RESUMO
Possessing dual-targeted agents toward the lysosome and cancer cells, a ternary supramolecular assembly was constructed by a morpholine-modified permethyl ß-cyclodextrin, sulfonated porphyrin, and folic acid-modified chitosan via multivalent interactions. As compared with free porphyrin, the obtained ternary supramolecular assembly showed promoted photodynamic effect and achieved dual-targeted precise imaging in cancer cells.
Assuntos
Antineoplásicos , Nanopartículas , Porfirinas , beta-Ciclodextrinas , Antineoplásicos/farmacologia , Porfirinas/farmacologia , Morfolinas/farmacologiaRESUMO
A series of mono- and bisnaphthalimides derivatives containing 3-nitro and 4-morpholine moieties were designed, synthesized, and evaluated for their in vitro anticancer activities against four cancer cell lines. Some compounds exhibited relatively good antiproliferative activity on the cell lines tested, in comparison with mitonafide and amonafide. It is noteworthy that bisnaphthalimide A6 was identified as the most potent compound in anti-proliferation against MGC-803 cells, with an IC50 lowered to 0.09 µM, a far greater potency than that of mono-naphthalimide A7, mitonafide, and amonafide. A gel electrophoresis assay revealed that DNA and Topo I were the potential targets of compounds A6 and A7. The treatment of CNE-2 cells with compounds A6 and A7 resulted in an S phase cell cycle arrest, accompanied by the upregulation of the expression levels of the antioncogene p27 and the down-regulation of the expression levels of CDK2 and cyclin E. In addition, compounds A6 and A7-induced apoptosis was further confirmed by flow cytometry, ROS generation assay, and Hoechst 33,258 staining. In particular, in vivo antitumor assay results revealed that bisnaphthalimide A6 exhibited potent anticancer efficiency in an MGC-803 xenograft tumor model, in comparison with mitonafide, and had lower toxicity than mono-naphthalimide A7. In brief, the results suggested that bisnaphthalimide derivatives containing 3-nitro and 4-morpholine moieties might serve as DNA binding agents for the development of new antitumor agents.
Assuntos
Antineoplásicos , Humanos , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Apoptose , DNA/química , Morfolinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Relação Estrutura-Atividade , Estrutura MolecularRESUMO
Cellular senescence leads to the depletion of myogenic progenitors and decreased regenerative capacity. We show that the small molecule 2,6-disubstituted purine, reversine, can improve some well-known hallmarks of cellular aging in senescent myoblast cells. Reversine reactivated autophagy and insulin signaling pathway via upregulation of Adenosine Monophosphate-activated protein kinase (AMPK) and Akt2, restoring insulin sensitivity and glucose uptake in senescent cells. Reversine also restored the loss of connectivity of glycolysis to the TCA cycle, thus restoring dysfunctional mitochondria and the impaired myogenic differentiation potential of senescent myoblasts. Altogether, our data suggest that cellular senescence can be reversed by treatment with a single small molecule without employing genetic reprogramming technologies.
Assuntos
Autofagia , Senescência Celular , Morfolinas , Desenvolvimento Muscular , Mioblastos Esqueléticos , Inibidores de Proteínas Quinases , Purinas , Senescência Celular/efeitos dos fármacos , Morfolinas/farmacologia , Purinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Humanos , Mioblastos Esqueléticos/efeitos dos fármacos , Mioblastos Esqueléticos/fisiologia , Autofagia/efeitos dos fármacos , Insulina/metabolismo , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Resistência à Insulina , Células Cultivadas , Desenvolvimento Muscular/efeitos dos fármacosRESUMO
Estrogens play a pivotal role in the development of estrogen-dependent breast cancer and other hormone-dependent disorders. A common strategy to overcome the pathological effects of estrogens is the use of aromatase inhibitors (AIs), which bind to the enzyme and prevent the union with the natural substrate, decreasing the amount of estrogens produced. Several AIs have been developed, including inhibitors with a steroidal backbone and a nitrogen heterocycle in their structure. Encouraged by the notable results presented by current and clinical steroidal drugs, herein we present the synthesis of a steroidal spiro morpholinone derivative as a plausible aromatase inhibitor. The morpholinone derivative was synthesized over a six-step methodology starting from estrone. The title compound and its hydroxychloroacetamide derivative precursor were evaluated for their antiproliferative profile against estrogen-dependent and independent solid tumor cell lines: A549, HBL-100, HeLa, SW1573, T-47D and WiDr. Both compounds exhibited a potent antiproliferative activity in the micromolar range against the six cancer cell lines, with the hydroxychloroacetamide derivative precursor being a more potent inhibitor (GI50 = 0.25-2.4 µM) than the morpholinone derivative (GI50 = 2.0-11 µM). Furthermore, both compounds showed, in almost all cases, better GI50 values than the steroidal anticancer drugs abiraterone and galeterone. Docking simulations of the derivatives were performed in order to explain the experimental biological activity. The results showed interactions with the iron heme (derivative 3) and important residues of the steroidal binding-site (Met374) for the inhibition of human aromatase. A correlation was found between in vitro assays and the score obtained from the molecular docking study.
