Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 436
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 68(8): 2547-2553, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31995978

RESUMO

Anticholinergic organophosphate (OP) agents act on the diverse serine hydrolases, thereby revealing unexpected biological effects. Epidemiological studies indicate a relationship between the OP exposure and development of attention-deficit/hyperactivity disorder (ADHD)-like symptoms, whereas no plausible mechanism for the OP-induced ADHD has been established. The present investigation employs ethyl octylphosphonofluoridate (EOPF) as an OP-probe, which is an extremely potent inhibitor of endocannabinoid (EC, anandamide and 2-arachidonoylglycerol)-hydrolyzing enzymes: that is, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). An ex vivo experiment shows that EOPF treatment decreases FAAH and MAGL activities and conversely increases EC levels in the rat brain. Subsequently, EOPF (treated intraperitoneally once at 0, 1, 2, or 3 mg/kg) clearly induces ADHD-like behaviors (in elevated plus-maze test) in both Wistar and spontaneously hypertensive rats. The EOPF-induced behaviors are reduced by a concomitant administration of cannabinoid receptor inverse agonist SLV-319. Accordingly, the EC system is a feasible target for OP-caused ADHD-like behaviors in adolescent rats.


Assuntos
Amidoidrolases/antagonistas & inibidores , Transtorno do Deficit de Atenção com Hiperatividade/enzimologia , Encéfalo/enzimologia , Endocanabinoides/metabolismo , Inibidores Enzimáticos/efeitos adversos , Monoacilglicerol Lipases/antagonistas & inibidores , Compostos Organofosforados/efeitos adversos , Amidoidrolases/metabolismo , Animais , Transtorno do Deficit de Atenção com Hiperatividade/induzido quimicamente , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Humanos , Masculino , Monoacilglicerol Lipases/metabolismo , Ratos , Ratos Wistar
2.
Zhonghua Gan Zang Bing Za Zhi ; 27(10): 760-765, 2019 Oct 20.
Artigo em Chinês | MEDLINE | ID: mdl-31734989

RESUMO

Objective: To study the expression level of monoacylglycerol lipase (MAGL) in liver tissues of patients with hepatocellular carcinoma (HCC), and its clinical correlation. Methods: Immunohistochemistry was employed to detect MAGL protein in 353 cases with hepatocellular carcinoma (HCC) and tissue microarray (TMA) for paracancerous liver tissues. The expression levels of MAGL in TMA were quantitatively analyzed using Image-Pro plus 6.0. The difference in MAGL expression between liver cancer tissues and paracancerous liver tissues was compared. Combined with the clinical follow-up data of TMA patients, the correlation between the expression of MAGL in TMA and the degree of HCC tumors differentiation and the survival rate of 1-year and 3-year were analyzed using Logistic regression analysis. The survival curves of patients with different levels of MAGL protein was plotted and analyzed using Kaplan-Meier method. The expression of MAGL protein was analyzed by multiple linear regression analysis. COX regression was used to analyze the correlation between MAGL protein expression level and the risk of HCC death in the included patients. Results: The expression of MAGL in HCC tissues was significantly higher than paracancerous liver tissues. The expression level of MAGL was correlated to the degrees of HCC tumors differentiation (P < 0.001) and 1-year survival rate (P = 0.01), but not with 3-year survival rate (P = 0.91). Survival curve showed that the expression level of MAGL was negatively correlated with prognosis and survival of HCC patients (P = 0.001). Multiple linear regressions showed a negative correlation between MAGL expression level and overall survival time of HCC patients (P=0.010, R2=0.166, Durbin-Watson value: 1.989). COX regression showed that the expression of MAGL was a risk factor for death of patients with HCC [P = 0.004, Exp (B) = 1.000]. Conclusion: The expression level of MAGL has positive correlation with the malignant degree in HCC patients, and negative correlation with its prognosis. Therefore, MAGL may serve as a new prognostic indicator for HCC patients.


