energy textile based on a detailed power consumption analysis, the woven circuit textile is completely self-powered and capable of both wireless biomedical monitoring and early warning. The NIT could be used as a 24/7 private AI "nurse" for routine healthcare, diabetes monitoring, or emergencies such as hypoglycemia, metabolic alkalosis, and even COVID-19 patient care, a potential future on-body AI hardware and possibly a forerunner to fabric-like computers.


Assuntos
Técnicas Biossensoriais/instrumentação , Medicina de Precisão/instrumentação , Têxteis , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio/instrumentação , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , COVID-19/prevenção & controle , COVID-19/virologia , Desenho de Equipamento , Humanos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Medicina de Precisão/métodos , SARS-CoV-2/fisiologia , Suor/fisiologia
12.
Nat Commun ; 12(1): 4880, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385444

RESUMO

Accurate and imperceptible monitoring of electrophysiological signals is of primary importance for wearable healthcare. Stiff and bulky pregelled electrodes are now commonly used in clinical diagnosis, causing severe discomfort to users for long-time using as well as artifact signals in motion. Here, we report a ~100 nm ultra-thin dry epidermal electrode that is able to conformably adhere to skin and accurately measure electrophysiological signals. It showed low sheet resistance (~24 Ω/sq, 4142 S/cm), high transparency, and mechano-electrical stability. The enhanced optoelectronic performance was due to the synergistic effect between graphene and poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), which induced a high degree of molecular ordering on PEDOT and charge transfer on graphene by strong π-π interaction. Together with ultra-thin nature, this dry epidermal electrode is able to accurately monitor electrophysiological signals such as facial skin and brain activity with low-motion artifact, enabling human-machine interfacing and long-time mental/physical health monitoring.


Assuntos
Eletrodos , Eletrofisiologia/métodos , Epiderme/fisiologia , Desenho de Equipamento/métodos , Monitorização Fisiológica/métodos , Dispositivos Eletrônicos Vestíveis , Artefatos , Compostos Bicíclicos Heterocíclicos com Pontes/química , Condutividade Elétrica , Eletrofisiologia/instrumentação , Eletrofisiologia/normas , Desenho de Equipamento/normas , Grafite/química , Humanos , Estrutura Molecular , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/normas , Movimento (Física) , Polímeros/química , Poliestirenos/química , Pele
13.
J Anim Sci ; 99(8)2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34417802

RESUMO

Portable accumulation chambers (PAC) enable short-term spot measurements of gaseous emissions including methane (CH4), carbon dioxide (CO2), and oxygen (O2) consumption from small ruminants. To date the differences in morning and evening gaseous measurements in the PAC have not been investigated. The objectives of this study were to investigate: 1) the optimal measurement time in the PAC, 2) the appropriate method of accounting for the animal's size when calculating the animal's gaseous output, and 3) the intra-day variability of gaseous measurements. A total of 12 ewe lambs (c. 10 to 11 months of age) were randomly selected each day from a cohort of 48 animals over nine consecutive days. Methane emissions from the 12 lambs were measured in 12 PAC during two measurement runs daily, AM (8 to 10 h) and PM (14 to 16 h). Animals were removed from Perennial ryegrass silage for at least 1 h prior to measurements in the PAC and animals were assigned randomly to each of the 12 chambers. Methane (ppm) concentration, O2 and CO2 percentage were measured at 5 time points (T1 = 0.0 min, T2 = 12.5 min, T3 = 25.0 min, T4 = 37.5 min, and T5 = 50.0 min from entry of the first animal into the first chamber) using an Eagle 2 monitor. The correlation between time points T5-T1 (i.e., 50 min minus 0 min after entry of the animal to the chamber) and T4-T1 was 0.95, 0.92, and 0.77 for CH4, O2, and CO2, respectively (P < 0.01). The correlation between CH4 and CO2 output and O2 consumption, calculated with live-weight and with body volume was 0.99 (P < 0.001). The correlation between the PAC measurement recorded on the same animal in the AM and PM measurement runs was 0.73. Factors associated with CH4 production included: day and time of measurement, the live-weight of the animal and the hourly relative humidity. Results from this study suggest that the optimal time for measuring an animal's gaseous output in the PAC is 50 min, that live-weight should be used in the calculation of gaseous output from an animal and that the measurement of an animal's gaseous emissions in either the AM or PM does not impact on the ranking of animals when gaseous emissions are measured using the feeding and measurement protocol outlined in the present study.