Assuntos
Antineoplásicos , Neoplasias da Mama , Feminino , Humanos , Antineoplásicos/química , Inibidores da Aromatase/química , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Estrogênios/farmacologia , Estrona/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Morfolinas/síntese química , Morfolinas/farmacologiaRESUMO
Upregulation of mechanistic target of rapamycin (mTOR) signaling drives various types of cancers and neurological diseases. Rapamycin and its analogues (rapalogs) are first generation mTOR inhibitors, and selectively block mTOR complex 1 (TORC1) by an allosteric mechanism. In contrast, second generation ATP-binding site inhibitors of mTOR kinase (TORKi) target both TORC1 and TORC2. Here, we explore 3,6-dihydro-2H-pyran (DHP) and tetrahydro-2H-pyran (THP) as isosteres of the morpholine moiety to unlock a novel chemical space for TORKi generation. A library of DHP- and THP-substituted triazines was prepared, and molecular modelling provided a rational for a structure activity relationship study. Finally, compound 11b [5-(4-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-6-(tetrahydro-2H-pyran-4-yl)-1,3,5-triazin-2-yl)-4-(difluoromethyl)pyridin-2-amine] was selected due its potency and selectivity for mTOR kinase over the structurally related class I phosphoinositide 3-kinases (PI3Ks) isoforms. 11b displayed high metabolic stability towards CYP1A1 degradation, which is of advantage in drug development. After oral administration to male Sprague Dawley rats, 11b reached high concentrations both in plasma and brain, revealing an excellent oral bioavailability. In a metabolic stability assay using human hepatocytes, 11b was more stable than PQR620, the first-in-class brain penetrant TORKi. Compound 11b also displayed dose-dependent anti-proliferative activity in splenic marginal zone lymphoma (SMZL) cell lines as single agent and when combined with BCL2 inhibition (venetoclax). Our results identify the THP-substituted triazine core as a novel scaffold for the development of metabolically stable TORKi for the treatment of chronic diseases and cancers driven by mTOR deregulation and requiring drug distribution also to the central nervous system.
Assuntos
Neoplasias , Serina-Treonina Quinases TOR , Ratos , Animais , Masculino , Humanos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Morfolinas/farmacologia , Morfolinas/química , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Neoplasias/tratamento farmacológico , Piranos/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
Macrophages, a versatile subset of immune cells, are essential for successful bone repair. Hydrogen sulfide (H2S) is a gasotransmitter associated with tissue development and repair. Emerging evidence demonstrates that H2S is involved in bone formation under physiology condition and bone regeneration under pathology condition. However, whether hydrogen sulfide mediates osteogenesis by influencing macrophages is unknown. Here, we aimed to investigate the effects of hydrogen sulfide on macrophage polarization and the subsequent impact on bone regeneration. In the present study, we found that the H2S-donor GYY4137 stimulated M0/M1 macrophages to express high level of CD-206 and IL-10 but decreased the levels of i-NOS and TNF-α in M1 macrophages. Furthermore, coculture of GYY4137-treated M0 macrophages with pro-osteoblastic MC3T3-E1 cells significantly increased the viability of the MC3T3-E1 cells. Importantly, the formation of mineralized particles in MC3T3-E1 cells was significantly promoted following coculture with IL-4-treated and GYY4137-treated M0 macrophages. Collectively, our study demonstrated that hydrogen sulfide increased macrophages M2 polarization and subsequently promoted bone regeneration.
