Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 208: 111582, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396105

RESUMO

In recent years, heavy metal pollution has caused immeasurable harm to the environment. As an emerging technology, phytoremediation technology has gained a place in the treatment of heavy metal pollution with its unique advantages. This study analyzes the toxic effects of mulberry (Morus alba) seeds, seedling growth and silkworm under heavy metal stress of lead (Pb) and cadmium (Cd), and explore the accumulation and migration of Pb and Cd in the soil-mulberry tree-silkworm system. The main results were as follows: (1) Seed germination and potted seedling experiments were conducted under heavy metal Pb and Cd stresses, and it was found that Pb and Cd had inhibitory effects on mulberry seed germination, growth and photosynthesis of mulberry seedlings, and as the concentration of heavy metals increased, the stronger the inhibitory effect. Moreover, Pb and Cd have a synergistic effect under compound stress. (2) The accumulation and transfer rules of Pb and Cd ions in mulberry were different. The content of Pb in mulberry was root > leaf > stem and the content of Cd was root > stem > leaf. The combined stress promoted the transfer of Pb and Cd from the underground part to the aerial portion of mulberry. (3) The silkworm feeds on mulberry leaves contaminated with heavy metals in this experiment and found that: with the increase of silkworm feeding, the heavy metal content in the silkworm body increased significantly, but the content remained in the silkworm body was less, most of it was excreted with silkworm excrement. Combined stress has no significant effect on the detoxification mechanism of silkworm. It is indispensable to think of the synergistic effect of heavy metals on plants germination when seeds are used for phytoremediation.


Assuntos
Bombyx/fisiologia , Cádmio/toxicidade , Cadeia Alimentar , Chumbo/toxicidade , Morus/fisiologia , Poluentes do Solo/toxicidade , Solo/química , Animais , Biodegradação Ambiental , Cádmio/análise , Cádmio/metabolismo , Frutas/química , Metais Pesados/análise , Fotossíntese , Folhas de Planta/química , Plântula/química , Poluentes do Solo/análise , Poluentes do Solo/metabolismo
2.
Environ Sci Pollut Res Int ; 27(4): 4294-4308, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31832962

RESUMO

Woody plants have considerable application potential in the phytoremediation schemes, owing to their long-lived large biomass and prosperous root systems in heavy metal(loid)-contaminated soil. Under greenhouse conditions, the physiological response characteristics and phytoremediation possibility of Morus alba L. and its associated improvement of the bacterial and arbuscular mycorrhizal fungal (AMF) diversities in heavy metal(loid) co-contaminated soils were investigated. The results showed that the cultivated M. alba L. plant exhibited significant tolerance against the heavy metal(loid)s in co-contaminated soil and that the microbial diversities were improved notably. The contents of malondialdehyde (MDA) in M. alba L. leaves decreased with cultivation from 90 to 270 days, while the superoxide dismutase, peroxidase and catalase activities were maintained at normal levels to eliminate the production of lipid peroxides. The chemical compositions (e.g. amino acids, carbohydrates and proteins) in the root of M. alba L. fluctuated slightly throughout the cultivation period. Meanwhile, Cd, Pb and Zn were majorly concentrated in the M. alba L. roots, and the maximum contents were 23.4, 7.40 and 615.5 mg/kg, respectively. According to the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis results, the influence of M. alba L. on the rhizosphere AMF community was greater than that on the bacteria community. Meanwhile, the bacterial and AMF Shannon diversity indexes in the contaminated soil were enhanced by 18.7-22.0% and 7.14-16.4%, respectively, with the presence of M. alba L. Furthermore, the correlations between the availability of As, Cd, Pb, and Zn and Shannon diversity indexes of the bacterial and AMF communities were significantly (p < 0.05) positive with the phytoremediation of M. alba L. Therefore, M. alba L. can be suggested as a potential plant candidate for ecological remediation and for simultaneously improving the activity and diversity of microorganisms in contaminated soils.