Assuntos
Dióxido de Carbono , Metano , Animais , Feminino , Monitorização Fisiológica , Ruminantes , Ovinos
14.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 33(7): 786-791, 2021 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-34412745

RESUMO

OBJECTIVE: To investigate the association between early central venous pressure (CVP) measurement and mortality in patients with sepsis. METHODS: The adult patients with sepsis were identified from the health data of Medical Information Mart for Intensive Care-III v1.4 (MIMIC-III v1.4). Data of all adult patients with sepsis were collected, including gender, age, comorbidities, length of survival, total length of hospital stay and intensive care unit (ICU) stay, sequential organ failure assessment (SOFA) score, vital signs, laboratory test results on the first day, vasoactive agents usage, fluid input, urine output and fluid balance on the first day, need for renal replacement therapy and mechanical ventilation, diagnosis of sepsis, and the time and value of the first CVP measurement in the ICU. Patients were divided into early measurement and control groups based on whether or not they had a CVP measurement within the first 6 hours of ICU stay. According to the time of the first CVP measurement, the patients were subdivided into four subgroups: ≤ 3 hours, 4-6 hours, 7-12 hours and no measurement within 12 hours. The primary endpoint was 28-day mortality. The relationship between initial CVP and mortality was analyzed by Lowess smoothing method. Kaplan-Meier survival analysis and Log-Rank test were performed for univariate analysis. Cox regression analysis was performed for multivariate analysis to estimate the relationship between timeliness of CVP measurement and mortality. RESULTS: A total of 4 733 sepsis patients were enrolled, 1 673 of whom had CVP measured within 6 hours of admission to the ICU, and the other 3 060 patients served as the control group. There were no differences in demographic characteristics and underlying diseases between the two groups, except that the early CVP measurement group had less underlying renal failure compared with control group. The early CVP measurement group had higher lactic acid (Lac) levels and SOFA scores, indicating worse severity of disease as compared with control group. The 28-day mortality in the early CVP measurement group was significantly lower than that in the control group (34.2% vs. 40.7%, P < 0.01). The early CVP measurement group had shorter length of total hospitalization and longer length of ICU stay, higher rate of mechanical ventilation and vasoactive agents dependent, and more fluid input and fluid balanced in the first day of ICU stay compared with control group. Lowess smoothing analysis showed that a "U"-shaped relationship between initial CVP and mortality was identified, suggesting that too high or too low initial CVP was associated with worse survival. Kaplan-Meier survival analysis showed that compared with the patients without early CVP measurement within 12 hours, the cumulative survival rate of patients with CVP measured within 3 hours was significantly higher (66.7% vs. 59.1%; Log-Rank test: χ2 = 15.810, adjusted P < 0.001); while no significant difference was found in patients with CVP measured between 4 hours and 6 hours and between 7 hours and 12 hours compared with the patients without early CVP measurement within 12 hours (64.4%, 60.3% vs. 59.1%; Log-Rank test: χ2 values were 5.630 and 0.100, and adjusted P values were 0.053 and > 0.999, respectively). Cox multivariate analysis showed that the Cox proportional risk model was established by taking patients without CVP measurement within 12 hours as reference, timely CVP measurement after ICU admission was associated with reduced 28-day mortality of patients with sepsis [≤ 3 hours: hazard ratio (HR) = 0.65, 95% confidence interval (95%CI) was 0.55-0.77, P < 0.001; 4-6 hours: HR = 0.72, 95%CI was 0.60-0.87, P = 0.001; 7-12 hours: HR = 0.80, 95%CI was 0.66-0.98, P = 0.032] after the confounding variables (gender, age, SOFA score, initial Lac, renal failure, maximal blood glucose and white blood cell count, and minimal platelet count within 24 hours) were adjusted. CONCLUSIONS: Early CVP measurement is associated with decreased 28-day mortality in patients with sepsis. CVP should be considered as a valuable and easily accessible safety parameter during early fluid resuscitation.


Assuntos
Análise de Dados , Sepse , Pressão Venosa Central , Humanos , Monitorização Fisiológica , Escores de Disfunção Orgânica , Sepse/diagnóstico
16.
Artigo em Inglês | MEDLINE | ID: mdl-34444564

RESUMO

During operational activities, military personnel face extremely demanding circumstances, which when combined lead to severe fatigue, influencing both their well-being and performance. Physical exertion is the main condition leading to fatigue, and its continuous tracking would help prevent its effects. This review aimed to investigate the up-to-date progress on non-invasive physiological monitoring to evaluate situations of physical exertion as a pre-condition to fatigue in military populations, and determine the potential associations between physiological responses and fatigue, which can later result in decision-making indicators to prevent health-related consequences. Adhering to the PRISMA Statement, four databases (Scopus, Science Direct, Web of Science and PubMed) were used for a literature search based on combinations of keywords. The eligibility criteria focused on studies monitoring physiological variables through non-invasive objective measurements, with these measurements being developed in military field, combat, or training conditions. The review process led to the inclusion of 20 studies. The findings established the importance of multivariable assessments in a real-life context to accurately characterise the effects of military practices. A tendency for examining heart rate variables, thermal responses, and actigraphy measurements was also identified. The objectives and experimental protocols were diverse, but the effectiveness of non-invasive measurements in identifying the most fatigue-inducing periods was demonstrated. Nevertheless, no assessment system for standardised application was presented. Future work may include the development of assessment methods to translate physiological recordings into actionable information in real-time and mitigate the effects of fatigue on soldiers' performance accurately.