Assuntos
Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/farmacologia , Osteogênese , Morfolinas/farmacologia , MacrófagosRESUMO
A novel series of metal(II) complexes (1-5) [MII(L)2]{Where M = Cu (1), Co (2), Mn (3), Ni (4) and Zn (5)} constructed from 2-(4-morpholinobenzylideneamino)phenol Schiff base ligand (HL) in a 1:2 M ratio and the spectral and analytical results put forward square planar geometry. Spectro-electrochemical, hydrodynamic, gel electrophoresis, and DNA binding/cleavage results for all the compounds demonstrate that complex (1) had excellent DNA binding/cleavage properties compared to other compounds. The observation also suggests that test compounds could intercalate with DNA, and the biothermodynamic property more strongly supports the stabilizing of the double helix DNA with the complexes. BSA binding constant results show that complex (1) exposes the best binding property via a static mode, which is further confirmed by FRET calculations. The DFT calculations and docking results for all compounds towards DNA, BSA and SARS-CoV-19 main protease (3CLPro), reveal the binding energies were in the range of -7.8 to -9.4, -6.6 to -10.2 and - 6.1 - -8.2 kcal/mol for all test compounds respectively. In this case, complexes showed favorable binding energies compared to free ligand, which stimulates further studies aimed at validating the predicted activity as well as contributing to tackling the current and future viral pandemics. The in-vitro antioxidant, antimicrobial, and anticancer results for all compounds revealed that copper complex (1) has better activity compared to others. This might result in an effective anticancer drug for future research, which is especially promising since the observed experimental results for all cases were in close agreement with the theoretical calculations.
Assuntos
Anti-Infecciosos , Antineoplásicos , Complexos de Coordenação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Anti-Infecciosos/química , Antineoplásicos/química , Antioxidantes/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , DNA/química , Clivagem do DNA , Ligantes , Metais/química , Simulação de Acoplamento Molecular , Morfolinas/farmacologia , Peptídeo Hidrolases/metabolismo , Fenóis , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Bases de Schiff/químicaRESUMO
In this study, a novel class of thieno [2,3-d] pyrimidine derivatives containing resorcinol and morpholine fragments as Hsp90/mTOR dual inhibitors was designed, synthesized, and evaluated. In vitro anti-tumor assay results: the obtained compounds demonstrated effectiveness in suppressing the enzymatic activities of the Hsp90 and mTOR and inhibiting the proliferation of J82, T24, and SW780 cancer cell lines. Among these dual inhibitors, the most potent compound 17o, confirmed remarkable inhibitory activities on Hsp90, mTOR, and SW780 cell. Furthermore, the molecular dynamics simulation and a panel of mechanism studies revealed that inhibitor 17o suppressed the proliferation of SW780 cells through the over-activation of the PI3K/AKT/mTOR pathway regulated by mTOR inhibition and apoptosis regulated by the mitochondrial pathway. In subcutaneous J82 xenograft models, the compound 17o also presented considerable in vivo anti-tumor activity. Therefore, our investigations highlight that a new-found dual Hsp90/mTOR inhibitor by rational drug design strategies could be a promising lead compound for targeted bladder cancer therapy and deserves further studies.
Assuntos
Sirolimo , Neoplasias da Bexiga Urinária , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Choque Térmico HSP90 , Humanos , Inibidores de MTOR , Morfolinas/farmacologia , Isótopos de Oxigênio , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Resorcinóis/farmacologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Neoplasias da Bexiga Urinária/tratamento farmacológicoRESUMO
Renin is the rate-limiting enzyme in the renin-angiotensin-aldosterone system (RAAS) which regulates blood pressure and renal function and hence is an attractive target for the treatment of hypertension and cardiovascular/renal diseases. However, the development of direct renin inhibitors (DRIs) with favorable oral bioavailability has been a longstanding challenge for many years. This problem was thought to be because most of the reported DRIs were peptide-like structures or nonpeptide-like structures with a molecular weight (MW) of > 600. Therefore, we tried to find nonpeptidomimetic DRIs with a MW of < 500 and discovered the promising 2-carbamoyl morpholine derivative 4. In our efforts to improve the pharmacokinetic profile of 4 without a significant increase in the MW, we discovered compound 18 (SPH3127), which demonstrated higher bioavailability and a more potent antihypertensive effect in preclinical models than aliskiren and has completed a phase II clinical trial for essential hypertension.