Assuntos
Metais Pesados/metabolismo , Morus/fisiologia , Microbiologia do Solo , Poluentes do Solo , Bactérias/classificação , Biodegradação Ambiental , Morus/microbiologia , Micorrizas/classificação , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia
3.
Plant Signal Behav ; 14(12): 1672512, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31559897

RESUMO

Regulator of G-protein signaling (RGS) protein, the best-characterized accelerating GTPase protein in plants, regulates G-protein signaling and plays important role in abiotic stress tolerance. However, the detailed molecular mechanism of RGS involved in G-protein signaling mediated abiotic stress responses remains unclear. In this study, a mulberry (Morus alba L.) RGS gene (MaRGS) was transformed into tobacco, and the ectopic expression of MaRGS in tobacco decreased the tolerance to salt stress. The transgenic tobacco plants had lower proline content, higher malonaldehyde and H2O2 contents than wild type plants under salt stress condition. Meanwhile, MaRGS overexpression in mulberry seedlings enhances the sensitivity to salt stress and RNAi-silenced expression of MaRGS improves the salt stress response and tolerance. These results suggested that MaRGS negatively regulates salt stress tolerance. Further analysis suggested that D-glucose and autophagy may involve in the response of RGS to salt stress. This study revealed the role of MaRGS in salt stress tolerance and provides a proposed model for RGS regulates G-protein signaling in response to salt stress.


Assuntos
Adaptação Fisiológica , Morus/metabolismo , Morus/fisiologia , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Transdução de Sinais , Solubilidade , Açúcares/metabolismo , Tabaco/genética
4.
Ecotoxicol Environ Saf ; 184: 109624, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31487570

RESUMO

In order to explore the response and adaptation mechanisms of photosynthesis of the leaves of mulberry (Morus alba L.) seedlings to saline-alkali stress. Photosynthetic activity, and the response of related proteomics of M. alba seedling leaves under NaCl and NaHCO3 stress were studied by using chlorophyll fluorescence and gas exchange technique combined with TMT proteomics. The results showed that NaCl stress had no significant effect on photosystem II (PSII) activity in M. alba seedling leaves. In addition, the expressions of proteins of the PSII oxygen-evolving complex (OEE3-1 and PPD4) and the LHCII antenna (CP24 10A, CP26, and CP29) were increased, and the photosystem I (PSI) activity in the leaves of M. alba seedlings was increased, as well as expressions of proteins, such as PsaF, PsaG, PsaH, PsaL, PsaN, and Ycf4. Under NaHCO3 stress, the activity of PSII and PSI and the expression of their protein complexes and the electron transfer-related proteins significantly decreased. NaCl stress had little effect on RuBP regeneration during dark reaction in the leaves and the expressions of glucose synthesis related proteins and net photosynthetic rate (Pn) did not decrease significantly. The leaves could adapt to NaCl stress by reducing stomatal conductance (Gs) and increasing water use efficiency (WUE). Under NaHCO3 stress, the expression of dark reaction-related proteins was mostly down-regulated, while Gs was reduced, which indicated that non-stomatal factors can be responsible for inhibition of carbon assimilation.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Morus/efeitos dos fármacos , Estresse Salino , Bicarbonato de Sódio/toxicidade , Cloreto de Sódio/toxicidade , Adaptação Fisiológica/fisiologia , Morus/metabolismo , Morus/fisiologia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Proteômica , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/fisiologia
5.
Photosynth Res ; 142(3): 283-305, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31541418

RESUMO

Regulated heat dissipation under excessive light comprises a complexity of mechanisms, whereby the supramolecular light-harvesting pigment-protein complex (LHC) shifts state from light harvesting towards heat dissipation, quenching the excess of photo-induced excitation energy in a non-photochemical way. Based on whole-leaf spectroscopy measuring upward and downward spectral radiance fluxes, we studied spectrally contiguous (hyperspectral) transient time series of absorbance A(λ,t) and passively induced chlorophyll fluorescence F(λ,t) dynamics of intact leaves in the visible and near-infrared wavelengths (VIS-NIR, 400-800 nm) after sudden strong natural-like illumination exposure. Besides light avoidance mechanism, we observed on absorbance signatures, calculated from simultaneous reflectance R(λ,t) and transmittance T(λ,t) measurements as A(λ,t) = 1 - R(λ,t) - T(λ,t), major dynamic events with specific onsets and kinetical behaviour. A consistent well-known fast carotenoid absorbance feature (500-570 nm) appears within the first seconds to minutes, seen from both the reflected (backscattered) and transmitted (forward scattered) radiance differences. Simultaneous fast Chl features are observed, either as an increased or decreased scattering behaviour during quick light adjustment consistent with re-organizations of the membrane. The carotenoid absorbance feature shows up simultaneously with a major F decrease and corresponds to the xanthophyll conversion, as quick response to the proton gradient build-up. After xanthophyll conversion (t = 3 min), a kinetically slower but major and smooth absorbance increase was occasionally observed from the transmitted radiance measurements as wide peaks in the green (~ 550 nm) and the near-infrared (~ 750 nm) wavelengths, involving no further F quenching. Surprisingly, in relation to the response to high light, this broad and consistent VIS-NIR feature indicates a slowly induced absorbance increase with a sigmoid kinetical behaviour. In analogy to sub-leaf-level observations, we suggest that this mechanism can be explained by a structure-induced low-energy-shifted energy redistribution involving both Car and Chl. These findings might pave the way towards a further non-invasive spectral investigation of antenna conformations and their relations with energy quenching at the intact leaf level, which is, in combination with F measurements, of a high importance for assessing plant photosynthesis in vivo and in addition from remote observations.