Assuntos
Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/diagnóstico , Monoacilglicerol Lipases/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/enzimologia , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/enzimologia , Prognóstico
3.
Cancer Genomics Proteomics ; 16(5): 377-397, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31467232

RESUMO

BACKGROUND/AIM: Breast cancer (BC) incidence and mortality rates have been increasing due to the lack of appropriate diagnostic tools for early detection. Proteomics-based studies may provide novel targets for early diagnosis and efficient treatment. The aim of this study was to investigate the global changes occurring in protein profiles in breast cancer tissues to discover potential diagnostic or prognostic biomarkers. MATERIALS AND METHODS: BC tissues and their corresponding healthy counterparts were collected, subtyped, and subjected to comparative proteomics analyses using two-dimensional gel electrophoresis (2-DE) and two-dimensional electrophoresis fluorescence difference gel (DIGE) coupled to matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF/TOF) to explore BC metabolism at the proteome level. Western blot analysis was used to verify changes occurring at the protein levels. RESULTS: Bioinformatics analyses performed with differentially regulated proteins highlighted the changes occurring in triacylglyceride (TAG) metabolism, and directed our attention to TAG metabolism-associated proteins, namely glycerol-3-phosphate dehydrogenase 1 (GPD1) and monoacylglycerol lipase (MAGL). These proteins were down-regulated in tumor groups in comparison to controls. CONCLUSION: GPD1 and MAGL might be promising tissue-based protein biomarkers with a predictive potential for BC.


Assuntos
Neoplasias da Mama/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Monoacilglicerol Lipases/metabolismo , Adulto , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteoma
4.
Zhonghua Gan Zang Bing Za Zhi ; 27(7): 516-520, 2019 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-31357777

RESUMO

Objective: To investigate the effects of different expression of monoacylglycerol lipase (MAGL) in tumor-associated macrophages (TAMs) with the proliferation of MHCC97H human liver cancer cells in vivo and its mechanism. Methods: Human peripheral blood-derived monocyte was induced to differentiate into M2-type TAMs and was identified by flow cytometry. The co-culture model of TAMs and MHCC97H human liver cancer cells was established, and the expression of MAGL in TAMs cells was detected by qRT-PCR. The expression of MAGL in TAMs cells was detected by plasmid transfection. ELISA and qRT-PCR was used to detect the mRNA expression levels and secretion levels of inflammatory factors in TAMs cells. The subcutaneous tumor model of MHCC97H mice was constructed to observe the effect of different expression of MAGL in TAMs cells with the proliferation of MHCC97H human liver cancer cells in vivo. F-test was used for the measurement of homogeneity of variance between two independent samples. A t-test was used for homogeneity of variance, and the corrected t-test was used for non-homogeneity of variance. Results: Human peripheral blood-derived monocytes were successfully induced to differentiate into M2-type TAMs. An in vitro co-culture model was established. qRT-PCR showed that MHCC97H human liver cancer cells significantly down-regulated the expressional level of MAGL in TAMs cells. The constructed subcutaneous tumor model of mice demonstrated that up-regulation up-regulation of MAGL expression in M2-type TAMs inhibited the proliferation of MHCC97H human liver cancer cells in vivo. Furthermore, the mechanistic study illustrated that the high expression of MAGL promoted the transcription and secretion of inflammatory factors such as interleukin-1 beta, interleukin-6 and tumor necrosis factor-alpha in M2-type TAMs cells. Conclusion: The overexpression of MAGL inhibits the proliferation of MHCC97H hepatocellular carcinoma cells in vivo, and its mechanism may be associated to the release of inflammatory factors that from TAMs cells.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Macrófagos/enzimologia , Monoacilglicerol Lipases/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Citocinas/metabolismo , Humanos , Camundongos
5.
Artigo em Inglês | MEDLINE | ID: mdl-30978461

RESUMO

Relatively little is known about the endocannabinoid system in human neuroblastoma cell lines. In the present study, we have investigated the expression of the genes coding for the enzymes involved in the synthesis and catabolism of endocannabinoids in the SH-SY5Y cell line. The expression of MGLL, the gene coding for the 2-arachidonoylglycerol hydrolytic enzyme monoacylglycerol lipase (MAGL), was found to be 85 and 340 fold lower than the expression levels for the genes coding for alpha/beta-hydrolase domain containing 6 and 12 (ABHD6, ABHD12), which are alternative hydrolytic enzymes for this endocannabinoid. In comparison, mRNA levels of MGLL were 1.5 fold higher than ABHD6 and 2 fold lower than the levels of ABHD12 in DU-145 human prostate cells. In functional assays, the hydrolysis of the 2-arachidonoylglycerol homologue 2-oleoylglycerol by intact SH-SY5Y cells was partially inhibited by the ABHD6 inhibitor WWL70, but not by the MAGL inhibitor JZL184, whereas the reverse was true in DU-145 cells. The combination of JZL184 + WWL70 did, however produce a significantly greater inhibition of 2-OG hydrolysis than seen with WWL70 alone in the SH-SY5Y cells. The low MGLL expression in the SH-SY5Y cells was not due to epigenetic silencing, since levels were not affected by treatment with the methylation inhibitor 5-aza-2'-deoxycytidine and/or the histone acetylase inhibitor trichostatin A. The low MGLL expression in SH-SY5Y cells should be taken into account when using these cells in experiments investigating the involvement of the endocannabinoid system in models of physiological and pathological processes.