Assuntos
Hipertensão , Renina , Amidas/farmacologia , Amidas/uso terapêutico , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Fumaratos/farmacologia , Fumaratos/uso terapêutico , Humanos , Hipertensão/tratamento farmacológico , Morfolinas/farmacologia , Renina/farmacologia , Renina/uso terapêutico , Sistema Renina-AngiotensinaRESUMO
BMS-986120 is a novel first-in-class oral protease-activated receptor 4 (PAR4) antagonist exhibiting robust antithrombotic activity that has shown low bleeding risk in monkeys. We sought to assess pharmacokinetics, pharmacodynamics, and tolerability of BMS-986120 in healthy participants and platelet responses to BMS-986120 in participants carrying PAR4 A120T variants. Phase I, randomized, double-blind, placebo-controlled single-ascending-dose (SAD; N = 56) and multiple-ascending-dose (MAD; N = 32) studies were conducted. Exposure was approximately dose-proportional: maximum concentrations 27.3 and 1536 ng/mL, areas under the curve (AUC) to infinity of 164 and 15,603 h*ng/mL, and half-lives of 44.7 and 84.1 hours for 3.0 and 180 mg, respectively. The accumulation index suggested an ~2-fold AUC increase at steady state. Single doses of 75 and 180 mg BMS-986120 produced ≥80% inhibition of 12.5 µM PAR4 agonist peptide (AP)-induced platelet aggregation through at least 24 hours postdose, and doses ≥10 mg for ~7 days inhibited aggregation completely through 24 hours. No differences in PAR4-mediated platelet response were seen between AA120 versus TT120 PAR4 variants. In cells expressing A120 or T120 PAR4 proteins, no differences in half-maximal effective concentration in receptor activation by PAR4-AP were observed. BMS-986120 was well tolerated with dose-proportional pharmacokinetics and concentration-dependent pharmacodynamics in healthy participants over a wide dose range.ClinicalTrials.gov ID: NCT02208882.
Assuntos
Agregação Plaquetária , Receptores de Trombina , Administração Oral , Benzofuranos , Relação Dose-Resposta a Droga , Método Duplo-Cego , Humanos , Imidazóis , Morfolinas/farmacologia , Receptores de Trombina/genética , TiazóisRESUMO
Activation of the rostral ventrolateral medulla (RVLM) cannabinoid receptor-1 (CB1R) causes neuronal nitric oxide synthase (nNOS)-dependent increases in sympathetic activity, blood pressure (BP) and heart rate (HR) in male rats. However, it remains unknown if the CB1R-mediated neurochemical and cardiovascular responses are influenced by the ovarian sex hormones, particularly estrogen (E2). Therefore, we studied the effects of intra-RVLM CB1R activation (WIN 55,212-2) on BP and HR in conscious female rats under the following hormonal states: (1) highest E2 level (proestrus sham-operated, SO); (2) E2-deprivation (ovariectomized, OVX); (3) OVX with E2 replacement (OVXE2). Intra-RVLM WIN55,212-2 elicited dose (100-400 pmol) dependent pressor and tachycardic responses, in OVX rats, which replicated the reported responses in male rats. However, in SO and OVXE2 rats, the CB1R-mediated pressor response was attenuated and the tachycardic response reverted to bradycardic response. The neurochemical findings suggested a key role for the upregulated RVLM sympathoexcitatory molecules phosphorated protein kinase B, phosphorated nNOS and reactive oxygen species in the exaggerated CB1R-mediated BP and HR responses in OVX rats, and an E2-dependent dampening of these responses. The intra-RVLM WIN55212-2-evoked cardiovascular and neurochemical responses were CB1R-mediated because they were attenuated by prior CB1R blockade (AM251). Our findings suggest that attenuation of RVLM neuroexcitation and oxidative stress underlies the protection conferred by E2, in female rats, against the CB1R-mediated adverse cardiovascular effects.
Assuntos
Estrogênios , Bulbo , Receptor CB1 de Canabinoide , Vasoconstritores , Animais , Benzoxazinas/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Estrogênios/metabolismo , Estrogênios/farmacologia , Feminino , Frequência Cardíaca/efeitos dos fármacos , Masculino , Bulbo/efeitos dos fármacos , Bulbo/metabolismo , Morfolinas/farmacologia , Naftalenos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/metabolismo , Vasoconstritores/farmacologiaRESUMO
Pharmacological inhibition of adenosine kinase (ADK), the major route of myocardial adenosine metabolism, can elicit acute cardioprotection against ischemia-reperfusion (IR) by increasing adenosine signaling. Here, we identified a novel, extended effect of the ADK inhibitor, ABT-702, on cardiac ADK protein longevity and investigated its impact on sustained adenosinergic cardioprotection. We found that ABT-702 treatment significantly reduced cardiac ADK protein content in mice 24-72 h after administration (IP or oral). ABT-702 did not alter ADK mRNA levels, but strongly diminished (ADK-L) isoform protein content through a proteasome-dependent mechanism. Langendorff perfusion experiments revealed that hearts from ABT-702-treated mice maintain higher adenosine release long after ABT-702 tissue elimination, accompanied by increased basal coronary flow (CF) and robust tolerance to IR. Sustained cardioprotection by ABT-702 did not involve increased nitric oxide synthase expression, but was completely dependent upon increased adenosine release in the delayed phase (24 h), as indicated by the loss of cardioprotection and CF increase upon perfusion of adenosine deaminase or adenosine receptor antagonist, 8-phenyltheophylline. Importantly, blocking adenosine receptor activity with theophylline during ABT-702 administration prevented ADK degradation, preserved late cardiac ADK activity, diminished CF increase and abolished delayed cardioprotection, indicating that early adenosine receptor signaling induces late ADK degradation to elicit sustained adenosine release. Together, these results indicate that ABT-702 induces a distinct form of delayed cardioprotection mediated by adenosine receptor-dependent, proteasomal degradation of cardiac ADK and enhanced adenosine signaling in the late phase. These findings suggest ADK protein stability may be pharmacologically targeted to achieve sustained adenosinergic cardioprotection.