Assuntos
Folhas de Planta/química , Folhas de Planta/fisiologia , Carotenoides/química , Clorofila/química , Desenho de Equipamento , Tecnologia de Fibra Óptica/instrumentação , Tecnologia de Fibra Óptica/métodos , Fluorescência , Juglans/química , Luz , Morus/química , Morus/fisiologia , Processos Fotoquímicos , Pigmentos Biológicos/química , Espectroscopia de Luz Próxima ao Infravermelho
6.
Int J Mol Sci ; 20(15)2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31362363

RESUMO

The initiation and induction of root primordia are of great importance for adventitious root (AR) formation in cutting propagation of horticultural and forestry crops. However, the underlying mechanisms orchestrating these early phases of AR formation remain largely unexplored. Here, we investigated the physiological and transcriptomic changes during the early AR phases in mulberry stem hardwood cuttings. The results showed that the concentrations of soluble proteins increased, whereas concentrations of soluble sugars and starch were decreased. Indole-3-acetic acid (IAA) and zeatin had a rapid transit peak at 6 h after planting (hAP) and declined thereafter. The activities of peroxidase and catalase persistently increased and indole-3-acetic acid oxidase was maintained at a higher stable level from 0 hAP, while the activities of polyphenol oxidase fluctuated with soluble phenolics and IAA levels. The comparative transcriptome identified 4276 common genes that were differentially regulated at -6, 0 and 54 hAP. They were separated into five clusters with distinct biological functions such as defense response and photosynthesis. Considerable common genes were assigned to pathways of sugar metabolism, mitogen-activated protein kinase, and circadian rhythm. The gene co-expression network analysis revealed three major co-expressed modules involved in stress responses, hormone signaling, energy metabolism, starch metabolism, and circadian rhythm. These findings demonstrate the positive effect of auxin on AR induction, and uncovered the crucial roles of stress responses, hormone signaling and circadian rhythm in coordinating the physiological changes during the early phases of AR formation in mulberry stem hardwood cuttings.


Assuntos
Regulação da Expressão Gênica de Plantas , Morus/fisiologia , Desenvolvimento Vegetal/genética , Raízes de Plantas/fisiologia , Transcriptoma , Biologia Computacional/métodos , Metabolismo Energético , Perfilação da Expressão Gênica , Anotação de Sequência Molecular , Reguladores de Crescimento de Planta/genética , Reguladores de Crescimento de Planta/metabolismo , Transdução de Sinais
7.
Int J Mol Sci ; 20(10)2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31137512

RESUMO

Intensive investigations have been conducted on the effect of sole drought or salinity stress on the growth of plants. However, there is relatively little knowledge on how plants, particularly woody species, respond to a combination of these two stresses although these stresses can simultaneously occur in the field. In this study, mulberry, an economically important resource for traditional medicine, and the sole food of domesticated silkworms was subjected to a combination of salt and drought stress and analyzed by physiological methods and TMT-based proteomics. Stressed mulberry exhibited significant alteration in physiological parameters, including root/shoot ratio, chlorophyll fluorescence, total carbon, and ion reallocation. A total of 577 and 270 differentially expressed proteins (DEPs) were identified from the stressed leaves and roots, respectively. Through KEGG analysis, these DEPs were assigned to multiple pathways, including carbon metabolism, photosynthesis, redox, secondary metabolism, and hormone metabolism. Among these pathways, the sucrose related metabolic pathway was distinctly enriched in both stressed leaves and roots, indicating an important contribution in mulberry under stress condition. The results provide a comprehensive understanding of the adaptive mechanism of mulberry in response to salt and drought stress, which will facilitate further studies on innovations in terms of crop performance.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Morus/genética , Proteínas de Plantas/genética , Proteoma/genética , Estresse Salino , Morus/metabolismo , Morus/fisiologia , Proteínas de Plantas/metabolismo , Proteoma/metabolismo
8.
Sci Total Environ ; 650(Pt 1): 594-603, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30205349