Assuntos
Regulação Neoplásica da Expressão Gênica , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Neuroblastoma/patologia , Linhagem Celular Tumoral , Decitabina/farmacologia , Endocanabinoides/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicerol/metabolismo , Humanos , Hidrólise , Ácidos Hidroxâmicos/farmacologia , RNA Mensageiro/genética
6.
Neuropharmacology ; 150: 134-144, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30914306

RESUMO

Cannabinoids exert neuroprotection in a wide array of preclinical models. A number of these studies has focused on cannabinoid CB1 receptors in striatal medium spiny neurons (MSNs) and the most characteristic MSN-degenerative disease, Huntington's disease (HD). Accruing evidence supports that astrocytes contribute to drive HD progression, and that they express CB1 receptors, degrade endocannabinoids, and modulate endocannabinergic transmission. However, the possible role of the astroglial endocannabinoid system in controlling MSN integrity remains unknown. Here, we show that JZL-184, a selective inhibitor of monoacylglycerol lipase (MGL), the key enzyme that deactivates the endocannabinoid 2-arachidonoylglycerol, prevented the mutant huntingtin-induced up-regulation of the pro-inflammatory cytokine tumor necrosis factor-α in primary mouse striatal astrocytes via CB1 receptors. To study the role of astroglial MGL in vivo, we injected stereotactically into the mouse dorsal striatum viral vectors that encode mutant or normal huntingtin under the control of the glial fibrillary acidic protein promoter. We observed that, in wild-type mice, pharmacological blockade of MGL with JZL-184 (8 mg/kg/day, i.p.) conferred neuroprotection against mutant huntingtin-induced striatal damage, as evidenced by the prevention of MSN loss, astrogliosis, and motor coordination impairment. We next found that conditional mutant mice bearing a genetic deletion of MGL selectively in astroglial cells (MGLfloxed/floxed;GFAP-Cre/+ mice) were resistant to mutant huntingtin-induced MSN loss, astrogliosis, and motor coordination impairment. Taken together, these data support that astroglial MGL controls the availability of a 2-arachidonoylglycerol pool that ensues protection of MSNs in the mouse striatum in vivo, thus providing a potential druggable target for reducing striatal neurodegeneration.


Assuntos
Astrócitos/metabolismo , Corpo Estriado/metabolismo , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Monoacilglicerol Lipases/metabolismo , Neurônios/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Benzodioxóis/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Doença de Huntington/patologia , Camundongos , Monoacilglicerol Lipases/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Neurônios/patologia , Piperidinas/farmacologia
7.
Nat Chem Biol ; 15(5): 453-462, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30911178

RESUMO

Phenotypic screening has identified small-molecule modulators of aging, but the mechanism of compound action often remains opaque due to the complexities of mapping protein targets in whole organisms. Here, we combine a library of covalent inhibitors with activity-based protein profiling to coordinately discover bioactive compounds and protein targets that extend lifespan in Caenorhabditis elegans. We identify JZL184-an inhibitor of the mammalian endocannabinoid (eCB) hydrolase monoacylglycerol lipase (MAGL or MGLL)-as a potent inducer of longevity, a result that was initially perplexing as C. elegans does not possess an MAGL ortholog. We instead identify FAAH-4 as a principal target of JZL184 and show that this enzyme, despite lacking homology with MAGL, performs the equivalent metabolic function of degrading eCB-related monoacylglycerides in C. elegans. Small-molecule phenotypic screening thus illuminates pure pharmacological connections marking convergent metabolic functions in distantly related organisms, implicating the FAAH-4/monoacylglyceride pathway as a regulator of lifespan in C. elegans.