Assuntos
Adenosina Quinase , Morfolinas , Pirimidinas , Adenosina Quinase/antagonistas & inibidores , Adenosina Quinase/metabolismo , Animais , Cardiotônicos/farmacologia , Coração/diagnóstico por imagem , Camundongos , Morfolinas/farmacologia , Miocárdio/enzimologia , Proteólise/efeitos dos fármacos , Pirimidinas/farmacologia , Receptores Purinérgicos P1/metabolismoRESUMO
The ataxia telangiectasia and rad3-related-checkpoint kinase 1 (ATR-CHK1) pathway is involved in DNA damage responses in many cancer cells. ATR inhibitors have been used in clinical trials in combination with radiation or chemotherapeutics; however, their effects against bladder cancer remain unclear. Here, the efficacy of combining gemcitabine with the novel ATR inhibitor AZD6738 was investigated in vitro in three bladder cancer cell lines (J82, T24, and UM-UC-3 cells). The effects of gemcitabine and AZD6738 on cell viability, clonogenicity, cell cycle, and apoptosis were examined. The combined use of gemcitabine and AZD6738 inhibited the viability and colony formation of bladder cancer cells compared to either treatment alone. Gemcitabine (5 nM) and AZD6738 (1 µM) inhibited cell cycle progression, causing cell accumulation in the S phase. Moreover, combined treatment enhanced cleaved poly[ADP-ribose]-polymerase expression alongside the number of annexin V-positive cells, indicating apoptosis induction. Mechanistic investigations showed that AZD6738 treatment inhibited the repair of gemcitabine-induced double-strand breaks by interfering with CHK1. Combining AZD6738 with gemcitabine could therefore be useful for bladder cancer therapy.
Assuntos
Antineoplásicos , Protocolos de Quimioterapia Combinada Antineoplásica , Proteínas Mutadas de Ataxia Telangiectasia , Quinase 1 do Ponto de Checagem , Desoxicitidina , Neoplasias da Bexiga Urinária , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Sinergismo Farmacológico , Humanos , Indóis/farmacologia , Morfolinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Sulfóxidos/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , GencitabinaRESUMO
Patients with COVID-19 present with a wide variety of clinical manifestations. Thromboembolic events constitute a significant cause of morbidity and mortality in patients infected with SARS-CoV-2. Severe COVID-19 has been associated with hyperinflammation and pre-existing cardiovascular disease. Platelets are important mediators and sensors of inflammation and are directly affected by cardiovascular stressors. In this report, we found that platelets from severely ill, hospitalized COVID-19 patients exhibited higher basal levels of activation measured by P-selectin surface expression and had poor functional reserve upon in vitro stimulation. To investigate this question in more detail, we developed an assay to assess the capacity of plasma from COVID-19 patients to activate platelets from healthy donors. Platelet activation was a common feature of plasma from COVID-19 patients and correlated with key measures of clinical outcome including kidney and liver injury, and APACHEIII scores. Further, we identified ferritin as a pivotal clinical marker associated with platelet hyperactivation. The COVID-19 plasma-mediated effect on control platelets was highest for patients that subsequently developed inpatient thrombotic events. Proteomic analysis of plasma from COVID-19 patients identified key mediators of inflammation and cardiovascular disease that positively correlated with in vitro platelet activation. Mechanistically, blocking the signaling of the FcγRIIa-Syk and C5a-C5aR pathways on platelets, using antibody-mediated neutralization, IgG depletion or the Syk inhibitor fostamatinib, reversed this hyperactivity driven by COVID-19 plasma and prevented platelet aggregation in endothelial microfluidic chamber conditions. These data identified these potentially actionable pathways as central for platelet activation and/or vascular complications and clinical outcomes in COVID-19 patients. In conclusion, we reveal a key role of platelet-mediated immunothrombosis in COVID-19 and identify distinct, clinically relevant, targetable signaling pathways that mediate this effect.