RESUMO

The objective of this study was to determine the phytoextraction potential of a hyperaccumulator co-planted with a large biomass of woody plant in metal(loid)-contaminated soil. A pot experiment was conducted for 270 days (d) to study the growth, physiological responses, and metal(loid)s accumulation characteristics of plants, which included a shade-requiring, As-hyperaccumulator perennial herb, Pteris vittata L., co-planted with a woody tree, namely Morus alba L. or Broussonetia papyrifera L., for soil contaminated with arsenic (As), cadmium (Cd), lead (Pb), and zinc (Zn). The results showed that the biomass, photosynthetic pigment contents, antioxidant enzyme activity, and uptake of As in P. vittata L. were significantly enhanced by co-planting with M. alba L. or B. papyrifera L. Especially, the uptake of As by P. vittata L. was significantly (p < 0.05) increased by 80.0% and 64.2% when it was co-planted with M. alba L. or B. papyrifera L., respectively, while the As, Cd, Pb, and Zn contents of both M. alba L. and B. papyrifera L. were not significantly promoted by the co-planting. The comprehensive phytoextraction of metal(loid)s could be optimized by the co-planting of P. vittata L. with M. alba L. or B. papyrifera L. The total amount of As in the shoots from co-planting species was significantly (p < 0.05) higher than that of the monoculture with M. alba L. or B. papyrifera L., and that of Cd and Zn in the shoots was significantly (p < 0.05) higher than that of the monoculture with P. vittata L. The results showed that the co-planting of P. vittata L. with M. alba L. or B. papyrifera L. can alleviate the toxic effects of metal(loid)s on plant growth and improve the comprehensive phytoextraction amounts of metal(loid)s, and is a promising strategy for remediation of metal(loid)-contaminated soil.


Assuntos
Biodegradação Ambiental , Metais Pesados/metabolismo , Pteris/metabolismo , Poluentes do Solo/metabolismo , Antioxidantes/análise , Arsênico/análise , Arsênico/metabolismo , Biomassa , Broussonetia/química , Broussonetia/fisiologia , Cádmio/análise , Cádmio/metabolismo , Clorofila/análise , Chumbo/análise , Chumbo/metabolismo , Morus/química , Morus/fisiologia , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Pteris/química , Solo/química , Zinco/análise , Zinco/metabolismo
9.
Plant Physiol Biochem ; 132: 603-611, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30336380

RESUMO

Shaggy-like protein kinase (SK) plays important roles in the plant growth development, signal transduction, abiotic stress and biotic stress and substance metabolism regulation. However, the exact function of the response to drought stress in mulberry with SK remains unclear. In this study, a new SK gene that was designated as MmSK (GenBank accession NO: KY348867) was isolated and cloned from mulberry (Morus alba). MmSK contains two SK conservation domains of ATP domain and Serine/Threonine protein kinases active-site signature, and belonged to GSK3/shaggy protein kinase family. The expression of MmSK in mulberry was up-regulated under various abiotic stress treatments. Meanwhile, we observed higher expression levels in the phloem contrasted with other tissues. Mulberry MmSK gene was successfully silenced by virus induced gene silencing (VIGS), and after MmSK was silenced, the expression of MmSK in pTRV2-MmSK-VIGS plant (transgenic mulberry) dropped to 34.02% compared with the negative control inoculated with empty vector pTRV2-00 (CK). Under drought stress, the soluble protein content, proline content, superoxide dismutase (SOD) and peroxidase (POD) activities in transgenic mulberry decreased in different degree compared with the CK. In contrast, the accumulation of malondialdehyde (MDA) increased significantly in transgenic mulberry. With the extension of drought stress treatment time, the soluble protein content, proline content and MDA content gradually increased. The SOD activity and POD activity under drought stress gradually rose to the maximum on the fifth day and then decreased, which consistent with the change trend of MmSK gene expression. These results suggested that MmSK gene could function as a positive regulator of drought stress in mulberry.


