Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.656
Filtrar
1.
Gene ; 781: 145488, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33588040

RESUMO

Oxidative stress (OS) plays an essential role in demyelination and tissue injury related to pathogenesis of multiple sclerosis (MS). On the other hand, vitamin D (VD) as an antioxidant reduces oxidative stress and has been used as adjuvant therapy in autoimmune diseases. Although VD supplementation is suggested as a protective and immunomodulation factor for MS patients, the molecular mechanisms remain unclear. Given that VD may modulate the immune system of MS patients through the DNA repair pathway, we aimed to evaluate the effects of VD supplementation in DNA repair genes expression including OGG1, MYH, MTH1, and ITPA. Transcript levels were measured using the RT-qPCR method in peripheral blood mononuclear cells (PBMCs) of relapsing-remitting multiple sclerosis (RRMS) patients before and after two months of VD supplementation. Furthermore, in silico analysis and correlation gene expression analysis was performed to find the biological binding sites and the effect of NRF2 on the regulation of DNA repair genes. Our data revealed that in MS patients, 2-month VD treatment significantly altered the expression of MYH, OGG1, MTH1, and NRF2 genes. A significant correlation was observed between DNA repair genes and NRF2 expression, which was confirmed by the presence of antioxidant response element (ARE) binding sites in the promoter of OGG1, MYH, and MTH1 genes. This study demonstrated that the impact of VD on MS patients may be mediated through the improvement of DNA repair system efficiency. This finding brought some new evidence for the involvement of DNA repair genes in the physiopathology of MS patients.


Assuntos
Reparo do DNA/genética , Expressão Gênica/efeitos dos fármacos , Esclerose Múltipla/genética , Vitamina D/farmacologia , Vitaminas/farmacologia , Adulto , Simulação por Computador , DNA Glicosilases/genética , Reparo do DNA/efeitos dos fármacos , Enzimas Reparadoras do DNA/genética , Feminino , Humanos , Masculino , Esclerose Múltipla/tratamento farmacológico , Fator 2 Relacionado a NF-E2/genética , Monoéster Fosfórico Hidrolases/genética , Reação em Cadeia da Polimerase em Tempo Real
2.
Am J Physiol Gastrointest Liver Physiol ; 320(3): G351-G365, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406007

RESUMO

Liver fibrosis, a major cause of morbidity and mortality worldwide, leads to liver damage, seriously threatening human health. In our previous study, we demonstrated that 14 kDa phosphohistidine phosphatase (PHP14) was upregulated in fibrotic liver tissue and involved in the migration and lamellipodia formation of hepatic stellate cells (HSCs). In this study, we evaluated PHP14 as a therapeutic target for liver fibrosis and investigated the mechanism by which it mediates liver fibrosis. AAV-shPhpt1 administration significantly attenuates CCl4-induced liver fibrosis in mice. In particular, fibrosis-associated inflammatory infiltration was significantly suppressed after PHP14 knockdown. Mechanistically, PHP14 regulated macrophage recruitment, infiltration, and migration by affecting podosome formation of macrophages. Inhibition of PHP14 decreased the expression of the fibrogenic signature at the early stage of liver fibrogenesis and the activation of HSCs in vivo. Thus, PHP14 can be considered a potential therapeutic target for liver fibrosis.NEW & NOTEWORTHY PHP14 inhibition via adeno-associated virus (AAV)-mediated gene silencing could potently attenuate carbon tetrachloride (CCl4)-induced liver fibrosis. PHP14 could regulate the migration of macrophages to the site of injury in vivo. PHP14 knockdown in vivo influenced the environment of fibrogenesis and relevant signaling pathways, subsequently affecting myofibroblast activation.


Assuntos
Cirrose Hepática/induzido quimicamente , Monoéster Fosfórico Hidrolases/metabolismo , Transferência Adotiva , Animais , Intoxicação por Tetracloreto de Carbono , Técnicas de Cocultura , Sistemas de Liberação de Medicamentos , Técnicas de Silenciamento de Genes , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Monoéster Fosfórico Hidrolases/genética , Células RAW 264.7 , Regulação para Cima
3.
Mol Cell ; 81(3): 546-557.e5, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33378643