Assuntos
Plaquetas/imunologia , COVID-19/imunologia , Complemento C5a/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Receptores de IgG/metabolismo , SARS-CoV-2/fisiologia , Tromboembolia/imunologia , Adulto , Aminopiridinas/farmacologia , Células Cultivadas , Feminino , Hospitalização , Humanos , Masculino , Morfolinas/farmacologia , Ativação Plaquetária , Pirimidinas/farmacologia , Índice de Gravidade de Doença , Transdução de Sinais , Quinase Syk/antagonistas & inibidoresRESUMO
To improve the potency of Heptamethine cyanines (Hcyanines) in cancer research, we designed and synthesized two novel Hcyanines based theranostic probes, IR794-Morph and IR794-Morph-Mpip, to enhance cancer cell internalization and targeting. In acidic conditions that resemble to tumour environment, both IR794 derivatives exhibited broad NIR absorption band (704â794 nm) and fluorescence emission (798â828 nm) that is suitable for deep seated tumour imaging. Moreover, in vitro study revealed that IR794-Morph-Mpip exhibited better cancer targetability towards various cancer cell lines under physiological and slightly acidic conditions compared to normal cells. IR794-Morph-Mpip was fast internalized into the cancer cells within the first 5 min and mostly localized in lysosomes and mitochondria. In addition, the internalized signal was brighter when the cells were in the hypoxic environment. Furthermore, cellular uptake mechanism of both IR794 dyes, investigated via flow cytometry, revealed that endocytosis through OATPs receptors and clathrin-mediated endocytosis were the main routes. Moreover, IR794-Morph-Mpip, displayed anti-cancer activity towards all tested cancer cell types with IC50 below 7 µM (at 6 h incubation), which is approximately three times lower than that of the normal cells. Therefore, increasing protonated cites in tumour environment of Hcyanines together with incorporating morpholine in the molecule can enhance structure-inherent targeting of these dyes.
Assuntos
Neoplasias , Quinolinas , Fluorescência , Corantes Fluorescentes/química , Humanos , Morfolinas/farmacologiaRESUMO
BACKGROUND: Iberdomide, a cereblon modulator promoting degradation of the transcription factors Ikaros and Aiolos, which affect leukocyte development and autoimmunity, is being evaluated for the treatment of systemic lupus erythematosus (SLE). METHODS: In this phase 2 trial, we randomly assigned patients in a 2:2:1:2 ratio to receive oral iberdomide (at a dose of 0.45, 0.30, or 0.15 mg) or placebo once daily for 24 weeks, in addition to standard medications. The primary end point at week 24 was a response on the SLE Responder Index (SRI-4), which was defined as a reduction of at least 4 points in the Systemic Lupus Erythematosus Disease Activity Index 2000 score (a 24-item weighted score of lupus activity that ranges from 0 to 105, with higher scores indicating greater disease activity), no new disease activity as measured on the British Isles Lupus Assessment Group 2004 index, and no increase of 0.3 points or more in the Physician's Global Assessment score (on a visual-analogue scale ranging from 0 [no disease activity] to 3 [maximal disease]). RESULTS: A total of 288 patients received the assigned intervention: 81 received iberdomide at a dose of 0.45 mg, 82 received iberdomide at a dose of 0.30 mg, 42 received iberdomide at a dose of 0.15 mg, and 83 received placebo. At week 24, the percentages of patients with an SRI-4 response were 54% in the iberdomide 0.45-mg group, 40% in the iberdomide 0.30-mg group, 48% in the iberdomide 0.15-mg group, and 35% in the placebo group (adjusted difference between the iberdomide 0.45-mg group and the placebo group, 19.4 percentage points; 95% confidence interval, 4.1 to 33.4; P = 0.01), with no significant differences between the groups that received the lower doses of iberdomide and the group that received placebo. Iberdomide-associated adverse events included urinary tract and upper respiratory tract infections and neutropenia. CONCLUSIONS: In this 24-week, phase 2 trial involving patients with SLE, iberdomide at a dose of 0.45 mg resulted in a higher percentage of patients with an SRI-4 response than did placebo. Data from larger, longer trials are needed to determine the efficacy and safety of iberdomide in SLE. (Funded by Bristol Myers Squibb; ClinicalTrials.gov number, NCT03161483; EudraCT number, 2016-004574-17.).