Assuntos
Adaptação Fisiológica/genética , Secas , Genes de Plantas , Morus/genética , Morus/fisiologia , Estresse Fisiológico/genética , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Malondialdeído/metabolismo , Osmose , Fenótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vírus de Plantas/fisiologia , Plantas Geneticamente Modificadas , Prolina/metabolismo , Solubilidade
10.
Sci Rep ; 8(1): 12120, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30108371

RESUMO

Chilling is common in nature and can damage most plant species, particularly young leaves and buds. Mulberry (Morus spp.) is an economically important food source for the domesticated silkworm (Bombyx mori). However, weather and climatic extremes, such as "late spring coldness", seriously damage mulberry buds and young leaves. The molecular mechanism involved in the differing mulberry chilling tolerance is unclear. In the present study, we found that mSOD1, mFADII, and mKCS1 interacted with mAKR2A and that the expression of mAKR2A, mSOD, mFAD, and mKCS1 in the chilling-tolerant mulberry variety was higher than that in the chilling-sensitive variety. Unsaturated fatty acids content and superoxide dismutase (SOD) activity in the chilling-tolerant variety was higher than that in the chilling-sensitive variety. After chilling treatment, mSOD1, mKCS1 and mAKR2A expression in the chilling-tolerant variety was reduced to lower than that in the chilling-sensitive variety, whereas mFADII expression increased in the chilling-tolerant variety compared with that in the chilling-sensitive variety, suggesting that the increased expression of the molecular chaperon mAKR2A helped to maintain or prompted the chilling-related proteins in the chilling-tolerant variety.


Assuntos
Aclimatação/fisiologia , Ácidos Graxos Insaturados/análise , Chaperonas Moleculares/metabolismo , Morus/fisiologia , Proteínas de Plantas/metabolismo , Superóxido Dismutase/metabolismo , Temperatura Baixa/efeitos adversos , Ácidos Graxos Insaturados/metabolismo , Morus/química
11.
Sci Rep ; 8(1): 5860, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643336

RESUMO

The MADS-box genes encode transcriptional regulators with various functions especially during floral development. A total of 54 putative Morus notabilis MADS-box genes (MnMADSs) were identified and phylogenetically classified as either type I (17 genes) or type II (37 genes). The detected genes included three FLOWERING LOCUS C-like (MnFLC-like) genes, MnMADS33, MnMADS50, and MnMADS7. MnFLC-like proteins could directly or indirectly repress promoter activity of the mulberry FLOWERING LOCUS T-like (MnFT) gene. Transgenic Arabidopsis thaliana overexpressing MnFLC-like genes exhibited delayed flowering and down-regulated expression of FT and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1). The gene expression analyses in floral bud indicated that MnMADS33 expression increased, while MnFT expression decreased during the induction of dormancy in response to cold conditions. Dormancy release resulted in the down-regulation of MnMADS33 expression and the up-regulation of MnFT expression. Furthermore, abscisic acid promoted the transcription of MnMADS33 and MnFT, although the expression level of MnFT gradually decreased. These results are consistent with the hypothesis that MnMADS33 negatively regulated the expression of MnFT to repress dormancy release and flowering in mulberry. This study may be relevant for future investigations regarding the effects of MnMADS genes on mulberry flowering development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Domínio MADS/metabolismo , Morus/fisiologia , Dormência de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Aclimatação/fisiologia , Arabidopsis/genética , Temperatura Baixa/efeitos adversos , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética
12.
PLoS One ; 13(3): e0194129, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29543877

RESUMO

Mulberry (Morus alba L.) is an important economic tree species in many countries. Quantitative real time PCR (qRT-PCR) has become a widely used method for gene expression studies in plants. A suitable reference gene is essential to ensure accurate and reliable results for qRT-PCR analyses. However, no reports describing the selection of reference genes have been published for mulberry. In this work, we evaluated the stability of twenty candidate reference genes in different plant tissues and under different stress conditions by qRT-PCR in mulberry using algorithms in two programs-geNorm and NormFinder. The results revealed that TUB2, UBI4, ACTIN3 and RPL4 were ranked as the most stable reference genes in the samples subsets, whereas EF1α4 and TUB3showed the least stability with both algorithms. To further validate the stability of the reference genes, the expression patterns of six genes of mulberry were analyzed by normalization with the selected reference genes. Our study will benefit future analyses of gene expression in mulberry.