Assuntos
Benzodioxóis/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Endocanabinoides/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Longevidade/efeitos dos fármacos , Monoacilglicerol Lipases/antagonistas & inibidores , Piperidinas/farmacologia , Animais , Benzodioxóis/química , Caenorhabditis elegans/metabolismo , Endocanabinoides/metabolismo , Inibidores Enzimáticos/química , Estrutura Molecular , Monoacilglicerol Lipases/metabolismo , Piperidinas/química
8.
Trends Pharmacol Sci ; 40(4): 267-277, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30853109

RESUMO

The endocannabinoid (eCB) signaling system modulates neurotransmission and inflammation, among other physiological functions. Its newest member, α/ß-hydrolase domain-containing 6 (ABHD6), has emerged as a promising therapeutic target to treat several devastating diseases, including epilepsy. Here, we review the molecular mechanisms that mediate and control eCB signaling and, within it, the specific role of ABHD6. We also discuss how ABHD6 controls the abundance of additional lipids and the trafficking of ionotropic receptors to plasma membranes. We finish with several unexplored questions regarding this novel enzyme. Our current understanding of the molecular mechanism and biological function of ABHD6 provides a strong foundation for the development of small-molecule therapeutics to treat devastating diseases.


Assuntos
Desenvolvimento de Medicamentos/métodos , Endocanabinoides/metabolismo , Monoacilglicerol Lipases/metabolismo , Animais , Membrana Celular/metabolismo , Epilepsia/tratamento farmacológico , Epilepsia/fisiopatologia , Humanos , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia
9.
Nat Chem Biol ; 15(2): 169-178, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643283

RESUMO

Reactive oxygen species (ROS) are transient, highly reactive intermediates or byproducts produced during oxygen metabolism. However, when innate mechanisms are unable to cope with sequestration of surplus ROS, oxidative stress results, in which excess ROS damage biomolecules. Oxidized phosphatidylserine (PS), a proapoptotic 'eat me' signal, is produced in response to elevated ROS, yet little is known regarding its chemical composition and metabolism. Here, we report a small molecule that generates ROS in different mammalian cells. We used this molecule to detect, characterize and study oxidized PS in mammalian cells. We developed a chemical-genetic screen to identify enzymes that regulate oxidized PS in mammalian cells and found that the lipase ABHD12 hydrolyzes oxidized PS. We validated these findings in different physiological settings including primary peritoneal macrophages and brains from Abhd12-/- mice under inflammatory stress, and in the process, we functionally annotated an enzyme regulating oxidized PS in vivo.


Assuntos
Monoacilglicerol Lipases/fisiologia , Fosfatidilserinas/metabolismo , Animais , Linhagem Celular , Humanos , Lipase/metabolismo , Macrófagos Peritoneais/metabolismo , Camundongos , Monoacilglicerol Lipases/metabolismo , Oxirredução , Estresse Oxidativo , Fosfatidilserinas/fisiologia , Células RAW 264.7 , Espécies Reativas de Oxigênio
10.
J Enzyme Inhib Med Chem ; 34(1): 589-596, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30696302

RESUMO

Monoacylglycerol lipase (MAGL) is an attractive therapeutic target for many pathologies, including neurodegenerative diseases, cancer as well as chronic pain and inflammatory pathologies. The identification of reversible MAGL inhibitors, devoid of the side effects associated to prolonged MAGL inactivation, is a hot topic in medicinal chemistry. In this study, a novel phenyl(piperazin-1-yl)methanone inhibitor of MAGL was identified through a virtual screening protocol based on a fingerprint-driven consensus docking (CD) approach. Molecular modeling and preliminary structure-based hit optimization studies allowed the discovery of derivative 4, which showed an efficient reversible MAGL inhibition (IC50 = 6.1 µM) and a promising antiproliferative activity on breast and ovarian cancer cell lines (IC50 of 31-72 µM), thus representing a lead for the development of new and more potent reversible MAGL inhibitors. Moreover, the obtained results confirmed the reliability of the fingerprint-driven CD approach herein developed.


Assuntos
Simulação por Computador , Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Piperazinas/química , Piperazinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Simulação de Dinâmica Molecular , Monoacilglicerol Lipases/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
11.
Mini Rev Med Chem ; 19(5): 410-423, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29962341