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/agonistas , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Morfolinas/uso terapêutico , Ftalimidas/uso terapêutico , Piperidonas/uso terapêutico , Adulto , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Humanos , Fator de Transcrição Ikaros/metabolismo , Lúpus Eritematoso Sistêmico/etnologia , Masculino , Pessoa de Meia-Idade , Morfolinas/administração & dosagem , Morfolinas/farmacologia , Ftalimidas/administração & dosagem , Ftalimidas/farmacologia , Piperidonas/administração & dosagem , Piperidonas/farmacologia , Índice de Gravidade de Doença , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Rivaroxaban, a direct factor Xa inhibitor, is widely used for stroke prevention in patients with non-valvular atrial fibrillation (NVAF). The aim of this study was to conduct a population pharmacokinetic-pharmacodynamic (PK-PD) analysis of rivaroxaban in Chinese patients with NVAF to assess ethnic differences and provide model-based precision dosing. A total of 256 rivaroxaban plasma concentrations and 244 prothrombin time (PT) measurements were obtained from 195 Chinese NVAF patients from a prospective clinical trial. The population PK-PD model was developed using nonlinear mixed effects modeling (NONMEM) software. The PK of rivaroxaban was adequately described using a one-compartment model with first-order adsorption and elimination. Estimated glomerular filtration rate (eGFR) was identified as a major covariate for apparent clearance. No single nucleotide polymorphism was identified as a significant covariate. PT exhibited a linear relationship with rivaroxaban concentration. Total bilirubin (TBIL) and eGFR were identified as significant covariates for baseline PT. According to the Monte Carlo simulation, 15 mg for Chinese patients with eGFR ≥50 mL/min and normal liver function yielded an exposure comparable to 20 mg for Caucasian patients. Patients with moderately impaired renal function may require a lower dose of rivaroxaban to avoid overexposure. Moreover, there was an approximate 26% increase in PT levels in patients with TBIL of 34 µmol/L and eGFR of 30 mL/min, which could increase the risk of major bleeding. The established population PK-PD model could inform individualized dosing for Chinese NVAF patients who are administered rivaroxaban.
Assuntos
Fibrilação Atrial , Acidente Vascular Cerebral , Anticoagulantes , Fibrilação Atrial/tratamento farmacológico , Bilirrubina , China , Inibidores do Fator Xa/efeitos adversos , Inibidores do Fator Xa/uso terapêutico , Humanos , Morfolinas/farmacologia , Nucleotídeos , Estudos Prospectivos , Rivaroxabana/farmacologia , Rivaroxabana/uso terapêutico , Acidente Vascular Cerebral/prevenção & controle , Tiofenos/farmacologiaRESUMO
The synthetic cannabinoid WIN55,212-2 (WIN) is widely used as a pharmacological tool to study the biologic activity of cannabinoid receptors. In contrast to many other cannabinoid agonists, however, WIN also causes broad effects outside of neurons, such as reducing inflammatory responses, causing cell cycle arrest, and reducing general protein expression. How exactly WIN causes these broad effects is not known. Here we show that WIN partially disrupts the Golgi apparatus at nanomolar concentrations and fully disperses the Golgi apparatus in neuronal and non-neuronal cells at micromolar concentrations. WIN55,212-3, the enantiomer of WIN; JWH-018, a related alkylindole; or 2-arachidonoylglycerol, an endocannabinoid, did not cause Golgi disruption, suggesting that the effect was specific to the chirality of WIN. WIN treatment also perturbed the microtubule network. Importantly, WIN disrupted the Golgi in primary cortical neurons derived from mice where cannabinoid receptor-1 (CB1) was genetically knocked out, indicating that the effects were independent of CB1 signaling. The Golgi dispersion could not be explained by WIN's action on peroxisome proliferator-activated receptors. Our results show that WIN can disrupt the Golgi apparatus independent of CB1 in cultured cells. These effects could contribute to the unique physiologic effects that WIN exhibits in neuronal behavior, as well as its role as an antiproliferative and anti-inflammatory agent. SIGNIFICANCE STATEMENT: The synthetic cannabinoid WIN55,212-2 (WIN), widely used to investigate the cannabinoid system, also shows unique broader effects at cellular and organismal levels compared to endogenous cannabinoids. Our study shows that WIN can disrupt the Golgi apparatus and the microtubule network in multiple cell types, independent of cannabinoid receptors. These results could explain how WIN reduces surface levels of proteins and contributes to the unique physiological effects observed with WIN.