RESUMO

Eukaryotic cells regulate 5'-triphosphorylated RNAs (ppp-RNAs) to promote cellular functions and prevent recognition by antiviral RNA sensors. For example, RNA capping enzymes possess triphosphatase domains that remove the γ phosphates of ppp-RNAs during RNA capping. Members of the closely related PIR-1 (phosphatase that interacts with RNA and ribonucleoprotein particle 1) family of RNA polyphosphatases remove both the ß and γ phosphates from ppp-RNAs. Here, we show that C. elegans PIR-1 dephosphorylates ppp-RNAs made by cellular RNA-dependent RNA polymerases (RdRPs) and is required for the maturation of 26G-RNAs, Dicer-dependent small RNAs that regulate thousands of genes during spermatogenesis and embryogenesis. PIR-1 also regulates the CSR-1 22G-RNA pathway and has critical functions in both somatic and germline development. Our findings suggest that PIR-1 modulates both Dicer-dependent and Dicer-independent Argonaute pathways and provide insight into how cells and viruses use a conserved RNA phosphatase to regulate and respond to ppp-RNA species.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Processamento Pós-Transcricional do RNA , RNA/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Monoéster Fosfórico Hidrolases/genética , Fosforilação , RNA/genética , Capuzes de RNA , /metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Espermatogênese , Especificidade por Substrato
4.
Elife ; 92020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33349335

RESUMO

Synaptojanin1 (Synj1) is a phosphoinositide phosphatase, important in clathrin uncoating during endocytosis of presynaptic vesicles. It was identified as a potential drug target for Alzheimer's disease, Down syndrome, and TBC1D24-associated epilepsy, while also loss-of-function mutations in Synj1 are associated with epilepsy and Parkinson's disease. Despite its involvement in a range of disorders, structural, and detailed mechanistic information regarding the enzyme is lacking. Here, we report the crystal structure of the 5-phosphatase domain of Synj1. Moreover, we also present a structure of this domain bound to the substrate diC8-PI(3,4,5)P3, providing the first image of a 5-phosphatase with a trapped substrate in its active site. Together with an analysis of the contribution of the different inositide phosphate groups to catalysis, these structures provide new insights in the Synj1 mechanism. Finally, we analysed the effect of three clinical missense mutations (Y793C, R800C, Y849C) on catalysis, unveiling the molecular mechanisms underlying Synj1-associated disease.


Assuntos
Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Humanos , Mutação de Sentido Incorreto , Conformação Proteica , Domínios Proteicos
5.
PLoS One ; 15(12): e0237682, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33332469

RESUMO

The molecular function of a protein relies on its structure. Understanding how variants alter structure and function in multidomain proteins is key to elucidate the generation of a pathological phenotype. However, one may fall into the logical bias of assessing protein damage only based on the variants that are visible (survivorship bias), which can lead to partial conclusions. This is the case of PNKP, an important nuclear and mitochondrial DNA repair enzyme with both kinase and phosphatase function. Most variants in PNKP are confined to the kinase domain, leading to a pathological spectrum of three apparently distinct clinical entities. Since proteins and domains may have a different tolerability to variation, we evaluated whether variants in PNKP are under survivorship bias. Here, we provide the evidence that supports a higher tolerance in the kinase domain even when all variants reported are deleterious. Instead, the phosphatase domain is less tolerant due to its lower variant rates, a higher degree of sequence conservation, lower dN/dS ratios, and the presence of more disease-propensity hotspots. Together, our results support previous experimental evidence that demonstrated that the phosphatase domain is functionally more necessary and relevant for DNA repair, especially in the context of the development of the central nervous system. Finally, we propose the term "Wald's domain" for future studies analyzing the possible survivorship bias in multidomain proteins.


Assuntos
Enzimas Reparadoras do DNA/genética , Mutação/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Sequência de Aminoácidos , Núcleo Celular/genética , Dano ao DNA/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Humanos , Mitocôndrias/genética , Monoéster Fosfórico Hidrolases/genética , Sobrevivência
6.
Mol Cell ; 79(6): 1024-1036.e5, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32871103