Assuntos
Militares , Fadiga , Humanos , Monitorização Fisiológica , Esforço Físico
17.
Sensors (Basel) ; 21(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34450715

RESUMO

Monitoring the indoor environment of historic buildings helps to identify potential risks, provide guidelines for improving regular maintenance, and preserve cultural artifacts. However, most of the existing monitoring systems proposed for historic buildings are not for general digitization purposes that provide data for smart services employing, e.g., artificial intelligence with machine learning. In addition, considering that preserving historic buildings is a long-term process that demands preventive maintenance, a monitoring system requires stable and scalable storage and computing resources. In this paper, a digitalization framework is proposed for smart preservation of historic buildings. A sensing system following the architecture of this framework is implemented by integrating various advanced digitalization techniques, such as Internet of Things, Edge computing, and Cloud computing. The sensing system realizes remote data collection, enables viewing real-time and historical data, and provides the capability for performing real-time analysis to achieve preventive maintenance of historic buildings in future research. Field testing results show that the implemented sensing system has a 2% end-to-end loss rate for collecting data samples and the loss rate can be decreased to 0.3%. The low loss rate indicates that the proposed sensing system has high stability and meets the requirements for long-term monitoring of historic buildings.


Assuntos
Inteligência Artificial , Computação em Nuvem , Eletrocardiografia , Monitorização Fisiológica
18.
Sensors (Basel) ; 21(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34450727

RESUMO

This article describes the design of a smart steering wheel intended for use in unobtrusive health and drowsiness monitoring. The aging population, cardiovascular disease, personalized medicine, and driver fatigue were significant motivations for developing a monitoring platform in cars because people spent much time in cars. The purpose was to create a unique, comprehensive monitoring system for the driver. The crucial parameters in health or drowsiness monitoring, such as heart rate, heart rate variability, and blood oxygenation, are measured by an electrocardiograph and oximeter integrated into the steering wheel. In addition, an inertial unit was integrated into the steering wheel to record and analyze the movement patterns performed by the driver while driving. The developed steering wheel was tested under laboratory and real-life conditions. The measured signals were verified by commercial devices to confirm data correctness and accuracy. The resulting signals show the applicability of the developed platform in further detecting specific cardiovascular diseases (especially atrial fibrillation) and drowsiness.


Assuntos
Condução de Veículo , Idoso , Eletrocardiografia , Humanos , Monitorização Fisiológica , Oximetria , Vigília
19.
Sensors (Basel) ; 21(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34450799

RESUMO

Wearable cardiac sensors pave the way for advanced cardiac monitoring applications based on heart rate variability (HRV). In real-life settings, heart rate (HR) measurements are subject to motion artifacts that may lead to frequent data loss (missing samples in the HR signal), especially for commercial devices based on photoplethysmography (PPG). The current study had two main goals: (i) to provide a white-box quality index that estimates the amount of missing samples in any piece of HR signal; and (ii) to quantify the impact of data loss on feature extraction in a PPG-based HR signal. This was done by comparing real-life recordings from commercial sensors featuring both PPG (Empatica E4) and ECG (Zephyr BioHarness 3). After an outlier rejection process, our quality index was used to isolate portions of ECG-based HR signals that could be used as benchmark, to validate the output of Empatica E4 at the signal level and at the feature level. Our results showed high accuracy in estimating the mean HR (median error: 3.2%), poor accuracy for short-term HRV features (e.g., median error: 64% for high-frequency power), and mild accuracy for longer-term HRV features (e.g., median error: 25% for low-frequency power). These levels of errors could be reduced by using our quality index to identify time windows with few or no data loss (median errors: 0.0%, 27%, and 6.4% respectively, when no sample was missing). This quality index should be useful in future work to extract reliable cardiac features in real-life measurements, or to conduct a field validation study on wearable cardiac sensors.


Assuntos
Eletrocardiografia , Fotopletismografia , Artefatos , Frequência Cardíaca , Monitorização Fisiológica , Processamento de Sinais Assistido por Computador
20.
Sensors (Basel) ; 21(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34450860

RESUMO

Wearable and Internet of Things (IoT) technologies in sports open a new era in athlete's training, not only for performance monitoring and evaluation but also for fitness assessment. These technologies rely on sensor systems that collect, process and transmit relevant data, such as biomarkers and/or other performance indicators that are crucial to evaluate the evolution of the athlete's condition, and therefore potentiate their performance. This work aims to identify and summarize recent studies that have used wearables and IoT technologies and discuss its applicability for fitness assessment. A systematic review of electronic databases (WOS, CCC, DIIDW, KJD, MEDLINE, RSCI, SCIELO, IEEEXplore, PubMed, SPORTDiscus, Cochrane and Web of Science) was undertaken according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. From the 280 studies initially identified, 20 were fully examined in terms of hardware and software and their applicability for fitness assessment. Results have shown that wearable and IoT technologies have been used in sports not only for fitness assessment but also for monitoring the athlete's internal and external workloads, employing physiological status monitoring and activity recognition and tracking techniques. However, the maturity level of such technologies is still low, particularly with the need for the acquisition of more-and more effective-biomarkers regarding the athlete's internal workload, which limits its wider adoption by the sports community.


Assuntos
Internet das Coisas , Esportes , Dispositivos Eletrônicos Vestíveis , Exercício Físico , Humanos , Internet , Monitorização Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...