Assuntos
Benzoxazinas , Canabinoides , Animais , Benzoxazinas/farmacologia , Canabinoides/farmacologia , Complexo de Golgi , Camundongos , Morfolinas/farmacologia , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide , Receptores de CanabinoidesRESUMO
BACKGROUND: Infections in neonates with herpes simplex virus 1 (HSV-1) following circumcision due to Metzitzah Be'Peh (MBP) performed by a Mohel occur each year in small numbers. One solution to this problem is the use of a mucus extractor device instead of MBP, which has been authorized by some rabbis. Yet, using a mucus extractor remains controversial among ultra-Orthodox Jews; thus, creating a need for additional solutions. OBJECTIVES: To seek to reduce HSV-1 infection of neonates due to MBP. METHODS: We tested several oral rinse solutions for their ability to destroy virus infectivity following incubation for 30 seconds and using plaque reduction assays. RESULTS: Corsodyl, Decapinol, and Listerine® all destroyed plaques formation of spiked virus, while Gengigel and Tantum Verde were found to be less effective. We focused specifically on Listerine® due to its efficacy in eliminating contagious HSV-1 from saliva after a 30-second oral rinse. Five different products of Listerine® reduced the infectivity of a spiked virus by more than 4 orders of magnitude in 30 seconds. We also showed that Listerine (up to 7% v/v) can stay in the mouth but did not harm living cells and therefore will not cause any damage to the injured tissue. CONCLUSIONS: Significant reduction in cases of infection with HSV-1 due to MBP can be achieved if Mohalim consistently adopt the practice of careful mouth washing with Listerine® just before performing MBP.
Assuntos
Anti-Infecciosos Locais/farmacologia , Herpes Simples/prevenção & controle , Herpesvirus Humano 1/efeitos dos fármacos , Antissépticos Bucais/farmacologia , Circuncisão Masculina , Clero , Combinação de Medicamentos , Humanos , Recém-Nascido , Judaísmo , Masculino , Morfolinas/administração & dosagem , Morfolinas/farmacologia , Salicilatos/administração & dosagem , Salicilatos/farmacologia , Terpenos/administração & dosagem , Terpenos/farmacologiaRESUMO
Insulin-like growth factor 1 (IGF-1) not only regulates neuronal function and development but also is neuroprotective in the setting of acute ischemic stroke. G-protein-coupled receptor 17 (GPR17) expression in brain tissue serves as an indicator of brain damage. As whether IGF-1 regulates GPR17 expression remains unknown, the aim of this study is to investigate how IGF-1 regulates GPR17 expression in vitro. Human neuroblastoma SK-N-SH cells were used. Lentivirus-mediated short hairpin RNA (shRNA) was constructed to mediate the silencing of FoxO1, while adenoviral vectors were used for its overexpression. Verification of the relevant signaling cascade was performed using a FoxO1 inhibitor (AS1842856), a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), and a GPR17 antagonist (cangrelor). Cell proliferation was analyzed using EdU staining; immunofluorescence staining was used to detect the expression and subcellular localization of FoxO1. Chromatin immunoprecipitation was used to analyze the binding of FoxO1 to the GPR17 promoter in SK-N-SH cells. The expression of FoxO1, GPR17, and protein kinase B (also known as Akt) mRNA and protein as well as the levels of FoxO1 and Akt phosphorylation were investigated in this study. IGF-1 was found to downregulate FoxO1 and GPR17 expression in SK-N-SH cells while promoting cell viability and proliferation. Inhibition of FoxO1 and antagonism of GPR17 were found to play a role similar to that of IGF-1. Silencing of FoxO1 by lentivirus-mediated shRNA resulted in the downregulation of FoxO1 and GPR17 expression. The overexpression of FoxO1 via adenoviral vectors resulted in the upregulation of FoxO1 and GPR17 expression. Blocking of PI3K signaling by LY294002 inhibited the effect of IGF-1 on GPR17 suppression. Results from chromatin immunoprecipitation revealed that IGF-1 promotes FoxO1 nuclear export and reduces FoxO1 binding to the GPR17 promoter in SK-N-SH cells. Here, we conclude that IGF-1 enhances cell viability and proliferation in SK-N-SH cells via the promotion of FoxO1 nuclear export and reduction of FoxO1 binding to the GPR17 promoter via PI3K/Akt signaling. Our findings suggest that the enhancement of IGF-1 signaling to antagonize GPR17 serves as a potential therapeutic strategy in the management of acute ischemic stroke.