RESUMO

Bacterial ribosomal RNAs are synthesized by a dedicated, conserved transcription-elongation complex that transcribes at high rates, shields RNA polymerase from premature termination, and supports co-transcriptional RNA folding, modification, processing, and ribosomal subunit assembly by presently unknown mechanisms. We have determined cryo-electron microscopy structures of complete Escherichia coli ribosomal RNA transcription elongation complexes, comprising RNA polymerase; DNA; RNA bearing an N-utilization-site-like anti-termination element; Nus factors A, B, E, and G; inositol mono-phosphatase SuhB; and ribosomal protein S4. Our structures and structure-informed functional analyses show that fast transcription and anti-termination involve suppression of NusA-stabilized pausing, enhancement of NusG-mediated anti-backtracking, sequestration of the NusG C-terminal domain from termination factor ρ, and the ρ blockade. Strikingly, the factors form a composite RNA chaperone around the RNA polymerase RNA-exit tunnel, which supports co-transcriptional RNA folding and annealing of distal RNA regions. Our work reveals a polymerase/chaperone machine required for biosynthesis of functional ribosomes.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Chaperonas Moleculares/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Sítios de Ligação/genética , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestrutura , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/ultraestrutura , Biossíntese de Proteínas/genética , Dobramento de RNA/genética , RNA Ribossômico/genética , RNA Ribossômico/ultraestrutura , Proteínas Ribossômicas/ultraestrutura , Ribossomos/ultraestrutura , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/ultraestrutura
7.
Oncogene ; 39(37): 5979-5994, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32753652

RESUMO

Non-small cell lung cancer (NSCLC) is the deadliest form of cancer worldwide, due in part to its proclivity to metastasize. Identifying novel drivers of invasion and metastasis holds therapeutic potential for the disease. We conducted a gain-of-function invasion screen, which identified two separate hits, IMPAD1 and KDELR2, as robust, independent drivers of lung cancer invasion and metastasis. Given that IMPAD1 and KDELR2 are known to be localized to the ER-Golgi pathway, we studied their common mechanism of driving in vitro invasion and in vivo metastasis and demonstrated that they enhance Golgi-mediated function and secretion. Therapeutically inhibiting matrix metalloproteases (MMPs) suppressed both IMPAD1- and KDELR2-mediated invasion. The hits from this unbiased screen and the mechanistic validation highlight Golgi function as one of the key cellular features altered during invasion and metastasis.


Assuntos
Complexo de Golgi/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Monoéster Fosfórico Hidrolases/genética , Proteínas de Transporte Vesicular/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Metaloproteinases da Matriz/metabolismo , Invasividade Neoplásica , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas de Transporte Vesicular/metabolismo
8.
Nat Commun ; 11(1): 4212, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32839469

RESUMO

Phosphatases, together with kinases and transcription factors, are key components in cellular signalling networks. Here, we present a systematic functional analysis of the phosphatases in Cryptococcus neoformans, a fungal pathogen that causes life-threatening fungal meningoencephalitis. We analyse 230 signature-tagged mutant strains for 114 putative phosphatases under 30 distinct in vitro growth conditions, revealing at least one function for 60 of these proteins. Large-scale virulence and infectivity assays using insect and mouse models indicate roles in pathogenicity for 31 phosphatases involved in various processes such as thermotolerance, melanin and capsule production, stress responses, O-mannosylation, or retromer function. Notably, phosphatases Xpp1, Ssu72, Siw14, and Sit4 promote blood-brain barrier adhesion and crossing by C. neoformans. Together with our previous systematic studies of transcription factors and kinases, our results provide comprehensive insight into the pathobiological signalling circuitry of C. neoformans.


Assuntos
Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica/métodos , Genoma Fúngico/genética , Estudo de Associação Genômica Ampla/métodos , Monoéster Fosfórico Hidrolases/genética , Animais , Análise por Conglomerados , Criptococose/microbiologia , Cryptococcus neoformans/patogenicidade , Feminino , Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Camundongos Endogâmicos , Monoéster Fosfórico Hidrolases/classificação , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases/classificação , Fosfotransferases/genética , Fosfotransferases/metabolismo , Transdução de Sinais/genética , Termotolerância/genética , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência/genética
9.
PLoS Genet ; 16(7): e1008484, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32673313

RESUMO

Yeast and fast-growing human tumor cells share metabolic similarities in that both cells use fermentation of glucose for energy and both are highly sensitive to the glucose analog 2-deoxyglucose. Spontaneous mutations in S. cerevisiae that conferred resistance to 2-deoxyglucose were identified by whole genome sequencing. Missense alleles of the HXK2, REG1, GLC7 and SNF1 genes were shown to confer significant resistance to 2-deoxyglucose and all had the potential to alter the activity and or target selection of the Snf1 kinase signaling pathway. All three missense alleles in HXK2 resulted in significantly reduced catalytic activity. Addition of 2DG promotes endocytosis of the glucose transporter Hxt3. All but one of the 2DG-resistant strains reduced the 2DG-mediated hexose transporter endocytosis by increasing plasma membrane occupancy of the Hxt3 protein. Increased expression of the DOG (deoxyglucose) phosphatases has been associated with resistance to 2-deoxyglucose. Expression of both the DOG1 and DOG2 mRNA was elevated after treatment with 2-deoxyglucose but induction of these genes is not associated with 2DG-resistance. RNAseq analysis of the transcriptional response to 2DG showed large scale, genome-wide changes in mRNA abundance that were greatly reduced in the 2DG resistant strains. These findings suggest the common adaptive response to 2DG is to limit the magnitude of the response. Genetic studies of 2DG resistance using the dominant SNF1-G53R allele in cells that are genetically compromised in both the endocytosis and DOG pathways suggest that at least one more mechanism for conferring resistance to this glucose analog remains to be discovered.