Assuntos
Genes de Plantas , Morus/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Morus/fisiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de Referência , Estresse Fisiológico
13.
Tree Physiol ; 38(2): 223-231, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036681

RESUMO

Water flow through xylem vessels encounters hydraulic resistance when passing through the vessel lumen and end wall. Comparative studies have reported that lumen and end wall resistivities co-limit water flow through stem xylem in several angiosperm woody species that have vessels of different average diameter and length. This study examined the intra-specific relationship between the lumen and end wall resistivities (Rlumen and Rwall) for vessels within the stem xylem using three deciduous angiosperm woody species found in temperate forest. Morus australis Poir. and Acer rufinerve Siebold et Zucc. are early- and late-successional species, and Vitis coignetiae Pulliat ex Planch is a woody liana. According to the Hagen-Poiseuille equation, Rlumen is proportional to the fourth power of vessel diameter (D), whereas vessel length (L) and inter-vessel pit area (Apit) determine Rwall. To estimate Rlumen and Rwall, the scaling relationships between the L and D and between Apit and D were measured. The scaling exponents between L and D were 1.47, 3.19 and 2.86 for A. rufinerve, M. australis and V. coignetiae, respectively, whereas those between Apit and D were 0.242, 2.11 and 2.68, respectively. Unlike the inter-specific relationships, the wall resistivity fraction (Rwall/(Rlumen + Rwall)) within xylem changed depending on D. In M. australis and V. coignetiae, this fraction decreased with increasing D, while in A. rufinerve, it increased with D. Vessels with a high wall resistivity fraction have high Rwall and total resistivity but are expected to have low susceptibility to xylem cavitation due to a small cumulative Apit. In contrast, vessels with a low wall resistivity fraction have low Rwall and total resistivity but high susceptibility to xylem cavitation. Because the wall resistivity fraction varies with D, the stem xylem contains vessels with different hydraulic efficiencies and safety to xylem cavitation. These features produce differences in the hydraulic properties of plants with different life forms.


Assuntos
Acer/fisiologia , Morus/fisiologia , Vitis/fisiologia , Água/metabolismo , Xilema/fisiologia , Transporte Biológico , Caules de Planta/fisiologia
14.
Sci Rep ; 7(1): 9573, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852033

RESUMO

Mulberry (Morus spp.), in family Moraceae, is a plant with important economic value. Many polyploid levels of mulberry have been determined. In the present study, the fluorescence in situ hybridization (FISH) technique was applied in Morus notabilis, using four single-copy sequences, telomere repeats, and 5S and 25S rDNAs as probes. All the mitotic chromosomes were clearly identified and grouped into seven pairs of homologous chromosomes. Three dot chromosome pairs were distinguished by the FISH patterns of the 25S rDNA probe and a simple sequence repeat (SSR2524). According to the FISH signals, chromosome length and morphology, detailed meiotic diakinesis karyotype was constructed. Interestingly, only six bivalent chromosomes were observed in diakinesis cells. The 25S rDNA probe was used to illustrate chromosome alterations. The results indicated that mitotic chromosomes 5 and 7 fused into diakinesis chromosome 5 during the meiotic phase. In mitotic cells, the fused chromosome 5 broke into chromosomes 5 and 7. A chromosomal fusion-fission cycle between the meiotic and mitotic phases in the same individual is reported here for the first time. This finding will contribute to the understanding of karyotype evolution in plants.


Assuntos
Cromossomos de Plantas , Cariótipo , Meiose/genética , Mitose/genética , Morus/fisiologia , RNA Ribossômico/genética , Ciclo Celular , Mapeamento Cromossômico , DNA Ribossômico , Hibridização in Situ Fluorescente
15.
Tree Physiol ; 37(7): 926-937, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28633427

RESUMO

Hydraulic conductivity quantifies the efficiency of a plant to transport water from root to shoot and is a major constriction on leaf gas exchange physiology. Mulberry (Morus spp.) is the most economically important crop for sericulture industry. In this study, we demonstrate a finely coordinated control of hydraulic dynamics on leaf gas exchange characteristics in 1-year-old field-grown mulberry genotypes (Selection-13 (S13); Kollegal Local (KL) and Kanva-2 (K2)) subjected to water stress by withholding water for 20 days and subsequent recovery for 7 days. Significant variations among three mulberry genotypes have been recorded in net photosynthetic rates (Pn), stomatal conductance and sap flow rate, as well as hydraulic conductivity in stem (KS) and leaf (KL). Among three genotypes, S13 showed significantly high rates of Pn, KS and KL both in control as well as during drought stress (DS) and recovery, providing evidence for superior drought-adaptive strategies. The plant water hydraulics-photosynthesis interplay was finely coordinated with the expression of certain key aquaporins (AQPs) in roots and leaves. Our data clearly demonstrate that expression of certain AQPs play a crucial role in hydraulic dynamics and photosynthetic carbon assimilation during DS and recovery, which could be effectively targeted towards mulberry improvement programs for drought adaptation.