RESUMO

INTRODUCTION: The signalling function of 2-arachidonoylglycerol (2-AG) in endocannabinoid system is delineated by Monoacylglycerol lipase (MAGL). MAGL readdresses the lipid stores in the direction of pro-tumorigenic signalling lipids in cancer cells. Selective as well as potent MAGL inhibitors are limited in number hence their continuous development may lead to a breakthrough invention in the field of MAGL inhibitors. In succession of the above, we have synthesised 2-amino-4- methylthiazole-5-carboxylate derivatives and characterised them by collective use of IR, 1H-NMR, 13C-NMR, Mass spectral data and elemental analysis. METHODOLOGY: Thirteen compounds (3c-g, 4c, 4e, 4f and 6b-f) inhibited MAGL with IC50 value 0.037- 9.60 µM. Two compounds (3g and 4c) were found to be most potent with IC50 values 0.037 and 0.063µM, respectively. Thirty synthesised compounds were sent to NCI for anticancer screening, out of which nine compounds were selected for one dose anticancer assay. Compounds 3g (NSC:788170) and 4c (NSC:788176)were found to be the most potent during one dose anticancer screening and fulfilled the specified threshold for growth inhibition criteria of NCI and were further selected for full panel five dose assay at 10-fold dilutions of five different concentrations. CONCLUSION: Compound 3g displayed GI50 value 0.865 µM against EKVX (Non-Small Cell Lung Cancer cell line), and 1.20 µM against MDA-MB-468 (Breast Cancer cell Line), while (4c) showed GI50 value 0.34 and 0.96 µM against HOP-92 and EKVX (Non-Small Cell Lung Cancer cell line) and 1.08 µM against MDA-MB-231/ATCC(Breast Cancer cell Line). In addition, molecular docking studies of the said MAGL inhibitors have also been presented in this article.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Tiazóis/química , Tiazóis/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Ácidos Araquidônicos/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Endocanabinoides/metabolismo , Feminino , Glicerídeos/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/metabolismo , Simulação de Acoplamento Molecular , Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/metabolismo , Neoplasias/enzimologia , Neoplasias/metabolismo , Relação Estrutura-Atividade
12.
Amino Acids ; 51(2): 151-174, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30564946

RESUMO

The endocannabinoid (eCB) system is an important part of both the human central nervous system (CNS) and peripheral tissues. It is involved in the regulation of various physiological and neuronal processes and has been associated with various diseases. The eCB system is a complex network composed of receptor molecules, their cannabinoid ligands, and enzymes regulating the synthesis, release, uptake, and degradation of the signalling molecules. Although the eCB system and the molecular processes of eCB signalling have been studied extensively over the past decades, the involved molecules and underlying signalling mechanisms have not been described in full detail. An example pose the two poorly characterised eCB-degrading enzymes α/ß-hydrolase domain protein six (ABHD6) and ABHD12, which have been shown to hydrolyse 2-arachidonoyl glycerol-the main eCB in the CNS. We review the current knowledge about the eCB system and the role of ABHD6 and ABHD12 within this important signalling system and associated diseases. Homology modelling and multiple sequence alignments highlight the structural features of the studied enzymes and their similarities, as well as the structural basis of disease-related ABHD12 mutations. However, homologies within the ABHD family are very low, and even the closest homologues have widely varying substrate preferences. Detailed experimental analyses at the molecular level will be necessary to understand these important enzymes in full detail.


Assuntos
Endocanabinoides/metabolismo , Metabolismo dos Lipídeos/fisiologia , Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/metabolismo , Doenças Neurodegenerativas/enzimologia , Animais , Ácidos Araquidônicos/química , Ácidos Araquidônicos/metabolismo , Ataxia/enzimologia , Ataxia/etiologia , Catarata/enzimologia , Catarata/etiologia , Biologia Computacional , Endocanabinoides/química , Glicerídeos/química , Glicerídeos/metabolismo , Humanos , Monoacilglicerol Lipases/genética , Mutação , Polineuropatias/enzimologia , Polineuropatias/etiologia , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Retinite Pigmentosa/enzimologia , Retinite Pigmentosa/etiologia , Transdução de Sinais/fisiologia
13.
Chem Biol Drug Des ; 93(5): 787-797, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30570819

RESUMO

Lipolysis is primarily controlled by the stepwise action of hormone-sensitive lipase (HSL) and monoglyceride lipase (MGL) to release free fatty acids and glycerol. A high level of circulating free fatty acids is well-known to mediate insulin resistance. Thus, the need to discover lipase inhibitors against both enzyme systems remains urgent. Agrochemicals are tightly regulated chemicals and therefore are potential source of new medicinal agents. Accordingly, we implemented a computational workflow to search for new lipase inhibitory leads by virtually screening commercial agrochemicals against HSL and MGL employing binding pharmacophores and docking experiments. Ten agrochemicals were identified as potential lipase inhibitors, out of which quinclorac, a safe herbicide, achieved high-ranking score. Subsequent in vitro evaluation against rat epididymal lipase activity showed quinclorac to exhibit nanomolar anti-lipase IC50 . Subsequent in vivo testing showed quinclorac to significantly decrease blood glycerol levels after acute exposure (150 mg/kg) and multiple dosing (50 or 25 mg/kg) (p < 0.05).