Assuntos
Metabolismo Energético/genética , Glucose/metabolismo , Hexoquinase/genética , Monoéster Fosfórico Hidrolases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Desoxiglucose/efeitos adversos , Desoxiglucose/farmacologia , Endocitose/efeitos dos fármacos , Endocitose/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Proteínas Facilitadoras de Transporte de Glucose/genética , Humanos , Mutação/genética , Proteína Fosfatase 1/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Transdução de Sinais/efeitos dos fármacos , Sequenciamento Completo do Genoma
10.
Proc Natl Acad Sci U S A ; 117(26): 15055-15065, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32554489

RESUMO

Phosphocholine phosphatase-1 (PHOSPHO1) is a phosphocholine phosphatase that catalyzes the hydrolysis of phosphocholine (PC) to choline. Here we demonstrate that the PHOSPHO1 transcript is highly enriched in mature brown adipose tissue (BAT) and is further induced by cold and isoproterenol treatments of BAT and primary brown adipocytes. In defining the functional relevance of PHOPSPHO1 in BAT thermogenesis and energy metabolism, we show that PHOSPHO1 knockout mice are cold-tolerant, with higher expression of thermogenic genes in BAT, and are protected from high-fat diet-induced obesity and development of insulin resistance. Treatment of mice with the PHOSPHO1 substrate phosphocholine is sufficient to induce cold tolerance, thermogenic gene expression, and allied metabolic benefits. Our results reveal a role of PHOSPHO1 as a negative regulator of BAT thermogenesis, and inhibition of PHOSPHO1 or enhancement of phosphocholine represent innovative approaches to manage the metabolic syndrome.


Assuntos
Tecido Adiposo Marrom/fisiologia , Monoéster Fosfórico Hidrolases/genética , Fosforilcolina/metabolismo , Termogênese , Adipócitos Marrons/enzimologia , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/enzimologia , Animais , Temperatura Baixa , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoéster Fosfórico Hidrolases/deficiência
11.
Sci Rep ; 10(1): 7383, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32355295

RESUMO

Kinases and phosphatases are crucial for cellular processes and animal development. Various sets of resources in Drosophila have contributed significantly to the identification of kinases, phosphatases and their regulators. However, there are still many kinases, phosphatases and associate genes with unknown functions in the Drosophila genome. In this study, we utilized a CRISPR/Cas9 strategy to generate stable mutants for these unknown kinases, phosphatases and associate factors in Drosophila. For all the 156 unknown gene loci, we totally obtained 385 mutant alleles of 105 candidates, with 18 failure due to low efficiency of selected gRNAs and other 33 failure due to few recovered F0, which indicated high probability of lethal genes. From all the 105 mutated genes, we observed 9 whose mutants were lethal and another 4 sterile, most of which with human orthologs referred in OMIM, representing their huge value for human disease research. Here, we deliver these mutants as an open resource for more interesting studies.


Assuntos
Sistemas CRISPR-Cas , Proteínas de Drosophila/genética , Monoéster Fosfórico Hidrolases/genética , Proteínas Quinases/genética , Animais , Drosophila melanogaster , Humanos
12.
Proc Natl Acad Sci U S A ; 117(21): 11715-11726, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32398371

RESUMO

Campylobacter jejuni monitors intestinal metabolites produced by the host and microbiota to initiate intestinal colonization of avian and animal hosts for commensalism and infection of humans for diarrheal disease. We previously discovered that C. jejuni has the capacity to spatially discern different intestinal regions by sensing lactate and the short-chain fatty acids acetate and butyrate and then alter transcription of colonization factors appropriately for in vivo growth. In this study, we identified the C. jejuni butyrate-modulated regulon and discovered that the BumSR two-component signal transduction system (TCS) directs a response to butyrate by identifying mutants in a genetic screen defective for butyrate-modulated transcription. The BumSR TCS, which is important for infection of humans and optimal colonization of avian hosts, senses butyrate likely by indirect means to alter transcription of genes encoding important colonization determinants. Unlike many canonical TCSs, the predicted cytoplasmic sensor kinase BumS lacked in vitro autokinase activity, which would normally lead to phosphorylation of the cognate BumR response regulator. Instead, BumS has likely evolved mutations to naturally function as a phosphatase whose activity is influenced by exogenous butyrate to control the level of endogenous phosphorylation of BumR and its ability to alter transcription of target genes. To our knowledge, the BumSR TCS is the only bacterial signal transduction system identified so far that mediates responses to the microbiota-generated intestinal metabolite butyrate, an important factor for host intestinal health and homeostasis. Our findings suggest that butyrate sensing by this system is vital for C. jejuni colonization of multiple hosts.


Assuntos
Proteínas de Bactérias , Butiratos/metabolismo , Campylobacter jejuni , Regulação Bacteriana da Expressão Gênica/genética , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Campylobacter/microbiologia , Galinhas , Humanos , Monoéster Fosfórico Hidrolases/genética , Transdução de Sinais/genética
13.
Sci Rep ; 10(1): 7662, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32376943

RESUMO

The actin fiber-associated protein 1-antisense RNA1 (AFAP1-AS1) is upregulated in various cancers and associated with cancer proliferation and metastasis. Several cancer-related pathways have been linked to up-expression of this long non-coding (lnc)RNA, but the underlying mechanisms are yet unknown. In triple negative breast cancer (TNBC), AFAP1-AS1 expression is also significantly overexpressed compared to that in other subtypes of breast cancer from the TCGA dataset. In this study, we performed bioinformatic RNAhybrid analyses and identified that miR-145 is a potential target of AFAP1-AS1 and able to reduce MutT homolog-1 (MTH1) expression. Thus, this study investigated the oncogenic activity of AFAP1-AS1 in TNBC cells and the underlying mechanisms that are yet poorly understood. The results showed that miR-145 expression was low, whereas AFAP1-AS1 and MTH1 expression was high in TNBC cells and that miR-145 mimics reduced TNBC cell proliferation and invasion, whereas miR-145 knockdown exerted the opposite activity in TNBC cells. Moreover, knockdown of AFAP1-AS1 reduced tumor cell proliferation and invasion, but miR-145 co-transfection rescued tumor cell viability and colony formation ability. The dual luciferase reporter assay showed that AFAP1-AS1 could directly target miR-145, while miR-145 could directly target MTH1. After knockdown of ATF6, AFAP1-AS1 was reduced along with AFAP1-AS1 promoter activity. This study revealed that AFAP1-AS1 could promote TNBC cell proliferation and invasion via regulation of MTH1 expression through targeting of miR-145.


Assuntos
Enzimas Reparadoras do DNA/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Monoéster Fosfórico Hidrolases/genética , Interferência de RNA , RNA Longo não Codificante/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Fator 6 Ativador da Transcrição/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Modelos Animais de Doenças , Feminino , Genes Reporter , Humanos , Camundongos , Invasividade Neoplásica , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Nucleic Acids Res ; 48(12): 6788-6798, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32432673

RESUMO

We recently reported the presence of nicotinamide adenine dinucleotide (NAD)-capped RNAs in mammalian cells and a role for DXO and the Nudix hydrolase Nudt12 in decapping NAD-capped RNAs (deNADding) in cells. Analysis of 5'caps has revealed that in addition to NAD, mammalian RNAs also contain other metabolite caps including flavin adenine dinucleotide (FAD) and dephosphoCoA (dpCoA). In the present study we systematically screened all mammalian Nudix proteins for their potential deNADing, FAD cap decapping (deFADding) and dpCoA cap decapping (deCoAping) activity. We demonstrate that Nudt16 is a novel deNADding enzyme in mammalian cells. Additionally, we identified seven Nudix proteins-Nudt2, Nudt7, Nudt8, Nudt12, Nudt15, Nudt16 and Nudt19, to possess deCoAping activity in vitro. Moreover, our screening revealed that both mammalian Nudt2 and Nudt16 hydrolyze FAD-capped RNAs in vitro with Nudt16 regulating levels of FAD-capped RNAs in cells. All decapping activities identified hydrolyze the metabolite cap substrate within the diphosphate linkage. Crystal structure of human Nudt16 in complex with FAD at 2.7 Å resolution provide molecular insights into the binding and metal-coordinated hydrolysis of FAD by Nudt16. In summary, our study identifies novel cellular deNADding and deFADding enzymes and establishes a foundation for the selective functionality of the Nudix decapping enzymes on non-canonical metabolite caps.


Assuntos
Flavina-Adenina Dinucleotídeo/química , Pirofosfatases/genética , Pirofosfatases/ultraestrutura , Capuzes de RNA/genética , Coenzima A/química , Coenzima A/genética , Cristalografia por Raios X , Flavina-Adenina Dinucleotídeo/genética , Humanos , NAD/química , NAD/ultraestrutura , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Conformação Proteica , Pirofosfatases/química , Pirofosfatases/classificação , Capuzes de RNA/química , Capuzes de RNA/ultraestrutura
15.
PLoS One ; 15(5): e0233163, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32413098

RESUMO

Inositol polyphosphate-4-phosphatase type II (INPP4B) is a dual-specificity phosphatase that acts as a tumor suppressor in multiple cancers. INPP4B dephosphorylates phospholipids at the 4th position of the inositol ring and inhibits AKT and PKC signaling by hydrolyzing of PI(3,4)P2 and PI(4,5)P2, respectively. INPP4B protein phosphatase targets include phospho-tyrosines on Akt and phospho-serine and phospho-threonine on PTEN. INPP4B is highly expressed in testes, suggesting its role in testes development and physiology. The objective of this study was to determine whether Inpp4b deletion impacts testicular function in mice. In testis, Inpp4b expression was the highest in postmeiotic germ cells in both mice and men. The testes of Inpp4b knockout male mice were significantly smaller compared to the testes of wild-type (WT) males. Inpp4b-/- males produced fewer mature sperm cells compared to WT, and this difference increased with age and high fat diet (HFD). Reduction in early steroidogenic enzymes and luteinizing hormone (LH) receptor gene expression was detected, although androgen receptor (AR) protein level was similar in WT and Inpp4b-/- testes. Germ cell apoptosis was significantly increased in the knockout mice, while expression of meiotic marker γH2A.X was decreased. Our data demonstrate that INPP4B plays a role in maintenance of male germ cell differentiation and protects testis functions against deleterious effects of aging and high fat diet.


Assuntos
Monoéster Fosfórico Hidrolases/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo , Testículo/metabolismo , Animais , Apoptose/genética , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica no Desenvolvimento/genética , Histonas/metabolismo , Humanos , Masculino , Meiose/genética , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA-Seq , Receptores Androgênicos/metabolismo , Receptores do LH/genética , Receptores do LH/metabolismo , Análise de Célula Única , Contagem de Espermatozoides , Testículo/crescimento & desenvolvimento
16.
Eur J Ophthalmol ; 30(5): 966-973, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32340490

RESUMO

BACKGROUND: Lowe syndrome is a rare X-linked disease that is characterized by renal dysfunction, developmental delays, congenital cataracts and glaucoma. Mutations in the oculocerebral renal syndrome of Lowe (OCRL) gene are found in Lowe syndrome patients. Although loss of vision is a major concern for families and physicians who take care of Lowe syndrome children, definitive cause of visual loss is still unclear. Children usually present with bilateral dense cataracts at birth and glaucoma, which occurs in more than half of cases, either concurrently or following cataract surgery. MATERIALS AND METHODS: A retrospective review was conducted on the prevalence and characteristics of ocular findings among families of patients with Lowe syndrome with 137 uniquely affected individuals. RESULTS: Of 137 patients, all had bilateral congenital cataracts. Nystagmus was reported in 69.3% of cases, glaucoma in 54.7%, strabismus in 35.0%, and corneal scar in 18.2% of patients. Glaucoma was reported as the most common cause of blindness (46%) followed by corneal scars (41%). Glaucoma occurred in 54.7% of patients and affected both eyes in the majority of cases. Of these patients, 55% underwent surgery for glaucoma, while the remaining patients used medications to control their eye pressure. Timolol and latanoprost were the most commonly used medications. Although trabeculectomy and goniotomy are commonly used for pressure management, aqueous tube shunts had the best outcomes. CONCLUSION: Ocular manifestations in individuals with Lowe syndrome and carriers with OCRL mutation are reported which may help familiarize clinicians with the ocular manifestations and management of a rare and complex syndrome.


Assuntos
Oftalmopatias/epidemiologia , Síndrome Oculocerebrorrenal/epidemiologia , Catarata/congênito , Catarata/diagnóstico , Catarata/epidemiologia , Extração de Catarata , Criança , Pré-Escolar , Doenças da Córnea/diagnóstico , Doenças da Córnea/epidemiologia , Oftalmopatias/diagnóstico , Feminino , Glaucoma/diagnóstico , Glaucoma/epidemiologia , Humanos , Lactente , Recém-Nascido , Masculino , Nistagmo Patológico/diagnóstico , Nistagmo Patológico/epidemiologia , Síndrome Oculocerebrorrenal/genética , Monoéster Fosfórico Hidrolases/genética , Prevalência , Estudos Retrospectivos , Estrabismo/diagnóstico , Estrabismo/epidemiologia
17.
Int J Med Microbiol ; 310(4): 151418, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32245626

RESUMO

Phosphoinositides (PIPs) are one kind of membrane components functioning in many intracellular processes, especially in signaling transduction and membrane transport. Phosphatidylinositide phosphatases (PIPases) are specifically important for the PIP homeostasis in cell. In our previous study, we have identified the actin-related protein CaSac1 in Candida albicans, while its functional mechanisms in regulating membrane homeostasis has not been identified. Here, we show that the PIPase CaSac1 is a main membrane-related protein and regulates hyphal polarization by governing phosphoinositide dynamic and plasma membrane (PM) electrostatic field. Deletion of CaSAC1 resulted in large-scale abnormal redistribution of phosphatidylinositide 4-phosphate (PI4P) from the endomembrane to the PM. This abnormality further led to disturbance of the PM's negative electrostatic field and abnormally spotted distribution of phosphatidylinositide 4,5-bisphosphate (PI(4,5)P2). These changes led to a severe defect in polarized hyphal growth, which could be diminished with recovery of the PM's negative electrostatic field by the anionic polymer polyacrylic acid (PAA). This study revealed that the PIPase CaSac1 plays an essential role in regulating membrane homeostasis and membrane traffic, contributing to establishment of polarized hyphal growth.


Assuntos
Candida albicans/enzimologia , Candida albicans/crescimento & desenvolvimento , Homeostase , Proteínas de Membrana/metabolismo , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Candida albicans/genética , Membrana Celular , Hifas/crescimento & desenvolvimento , Proteínas de Membrana/genética , Monoéster Fosfórico Hidrolases/genética
18.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32269127

RESUMO

Positive-strand RNA [(+)RNA] viruses assemble numerous membrane-bound viral replicase complexes (VRCs) with the help of viral replication proteins and co-opted host proteins within large viral replication compartments in the cytosol of infected cells. In this study, we found that deletion or depletion of Sac1 phosphatidylinositol 4-phosphate [PI(4)P] phosphatase reduced tomato bushy stunt virus (TBSV) replication in yeast (Saccharomyces cerevisiae) and plants. We demonstrate a critical role for Sac1 in TBSV replicase assembly in a cell-free replicase reconstitution assay. The effect of Sac1 seems to be direct, based on its interaction with the TBSV p33 replication protein, its copurification with the tombusvirus replicase, and its presence in the virus-induced membrane contact sites and within the TBSV replication compartment. The proviral functions of Sac1 include manipulation of lipid composition, sterol enrichment within the VRCs, and recruitment of additional host factors into VRCs. Depletion of Sac1 inhibited the recruitment of Rab5 GTPase-positive endosomes and enrichment of phosphatidylethanolamine in the viral replication compartment. We propose that Sac1 might be a component of the assembly hub for VRCs, likely in collaboration with the co-opted the syntaxin18-like Ufe1 SNARE protein within the TBSV replication compartments. This work also led to demonstration of the enrichment of PI(4)P phosphoinositide within the replication compartment. Reduction in the PI(4)P level due to chemical inhibition in plant protoplasts; depletion of two PI(4)P kinases, Stt4p and Pik1p; or sequestration of free PI(4)P via expression of a PI(4)P-binding protein in yeast strongly inhibited TBSV replication. Altogether, Sac1 and PI(4)P play important proviral roles during TBSV replication.IMPORTANCE Replication of positive-strand RNA viruses depends on recruitment of host components into viral replication compartments or organelles. Using TBSV, we uncovered the critical roles of Sac1 PI(4)P phosphatase and its substrate, PI(4)P phosphoinositide, in promoting viral replication. Both Sac1 and PI(4)P are recruited to the site of viral replication to facilitate the assembly of the viral replicase complexes, which perform viral RNA replication. We found that Sac1 affects the recruitment of other host factors and enrichment of phosphatidylethanolamine and sterol lipids within the subverted host membranes to promote optimal viral replication. In summary, this work demonstrates the novel functions of Sac1 and PI(4)P in TBSV replication in the model host yeast and in plants.