Assuntos
Aquaporinas/fisiologia , Secas , Morus/genética , Morus/fisiologia , Fotossíntese , Aquaporinas/genética , Genótipo , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Caules de Planta/fisiologia , Água
16.
PLoS One ; 12(2): e0172883, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28235056

RESUMO

MicroRNAs (miRNAs) play important regulatory roles by targeting mRNAs for cleavage or translational repression. Identification of miRNA targets is essential to better understanding the roles of miRNAs. miRNA targets have not been well characterized in mulberry (Morus alba). To anatomize miRNA guided gene regulation under drought stress, transcriptome-wide high throughput degradome sequencing was used in this study to directly detect drought stress responsive miRNA targets in mulberry. A drought library (DL) and a contrast library (CL) were constructed to capture the cleaved mRNAs for sequencing. In CL, 409 target genes of 30 conserved miRNA families and 990 target genes of 199 novel miRNAs were identified. In DL, 373 target genes of 30 conserved miRNA families and 950 target genes of 195 novel miRNAs were identified. Of the conserved miRNA families in DL, mno-miR156, mno-miR172, and mno-miR396 had the highest number of targets with 54, 52 and 41 transcripts, respectively, indicating that these three miRNA families and their target genes might play important functions in response to drought stress in mulberry. Additionally, we found that many of the target genes were transcription factors. By analyzing the miRNA-target molecular network, we found that the DL independent networks consisted of 838 miRNA-mRNA pairs (63.34%). The expression patterns of 11 target genes and 12 correspondent miRNAs were detected using qRT-PCR. Six miRNA targets were further verified by RNA ligase-mediated 5' rapid amplification of cDNA ends (RLM-5' RACE). Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that these target transcripts were implicated in a broad range of biological processes and various metabolic pathways. This is the first study to comprehensively characterize target genes and their associated miRNAs in response to drought stress by degradome sequencing in mulberry. This study provides a framework for understanding the molecular mechanisms of drought resistance in mulberry.


Assuntos
MicroRNAs/genética , Morus/fisiologia , RNA de Plantas/genética , Adaptação Fisiológica , Cromossomos de Plantas/genética , Secas , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Interferência de RNA , Estabilidade de RNA , RNA de Plantas/metabolismo , Análise de Sequência de RNA , Estresse Fisiológico , Transcriptoma
17.
Plant Cell Physiol ; 58(2): 354-364, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28013275

RESUMO

Two hypotheses have been proposed to explain the mechanism preventing the refilling vessel water from being drained to the neighboring functional vessels under negative pressure. The pit membrane osmosis hypothesis proposes that the xylem parenchyma cells release polysaccharides that are impermeable to the intervessel pit membranes into the refilling vessel; this osmotically counteracts the negative pressure, thereby allowing the vessel to refill. The pit valve hypothesis proposes that gas trapped within intervessel bordered pits isolates the refilling vessel water from the surrounding functional vessels. Here, using the single-vessel method, we assessed these hypotheses in shoots of mulberry (Morus australis Poir.). First, we confirmed the occurrence of xylem refilling under negative pressure in the potted mulberry saplings. To examine the pit membrane osmosis hypothesis, we estimated the semi-permeability of pit membranes for molecules of various sizes and found that the pit membranes were not semi-permeable to polyethylene glycol of molecular mass <20,000. For the pit valve hypothesis, we formed pit valves in the intervessel pits in the short stem segments and measured the maximum liquid pressure up to which gases in bordered pits were retained. The threshold pressure ranged from 0.025 to 0.10 MPa. These values matched the theoretical value calculated from the geometry of the pit chamber (0.0692-0.101 MPa). Our results suggest that gas in the pits is retained by surface tension, even under substantial positive pressure to resolve gases in the refilling vessel, whereas the molecule size required for the pit membrane osmosis mechanism in mulberry would be unrealistically large.