Assuntos
Lipase/antagonistas & inibidores , Quinolinas/química , Animais , Sítios de Ligação , Glicerol/sangue , Herbicidas/química , Herbicidas/metabolismo , Lipase/metabolismo , Masculino , Simulação de Acoplamento Molecular , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Quinolinas/administração & dosagem , Quinolinas/metabolismo , Ratos , Ratos Wistar
14.
Toxicol Lett ; 302: 35-41, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30553937

RESUMO

Environmental tobacco smoke (ETS) exposure during brain development has been associated with several disorders, such as depression, anxiety, sudden infant death syndrome, and the predisposition to addiction. The endocannabinoid system plays an essential role in neuronal development. We investigated the effects of early postnatal ETS exposure on the endocannabinoid system in different brain regions. C57BL/6 J mice were exposed to ETS that was generated from 3R4F cigarettes from postnatal day 3 (P3) to P14. Receptors and enzymes of the endocannabinoid system were assessed in infancy, adolescence, and adulthood by Western blot. In the brainstem, ETS exposure decreased cannabinoid 1 (CB1) receptor, CB2 receptor, N-arachidonoyl phosphatidyl ethanol-specific phospholipase D (NAPE-PLD), and fatty acid amino hydrolase (FAAH) levels and increased in diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL) levels during infancy and decreased CB2 and FAAH levels during adulthood. In the striatum, ETS decreased in the NAPE-PLD and MAGL levels and increased FAAH levels during infancy, increased FAAH levels during adolescence, and decreased NAPE-PLD levels during adulthood. The present findings indicate that exposure to ETS during a critical period of brain development can disturb the endocannabinoid system in the brainstem and striatum, regions that are involved in the pathogenesis of sudden infant death syndrome and the susceptibility to addiction.


Assuntos
Tronco Encefálico/efeitos dos fármacos , Fumar Cigarros/efeitos adversos , Corpo Estriado/efeitos dos fármacos , Endocanabinoides/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Amidoidrolases/metabolismo , Animais , Animais Recém-Nascidos , Tronco Encefálico/crescimento & desenvolvimento , Tronco Encefálico/metabolismo , Corpo Estriado/crescimento & desenvolvimento , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Lipase Lipoproteica/metabolismo , Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases/metabolismo , Fosfolipase D/metabolismo , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/efeitos dos fármacos , Receptor CB2 de Canabinoide/metabolismo
15.
Biochem Genet ; 57(1): 35-45, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30006903

RESUMO

One of the main risk factors for the development of an autoimmune disease is to be a woman. Much attention has been given to the involvement of female hormones in their etiology and sexual bias, although the mechanisms behind this potentially strong contribution in disease susceptibility are poorly understood. ABHD6 gene was recently identified as a risk factor for system lupus erythematosus and the risk was correlated with overexpression of the gene. ABHD6 is an enzyme that degrades the 2-arachidonoylglycerol, an endocannabinoid with immunomodulatory effects. Thus its degradation could contribute to immune dysregulation and development of autoimmune reactions. Sex hormones, such as estrogens, are believed to regulate important genes in the endocannabinoid pathway. However, no study was available regarding the effect of these hormones in human immune cells. In this study, ABHD6 expression was evaluated by quantitative PCR in leukocytes from healthy male and females and in the presence of estrogen or progesterone (PG). A statistical increase in ABHD6 expression could be detected in women. In the presence of estrogen or PG, a statistical upregulation of ABHD6 was observed, and in a sex-dependent manner, as only female cells responded to stimulation. Our results suggest that female hormones can promote the overexpression of ABHD6 in immune cells. This can potentially contribute to a pro-inflammatory scenario and partially explain the association of this gene in the development of LES, a highly female-biased disease.