Assuntos
Interações Hospedeiro-Patógeno/genética , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Tombusvirus/genética , Replicação Viral/genética , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endossomos/metabolismo , Regulação da Expressão Gênica , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Monoéster Fosfórico Hidrolases/deficiência , Monoéster Fosfórico Hidrolases/metabolismo , Células Vegetais/metabolismo , Células Vegetais/virologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Protoplastos/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , /metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Esteróis/metabolismo , Tabaco/genética , Tabaco/metabolismo , Tabaco/virologia , Tombusvirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
19.
Sci Adv ; 6(10): eaaz0575, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32181355

RESUMO

Although photodynamic therapy (PDT) has been clinically applied tumor hypoxia still greatly restricts the performance of this oxygen-dependent oncological treatment. The delivery of oxygen donors to tumor may produce excessive reactive oxygen species (ROS) and damage the peripheral tissues. Herein, we developed a strategy to solve the hypoxia issue by enhancing the lethality of ROS. Before PDT, the ROS-defensing system of the cancer cells was obstructed by an inhibitor to MTH1, which is a key for the remediation of ROS-caused DNA damage. As a result, both nuclei and mitochondrial DNA damages were increased, remarkably promoting cellular apoptosis. The therapeutic results demonstrated that the performance of PDT can be improved by the MTH1 inhibitor, leading to efficient cancer cell killing effect in the hypoxic tumor. This strategy makes better use of the limited oxygen, holding the promise to achieve satisfactory therapeutic effect by PDT without generating redundant cytotoxic ROS.


Assuntos
Antineoplásicos/farmacologia , Enzimas Reparadoras do DNA/genética , DNA de Neoplasias/genética , Inibidores Enzimáticos/farmacologia , Melanoma Experimental/tratamento farmacológico , Monoéster Fosfórico Hidrolases/genética , Pirimidinas/farmacologia , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Enzimas Reparadoras do DNA/antagonistas & inibidores , Enzimas Reparadoras do DNA/metabolismo , DNA de Neoplasias/antagonistas & inibidores , DNA de Neoplasias/metabolismo , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/síntese química , Composição de Medicamentos/métodos , Inibidores Enzimáticos/química , Feminino , Expressão Gênica , Células HCT116 , Células HeLa , Humanos , Luz , Células MCF-7 , Melanoma Experimental/enzimologia , Melanoma Experimental/patologia , Camundongos Nus , Nanopartículas/administração & dosagem , Nanopartículas/química , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacocinética , Porfirinas/química , Porfirinas/farmacocinética , Pirimidinas/química , Espécies Reativas de Oxigênio/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Sci Rep ; 10(1): 4138, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139778

RESUMO

Diatoms are the most diverse and abundant group of phytoplankton species and represent a huge reservoir of marine natural products with possible application for human health. Several diatoms are known to have anticancer, anti-inflammatory, antioxidant and anti-microbial properties, but the compounds responsible of these activities are often still unknown. The diatom Cylindrotheca closterium showed anti-inflammatory properties inhibiting TNFα release in human monocytic leukemia cells. In this study, we present the full transcriptome of C. closterium, and used an -omic approach to identify transcripts coding enzymes that can be involved in the synthesis/degradation of anti-inflammatory compounds. This approach allowed to identify phosphatidylinositol-3-phosphatase, phosphatidylinositol 3-kinase catalytic subunit type 3, phosphatidylinositol N-acetylglucosaminyltransferase subunit A, monogalactosyldiacylglycerol synthase and violaxanthin de-epoxidase, which are known to be involved in anti-inflammatory compound metabolism. When C. closterium was cultured in silica-starvation conditions, selected as stress condition to potentially trigger the synthesis of bioactive metabolites, anti-inflammatory activity was lost and expression levels of the analyzed transcripts were reduced. These data suggested that the control culturing condition was the most active. This study used for the first time a transcriptomic-guided approach to identify enzymes involved in anti-inflammatory compound metabolism, directing future discoveries of marine natural products in microalgae.


Assuntos
Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Closterium/genética , Closterium/metabolismo , Diatomáceas/genética , Diatomáceas/metabolismo , Transcriptoma/genética , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...