Assuntos
Morus/metabolismo , Morus/fisiologia , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Xilema/metabolismo , Xilema/fisiologia , Osmose/fisiologia , Pressão
18.
Plant Physiol Biochem ; 111: 174-178, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27940268

RESUMO

Early Responsive to Dehydration (ERD) genes are described as rapid response mediators of dehydration stress. Recently, ERD15 has emerged as a novel stress induced transcription factor which might be involved in mediating distinct stress responses in plants. In order to determine whether mulberry ERD15 can act as functional transcription factor, yeast-based assays were performed. Mulberry ERD15 was found to drive high level reporter gene expression in yeast which suggests it may function as a transcription factor. However, due to lack of an identifiable DNA binding domain, deletion analysis was carried out to determine the putative region of the protein involved in mediating protein-DNA interaction. Our results indicate that the region between 70 and 100 amino acids is critical in conferring transcription activation activity and might harbor the DNA binding region of ERD15.


Assuntos
Morus/genética , Proteínas de Plantas/genética , Ativação Transcricional/genética , Sequência de Aminoácidos , Morus/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Domínios Proteicos , Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Estresse Fisiológico/genética
19.
Sci Total Environ ; 579: 1467-1475, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27908626

RESUMO

Intercropping technology provides income for owners of contaminated soil without increasing environmental risk. Therefore, intercropping of arsenic (As) hyperaccumulator Pteris vittata L. with economic crops is now widely utilized in slightly or moderately As-contaminated farmlands. However, the mechanisms for As mobilization and absorption within the intercropping system are still unclear. To clarify As mobilization and absorption within an intercropping system, portable X-ray fluorescence spectrometry and sequential extraction were utilized to detect the spatial distribution and speciation of As in an intercropped system of P. vittata and cash crop mulberry (Morus alba L.). Compared with the P. vittata monoculture, P. vittata intercropping had higher As concentration, which may have been caused by the efficient exploitation of a greater As source in soil. Compared with the M. alba monoculture, M. alba intercropping had lower As concentration, which may have been caused by the As depletion by P. vittata roots. Spatial distribution of As in the soil indicated a "valley" around the P. vittata roots in both monocultured and intercropped systems, implying that As was depleted around the P. vittata roots. Continuous As extraction confirmed that both P. vittata monoculture and P. vittata and M. alba intercropping can efficiently control the risk of As soil contamination. Moreover, the properties of M. alba leaves were further studied. Mulberry leaves in the intercropping system satisfied the national feed standards. Therefore, intercropping presents a safe utilization mode for As-contaminated soil and can increase the income from silkworm-rearing M. alba leaves, without extra environmental risk.


Assuntos
Arsênico/metabolismo , Recuperação e Remediação Ambiental/métodos , Morus/fisiologia , Pteris/fisiologia , Poluentes do Solo/metabolismo , Arsênico/análise , Biodegradação Ambiental , Morus/química , Pteris/química , Poluentes do Solo/análise
20.
New Phytol ; 211(1): 103-12, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26856386

RESUMO

The terminal branch orders of plant root systems have been proposed as short-lived 'ephemeral' modules specialized for resource absorption. The occurrence of ephemeral root modules has so far only been reported for a temperate tree species and it is unclear if the concept also applies to other woody (shrub, tree) and herb species. Fine roots of 12 perennial dicotyledonous herb, shrub and tree species were monitored for two growing seasons using a branch-order classification, sequential sampling and rhizotrons in the Taklamakan desert. Two root modules existed in all three plant functional groups. Among the first five branch orders, the first two (perennial herbs, shrubs) or three (trees) root orders were ephemeral and had a primary anatomical structure, high nitrogen (N) concentrations, high respiration rates and very short life spans of 1-4 months, whereas the last two branch orders in all functional groups were perennial, with thicker diameters, no or collapsed cortex, distinct secondary growth, low N concentrations, low respiration rates, but much longer life spans. Ephemeral, short-lived root modules and long-lived, persistent root modules seem to be a general feature across many plant functional groups and could represent a basic root system design.


Assuntos
Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Plantas/anatomia & histologia , China , Clima Desértico , Ecossistema , Magnoliopsida/anatomia & histologia , Magnoliopsida/fisiologia , Morus/anatomia & histologia , Morus/fisiologia , Nitrogênio/metabolismo , Populus/anatomia & histologia , Populus/fisiologia , Fatores de Tempo , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...