Assuntos
Endocanabinoides , Estrogênios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Monoacilglicerol Lipases/genética , Progesterona/farmacologia , Progestinas/farmacologia , Adulto , Células Cultivadas , Feminino , Humanos , Masculino , Monoacilglicerol Lipases/metabolismo , Fatores Sexuais
16.
Biochem Biophys Res Commun ; 506(3): 578-584, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30366666

RESUMO

Lung ischemia-reperfusion injury (LIRI) is a common and severe postoperative pathologic complication that often occurs when the oxygen supply disrupted to the lung tissue fallowed by reperfusion period, in most cases after lung transplantation and cardiopulmonary bypass. Endocannabinoids such as 2-arachidonoylglycerol (2-AG) have very important role as regulators of inflammation. Monoacylglycerol lipase (MAGL) is the main 2-AG-degrading enzyme, and the downstream metabolites of 2-AG play a role in the inflammation. Ischemia reperfusion (IR) was induced by clamping the left pulmonary hilum for 60 min, followed by 120 min of reperfusion in male C57BL/6 mice. Effects of URB602, a MAGL inhibitor, were evaluated in a preventive or therapeutic regimen (5 min before ischemia or reperfusion, respectively). Oxygenation index, wet-to-dry weight ratio and lung injury score were analyzed. Endocannabinoids including 2-AG, anandamide (AEA) and arachidonic acid (AA) levels, metabolites such as Prostaglandin I2 (PGI2), Thromboxane B2 (TXB2) and Leukotrienes B4 (LTB4) and inflammatory markers (Interleukin 6 (IL-6) andTumor necrosis factor-α (TNF-α)) in lung tissues were measured by using mass spectrometry or ELISA analyses. We found that IR increased the wet-to-dry weight ratio of lung and lung injury score and decreased oxygenation index as compared to the sham group. Moreover, treatment with URB602 in preventive or therapeutic regimen reduced the wet-to-dry weight ratio and lung injury score while increased oxygenation index when compared with the IR group, with a more improvement in the preventive regimen group. In addition, treatment with URB602 before ischemia increased 2-AG level but decreased metabolites (AA, PGI2, TXB2, LTB4) and inflammatory markers (IL-6, TNF-α). Thus, our study demonstrated that a pretreatment with URB602 significantly reduced IR-induced lung injury and inflammation. URB602 inhibited LIRI and inflammation by increasing 2-AG level and reducing downstream metabolites from AA to PGI2, TXB2 and LTB4 in lung tissues.


Assuntos
Compostos de Bifenilo/uso terapêutico , Pulmão/patologia , Monoacilglicerol Lipases/antagonistas & inibidores , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/enzimologia , Animais , Compostos de Bifenilo/farmacologia , Gasometria , Citocinas/metabolismo , Eicosanoides/metabolismo , Endocanabinoides/metabolismo , Pulmão/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia
17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(12): 1458-1468, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30251703

RESUMO

Lysophosphatidylinositols (LPI) are bioactive lipids that are implicated in several pathophysiological processes such as cell proliferation, migration and tumorigenesis and were shown to play a role in obesity and metabolic disorders. Often, these effects of LPI were due to activation of the G protein-coupled receptor GPR55. However, the role of LPI and GPR55 in inflammation and macrophage activation remains unclear. Therefore, we thought to study the effect of macrophage activation and inflammation on LPI levels and metabolism. To do so, we used J774 and BV2 cells in culture activated with lipopolysaccharides (LPS, 100 ng/mL) as well as primary mouse alveolar and peritoneal macrophages. We also quantified LPI levels in the cerebellum, lung, liver, spleen and colon of mice with a systemic inflammation induced by LPS (300 µg/kg) and in the colon of mice with acute colitis induced by dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid (TNBS) and chronic DSS-induced colitis. Our data show that LPS-induced macrophage activation leads to altered LPI levels in both the cells and culture medium. We also show that cytosolic phospholipase A2α (cPLA2α) and α/ß­hydrolase domain 6 (ABHD6) are among the enzymes implicated in LPI metabolism in J774 macrophages. Indeed, ABHD6 and cPLA2α inhibition increased 20:4-LPI levels in LPS-activated macrophages. Furthermore, incubation of LPS-activated cells with LPI decreased J774 activation in a GPR55-dependent manner. In vivo, LPI levels were altered by inflammation in the liver, spleen and colon. These alterations are tissue dependent and could highlight a potential role for LPI in inflammatory processes.


Assuntos
Colite/metabolismo , Sulfato de Dextrana/efeitos adversos , Lipopolissacarídeos/efeitos adversos , Lisofosfolipídeos/metabolismo , Macrófagos/efeitos dos fármacos , Ácido Trinitrobenzenossulfônico/efeitos adversos , Animais , Linhagem Celular , Colite/induzido quimicamente , Colo/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Fosfolipases A2 do Grupo IV/metabolismo , Fígado/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Monoacilglicerol Lipases/metabolismo , Receptores Acoplados a Proteínas-G/metabolismo , Baço/metabolismo , Distribuição Tecidual
18.
J Biol Chem ; 293(44): 16953-16963, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30237167

RESUMO

Polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract (PHARC) is a rare genetic human neurological disorder caused by null mutations to the Abhd12 gene, which encodes the integral membrane serine hydrolase enzyme ABHD12. Although the role that ABHD12 plays in PHARC is understood, the thorough biochemical characterization of ABHD12 is lacking. Here, we report the facile synthesis of mono-1-(fatty)acyl-glycerol lipids of varying chain lengths and unsaturation and use this lipid substrate library to biochemically characterize recombinant mammalian ABHD12. The substrate profiling study for ABHD12 suggested that this enzyme requires glycosylation for optimal activity and that it has a strong preference for very-long-chain lipid substrates. We further validated this substrate profile against brain membrane lysates generated from WT and ABHD12 knockout mice. Finally, using cellular organelle fractionation and immunofluorescence assays, we show that mammalian ABHD12 is enriched on the endoplasmic reticulum membrane, where most of the very-long-chain fatty acids are biosynthesized in cells. Taken together, our findings provide a biochemical explanation for why very-long-chain lipids (such as lysophosphatidylserine lipids) accumulate in the brains of ABHD12 knockout mice, which is a murine model of PHARC.


Assuntos
Ataxia/enzimologia , Catarata/enzimologia , Lipídeos/química , Monoacilglicerol Lipases/química , Polineuropatias/enzimologia , Retinite Pigmentosa/enzimologia , Animais , Ataxia/genética , Ataxia/metabolismo , Encéfalo/enzimologia , Encéfalo/metabolismo , Catarata/genética , Catarata/metabolismo , Humanos , Cinética , Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Knockout , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Polineuropatias/genética , Polineuropatias/metabolismo , Retinite Pigmentosa/genética , Retinite Pigmentosa/metabolismo , Especificidade por Substrato
19.
J Med Chem ; 61(19): 8639-8657, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30196704

RESUMO

The synthesis of potent metabolically stable endocannabinoids is challenging. Here we report a chiral arachidonoyl ethanolamide (AEA) analogue, namely, (13 S,1' R)-dimethylanandamide (AMG315, 3a), a high affinity ligand for the CB1 receptor ( Ki of 7.8 ± 1.4 nM) that behaves as a potent CB1 agonist in vitro (EC50 = 0.6 ± 0.2 nM). (13 S,1' R)-dimethylanandamide is the first potent AEA analogue with significant stability for all endocannabinoid hydrolyzing enzymes as well as the oxidative enzymes COX-2. When tested in vivo using the CFA-induced inflammatory pain model, 3a behaved as a more potent analgesic when compared to endogenous AEA or its hydrolytically stable analogue AM356. This novel analogue will serve as a very useful endocannabinoid probe.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Hiperalgesia/tratamento farmacológico , Inflamação/tratamento farmacológico , Nociceptividade/efeitos dos fármacos , Receptor CB1 de Canabinoide/fisiologia , Amidoidrolases/química , Amidoidrolases/metabolismo , Analgésicos/química , Animais , Anti-Inflamatórios/química , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Estabilidade Enzimática , Adjuvante de Freund/toxicidade , Células HEK293 , Humanos , Hiperalgesia/enzimologia , Inflamação/induzido quimicamente , Inflamação/enzimologia , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Masculino , Camundongos , Camundongos Knockout , Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/metabolismo , Ratos
20.
Eur J Med Chem ; 157: 817-836, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30144699

RESUMO

Monoacylglycerol lipase (MAGL) is the enzyme hydrolyzing the endocannabinoid 2-arachidonoylglycerol (2-AG) to free arachidonic acid and glycerol. Therefore, MAGL is implicated in many physiological processes involving the regulation of the endocannabinoid system and eicosanoid network. MAGL inhibition represents a potential therapeutic target for many diseases, including cancer. Nowadays, most MAGL inhibitors inhibit this enzyme by an irreversible mechanism of action, potentially leading to unwanted side effects from chronic treatment. Herein, we report the discovery of long-chain salicylketoxime derivatives as potent and reversible MAGL inhibitors. The compounds herein described are characterized by a good target selectivity for MAGL and by antiproliferative activities against a series of cancer cell lines. Finally, modeling studies suggest a reasonable hypothetical binding mode for this class of compounds.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Oximas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Monoacilglicerol Lipases/metabolismo , Oximas/síntese química , Oximas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA