Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; 50(1): 10-17, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31430215

RESUMO

Due to wide application of laccase, many researchers have shown great interest in over production of white-rot fungi laccase by co-culture. In this study, a white-rot fungus Trametes hirsuta SSM-3, and a yeast Sporidiobolus pararoseus SSM-8 were isolated and identified from Mulberry fruit. The capacity of S. pararoseus to enhance laccase production was remarkable in T. hirsuta, yielding 31777 ± 742 U/L, about 9.9 times higher than the result from the monoculture. The stimulatory factor in the S. pararoseus cells might be temperature-sensitive. The laccase production was enhanced by oil-extract of S. pararoseus and ß-carotene induction. The amylase activity was decreased rapidly when strain S. pararoseus SSM-8 was inoculated. The glucose deprivation was occurred both in the mono-culture and co-culture process, and S. pararoseus propagated slowly in co-culture all the time. Native-PAGE revealed an increase of laccase-1(lac-1) level and a laccase-3 (lac-3) in the co-culture. Therefore, it was concluded that competition for resources between the co-cultured microbes leaded to amylase decreasing and the enhanced production of laccase. This conclusion was helpful for the development of laccase fermentation industry because it provided an effective, simple and economic method to improve the yield of laccase.


Assuntos
Proteínas Fúngicas/metabolismo , Lacase/metabolismo , Trametes/metabolismo , Leveduras/metabolismo , Técnicas de Cocultura/métodos , Fermentação , Microbiologia Industrial/métodos , Morus/microbiologia , beta Caroteno/metabolismo
2.
Environ Sci Pollut Res Int ; 27(4): 4294-4308, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31832962

RESUMO

Woody plants have considerable application potential in the phytoremediation schemes, owing to their long-lived large biomass and prosperous root systems in heavy metal(loid)-contaminated soil. Under greenhouse conditions, the physiological response characteristics and phytoremediation possibility of Morus alba L. and its associated improvement of the bacterial and arbuscular mycorrhizal fungal (AMF) diversities in heavy metal(loid) co-contaminated soils were investigated. The results showed that the cultivated M. alba L. plant exhibited significant tolerance against the heavy metal(loid)s in co-contaminated soil and that the microbial diversities were improved notably. The contents of malondialdehyde (MDA) in M. alba L. leaves decreased with cultivation from 90 to 270 days, while the superoxide dismutase, peroxidase and catalase activities were maintained at normal levels to eliminate the production of lipid peroxides. The chemical compositions (e.g. amino acids, carbohydrates and proteins) in the root of M. alba L. fluctuated slightly throughout the cultivation period. Meanwhile, Cd, Pb and Zn were majorly concentrated in the M. alba L. roots, and the maximum contents were 23.4, 7.40 and 615.5 mg/kg, respectively. According to the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis results, the influence of M. alba L. on the rhizosphere AMF community was greater than that on the bacteria community. Meanwhile, the bacterial and AMF Shannon diversity indexes in the contaminated soil were enhanced by 18.7-22.0% and 7.14-16.4%, respectively, with the presence of M. alba L. Furthermore, the correlations between the availability of As, Cd, Pb, and Zn and Shannon diversity indexes of the bacterial and AMF communities were significantly (p < 0.05) positive with the phytoremediation of M. alba L. Therefore, M. alba L. can be suggested as a potential plant candidate for ecological remediation and for simultaneously improving the activity and diversity of microorganisms in contaminated soils.


Assuntos
Metais Pesados/metabolismo , Morus/fisiologia , Microbiologia do Solo , Poluentes do Solo , Bactérias/classificação , Biodegradação Ambiental , Morus/microbiologia , Micorrizas/classificação , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia
3.
Microbiol Res ; 229: 126328, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31521946

RESUMO

Endophytic bacteria-based biocontrol is regarded as a potential plant disease management strategy. Present study analyzed the diversity of mulberry endophytic bacteria basing on a culture-dependent approach and further evaluated their antimicrobial and plant growth-promoting (PGP) activities. A total of 608 cultivable endophytic bacteria, belonging to 4 phyla and 36 genera, were isolated from four mulberry cultivars having different resistance to sclerotiniosis in three seasons. Taxonomic compositional analysis results showed that Proteobacteria, Firmicutes, and Actinobacteria were the three dominant bacterial phyla in all communities, with the representative genera Pantoea, Bacillus, Pseudomonas, Curtobacterium, and Sphingomonas. Diversity analysis results indicated that the diversity of winter community was higher than that of spring or autumn, and higher diversities were detected in the resistant cultivar communities compared with the susceptible cultivar. Antagonism assays results showed that 33 isolates exhibited strong and stable activity against three phytopathogens which are Sclerotinia sclerotiorum, Botrytis cinerea, and Colletotrichum gloeosporioide. Eight endophytic bacteria were selected out from 33 antagonists based on the evaluation of antagonistic and PGP activities. Furthermore, pot experiment results revealed that all the 8 tested endophytes stimulated the growth of mulberry seedlings at different levels, and Bacillus sp. CW16-5 exhibited the highest promotion capacity, which the shoot length and the root fresh weight were increased by 83.37% and 217.70%, respectively. Altogether, present study revealed that mulberry harbors a large amount of diverse cultivable endophytic bacteria and they also serve as novel sources of beneficial bacteria and bioactive metabolites.


Assuntos
Antibiose , Bactérias/isolamento & purificação , Biodiversidade , Endófitos/isolamento & purificação , Morus/microbiologia , Ascomicetos/fisiologia , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Botrytis/fisiologia , Colletotrichum/fisiologia , Endófitos/classificação , Endófitos/genética , Endófitos/fisiologia , Morus/crescimento & desenvolvimento , Doenças das Plantas/microbiologia
4.
Plant Dis ; 103(10): 2624-2633, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31397632

RESUMO

Brown spot disease caused by Colletotrichum species was found on leaves of mulberry (Morus alba L.) in Dujiangyan, Sichuan Province, China. Fungal isolates from leaf lesions were identified as six Colletotrichum species based on morphological characteristics and DNA analysis of the combined sequences ITS, GAPDH, ACT, CHS-1, TUB2, and GS. These included Colletotrichum fioriniae, C. fructicola, C. cliviae, C. karstii, C. kahawae subsp. ciggaro, and C. brevisporum. Results showed that the most important causal agent of mulberry anthracnose was C. fioriniae, causing typical brown necrotic spots or streaks, followed by C. brevisporum, C. karstii, and C. kahawae subsp. ciggaro, whereas the two other species (C. fructicola and C. cliviae) showed no pathogenicity to mulberry. This study is the first report of these species associated with mulberry in China.


Assuntos
Colletotrichum , Morus , Filogenia , Virulência , China , Colletotrichum/patogenicidade , DNA Fúngico/genética , Morus/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Especificidade da Espécie
5.
Ying Yong Sheng Tai Xue Bao ; 30(6): 1983-1992, 2019 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-31257771

RESUMO

In this study, the effects of intercropping with alfalfa and nitrogen application on the functional diversity of soil microbial community in mulberry rhizosphere were examined by Biolog-EcoplateTM technique, and principal component and canonical analyses. Compared to monoculture with no nitrogen (N) addition, monoculture with N application and intercropping with alfalfa remarkably reduced soil pH and significantly increased the contents of soil organic matter, soil available N, soil water content, and activities of peroxidase and urease. Monoculture with N application and intercropping with alfalfa (with or without N application) increased the AWCD values, diversity index, and the carbon source utilization ratios of soil microbes. Higher increments of these parameters were detected in the treatment of intercropping plus N application. The results of principal component analysis showed that N application and intercropping changed the capacity of the rhizosphere microbial community for utilizing carbon sources. The utilization of carbon sources highly related to the principal components by the rhizosphere microbial communities was similar in the treatments of monoculture with N application and intercropping without N application. The utilization of itaconic acid and D-glucamaminic acid in the latter was more than 4% and was significantly higher than that in the former. The results from redundancy analysis showed that the soil microbial diversity in mulberry rhizosphere of the treatment of monoculture without N application was positively correlated with polyphenol oxidase activity and negatively correlated with soil water content, whereas that of monoculture with N application and intercropping without N application was significantly positively correlated with soil pH and soil water content and negatively correlated with soil N avalaibility. The diversity of the microbes in the rhizosphere soil of mulberries under the treatment of intercropping with N application showed positive correlation with soil N availability and was significantly negatively correlated with soil pH.


Assuntos
Agricultura/métodos , Microbiota , Morus/microbiologia , Microbiologia do Solo , Fertilizantes , Nitrogênio , Solo
6.
Carbohydr Polym ; 220: 170-175, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31196537

RESUMO

It's long been understood that antimicrobial properties are one of the most important function in the field of biomedicine. In this thesis, we introduce a new technique to functionalize bacterial cellulose (BC) with antimicrobial properties by in situ method. We design a series of experiments on hydrolyzing mulberry leaves and exploring the methods of fermenting and purifying to obtain a BC complex with antimicrobial properties. Meanwhile, the anti-bacterial performances of MH-BC (fermented by the mulberry leaves acid hydrolysate fermentation medium) were evaluated with Escherichia coli and Staphylococcus aureus, and the experimental results showed that the MH-BC have excellent anti-bacterial activities. Considering the excellent biocompatibility of MH-BC towards hMSCs, we expect that this antibacterial functional BC composite will find potential applications in biomedicine and regenerative medicine.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Celulose/farmacologia , Escherichia coli/efeitos dos fármacos , Gluconacetobacter xylinus/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Fermentação , Humanos , Hidrólise , Teste de Materiais/métodos , Células-Tronco Mesenquimais/citologia , Morus/microbiologia , Folhas de Planta/microbiologia
7.
Microb Ecol ; 77(3): 651-663, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30178387

RESUMO

Bacillus sp. 7PJ-16, an endophytic bacterium isolated from a healthy mulberry stem and previously identified as Bacillus tequilensis 7PJ-16, exhibits strong antifungal activity and has the capacity to promote plant growth. This strain was studied for its effectiveness as a biocontrol agent to reduce mulberry fruit sclerotiniose in the field and as a growth-promoting agent for mulberry in the greenhouse. In field studies, the cell suspension and supernatant of strain 7PJ-16 exhibited biocontrol efficacy and the lowest disease incidence was reduced down to only 0.80%. In greenhouse experiments, the cell suspension (1.0 × 106 and 1.0 × 105 CFU/mL) and the cell-free supernatant (100-fold and 1000-fold dilution) stimulated mulberry seed germination and promoted mulberry seedling growth. In addition, to accurately identify the 7PJ-16 strain and further explore the mechanisms of its antifungal and growth-promoting properties, the complete genome of this strain was sequenced and annotated. The 7PJ-16 genome is comprised of two circular plasmids and a 4,209,045-bp circular chromosome, containing 4492 protein-coding genes and 116 RNA genes. This strain was ultimately designed as Bacillus subtilis based on core genome sequence analyses using a phylogenomic approach. In this genome, we identified a series of gene clusters that function in the synthesis of non-ribosomal peptides (surfactin, fengycin, bacillibactin, and bacilysin) as well as the ribosome-dependent synthesis of tasA and bacteriocins (subtilin, subtilosin A), which are responsible for the biosynthesis of numerous antimicrobial metabolites. Additionally, several genes with function that promote plant growth, such as indole-3-acetic acid biosynthesis, the production of volatile substances, and siderophores synthesis, were also identified. The information described in this study has established a good foundation for understanding the beneficial interactions between endophytes and host plants, and facilitates the further application of B. subtilis 7PJ-16 as an agricultural biofertilizer and biocontrol agent.


Assuntos
Antibiose , Bacillus subtilis/genética , Endófitos/genética , Morus/microbiologia , Doenças das Plantas/prevenção & controle , Ascomicetos/fisiologia , Bacillus subtilis/fisiologia , Bacteriocinas/genética , Bacteriocinas/metabolismo , Agentes de Controle Biológico/isolamento & purificação , Agentes de Controle Biológico/metabolismo , Endófitos/isolamento & purificação , Endófitos/fisiologia , Frutas/microbiologia , Genoma Bacteriano , Genômica , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Doenças das Plantas/microbiologia
8.
J Proteomics ; 193: 142-153, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30315889

RESUMO

The aim of this work was to gain insights into the molecular mechanisms and dynamics of the mulberry (Morus atropurpurea) fruit response to Ciboria carunculoides infection. A transcriptomic and proteomic study was carried out based on RNA sequencing and isobaric tags for relative and absolute quantification analysis, respectively. These data were then validated using quantitative real-time PCR and multiple reaction monitoring assays. Comparative analyses revealed that 9.0% of the transcriptome and 20.8% of the proteome were differentially regulated after C. carunculoides infection at the early stage (stage 1) and middle stage (stage 2), but correlation analysis revealed that only 145 genes were differentially regulated at both the transcriptome and proteome levels. The combined transcriptome and proteome analysis showed that plant hormone signal transduction, calcium-mediated defense signaling, transcription factors, and secondary metabolites were stimulated, whereas photosynthesis and cellular growth-related metabolism were suppressed after C. carunculoides infection. These finding provide theoretical foundation for disease resistance breeding of C. carunculoides. BIOLOGICAL SIGNIFICANCE: Ciboria carunculoides is a major fungal pathogen that infects mulberry fruit, leading to extensive damage and productivity loss. Despite this major impact, the mulberry fruit response to C. carunculoides infection has yet to be characterized. This study provides the first system-wide datasets with which to examine changes in the transcriptome and proteome after C. carunculoides infection in mulberry fruit. The results showed that plant hormone signal transduction, calcium-mediated defense signaling, and other pathways were stimulated, whereas photosynthesis and cellular growth-related metabolism were suppressed by C. carunculoides. These results will lead to a better understanding of the molecular mechanisms triggered in mulberry fruit in response to C. carunculoides infection and will provide new molecular targets for regulating defense responses to fungal pathogens in berry fruits.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Frutas , Perfilação da Expressão Gênica , Morus , Doenças das Plantas/microbiologia , Proteínas de Plantas/biossíntese , Proteômica , Frutas/metabolismo , Frutas/microbiologia , Morus/metabolismo , Morus/microbiologia
9.
PLoS One ; 13(7): e0200099, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29979732

RESUMO

Outbreaks of root rot disease in the productive South Indian sericulture belt have threatened the sustainability of the industry. Macrophomina phaseolina (Tassi) Goid. causing charcoal rot is the predominant pathogen to which all productive mulberry cultivars are susceptible. The present study was undertaken to identify molecular markers associated with charcoal rot resistance in mulberry. A mapping panel comprising 214 diverse entries from the Indian germplasm collection was assessed for charcoal rot resistance by artificial inoculation. Resistance to the pathogen was observed in 20 entries, and 51 were found to be moderately resistant. A total of 773 alleles generated across 105 SSR loci and 20,384 AFLP markers generated using 32 EcoRI-NN and MseI-CNN primer combinations were used in genetic analysis. The panel was weakly structured with two subpopulations. However, most entries were found to be admixtures. Survival of cuttings and number of roots per sapling were associated with root rot resistance. Association mapping was performed using different linear mixed models. Five AFLP markers explaining 9.6-12.7% of the total phenotypic variance were found to be significantly (p < 0.05) associated with root rot resistance. Significant associations were also detected in four AFLP markers for survival of cuttings, and these markers explained 10.7-14.2% of the total phenotypic variance. These markers should be validated using mapping populations derived from contrasting biparental combinations by linkage analysis for use in marker-assisted gene pyramiding for durable resistance. The resistant genotypes identified in this study will substantially contribute to genetic improvement of mulberry for charcoal rot resistance and can be integrated into conventional breeding programmes.


Assuntos
Ascomicetos/patogenicidade , Morus/genética , Morus/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Bombyx/fisiologia , Carvão Vegetal , Mapeamento Cromossômico , Resistência à Doença/genética , Genes de Plantas , Ligação Genética , Marcadores Genéticos , Índia , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , Locos de Características Quantitativas
10.
Mol Cell Proteomics ; 17(9): 1702-1719, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29848783

RESUMO

To gain insight into the response of mulberry to phytoplasma-infection, the expression profiles of mRNAs and proteins in mulberry phloem sap were examined. A total of 955 unigenes and 136 proteins were found to be differentially expressed between the healthy and infected phloem sap. These differentially expressed mRNAs and proteins are involved in signaling, hormone metabolism, stress responses, etc. Interestingly, we found that both the mRNA and protein levels of the major latex protein-like 329 (MuMLPL329) gene were increased in the infected phloem saps. Expression of the MuMLPL329 gene was induced by pathogen inoculation and was responsive to jasmonic acid. Ectopic expression of MuMLPL329 in Arabidopsis enhances transgenic plant resistance to Botrytis cinerea, Pseudomonas syringae pv tomato DC3000 (Pst. DC3000) and phytoplasma. Further analysis revealed that MuMLPL329 can enhance the expression of some defense genes and might be involved in altering flavonoid content resulting in increased resistance of plants to pathogen infection. Finally, the roles of the differentially expressed mRNAs and proteins and the potential molecular mechanisms of their changes were discussed. It was likely that the phytoplasma-responsive mRNAs and proteins in the phloem saps were involved in multiple pathways of mulberry responses to phytoplasma-infection, and their changes may be partially responsible for some symptoms in the phytoplasma infected plants.


Assuntos
Morus/genética , Morus/microbiologia , Floema/metabolismo , Floema/microbiologia , Phytoplasma/fisiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/microbiologia , Regulação para Baixo/genética , Flavonoides/análise , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Morus/metabolismo , Fenótipo , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Pseudomonas syringae/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Tabaco/genética , Regulação para Cima/genética
11.
Microbiologyopen ; 7(2): e00555, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29536644

RESUMO

A better understanding of tree-based intercropping effects on soil physicochemical properties and bacterial community has a potential contribution to improvement of agroforestry productivity and sustainability. In this study, we investigated the effects of mulberry/alfalfa intercropping on soil physicochemical properties and soil bacterial community by MiSeq sequencing of bacterial 16S rRNA gene. The results showed a significant increase in the contents of available nitrogen, available phosphate, available potassium, and total carbon in the rhizosphere soil of the intercropped alfalfa. Sequencing results showed that intercropping improved bacterial richness and diversity of mulberry and alfalfa based on richness estimates and diversity indices. The relative abundances of Proteobacteria, Actinobacteria, and Firmicutes were significantly higher in intercropping mulberry than in monoculture mulberry; and the abundances of Proteobacteria, Bacteroidetes, and Gemmatimonadetes in the intercropping alfalfa were markedly higher than that in monoculture alfalfa. Bacterial taxa with soil nutrients cycling were enriched in the intercropping system. There were higher relative abundances of Bacillus (0.32%), Pseudomonas (0.14%), and Microbacterium (0.07%) in intercropping mulberry soil, and Bradyrhizobium (1.0%), Sphingomonas (0.56%), Pseudomonas (0.18%), Microbacterium (0.15%), Rhizobium (0.09%), Neorhizobium (0.08%), Rhodococcus (0.06%), and Burkholderia (0.04%) in intercropping alfalfa soil. Variance partition analysis showed that planting pattern contributed 26.7% of the total variation of bacterial community, and soil environmental factors explained approximately 56.5% of the total variation. This result indicated that the soil environmental factors were more important than the planting pattern in shaping the bacterial community in the field soil. Overall, mulberry/alfalfa intercropping changed soil bacterial community, which was related to changes in soil total carbon, available phosphate, and available potassium.


Assuntos
Actinobacteria/isolamento & purificação , Bacteroidetes/isolamento & purificação , Firmicutes/isolamento & purificação , Medicago sativa/microbiologia , Morus/microbiologia , Proteobactérias/isolamento & purificação , Solo/química , Actinobacteria/classificação , Actinobacteria/genética , Carga Bacteriana , Bacteroidetes/classificação , Bacteroidetes/genética , Carbono/análise , Firmicutes/classificação , Firmicutes/genética , Microbiota/genética , Nitrogênio/análise , Fosfatos/análise , Potássio/análise , Proteobactérias/classificação , Proteobactérias/genética , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do Solo
12.
Food Chem ; 250: 148-154, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29412905

RESUMO

This study was conducted to investigate the effect of lactic acid bacteria (LAB) strains on color properties, phenolic profile and antioxidant activities of mulberry juice. Mulberry juice was separately fermented at 37 °C for 36 h using Lactobacillus plantarum, Lactobacillus acidophilus and Lactobacillus paracasei. The results showed that lactic acid fermentation impacted on the color of the juice. Moreover, the study demonstrated that LABs impacted on the phenolic profile of the juice. Syringic acid, cyanidin-3-O-rutinoside and quercetin were the predominant phenolic acid, anthocyanin and flavonol respectively in the lactic-acid-fermented mulberry juice. The degree of radical scavenging activity was species-specific with the L. plantarum fermented juice having the highest radical scavenging activities. The correlation analysis demonstrated that flavonols and anthocyanins were mostly responsible for the increased in 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) scavenging activity while phenolic acids and flavonols were responsible for 2,2-diphenyl-1-picrylhydrazyl scavenging activity and reducing power capacity of the fermented juice.


Assuntos
Fermentação , Sucos de Frutas e Vegetais/microbiologia , Ácido Láctico/metabolismo , Lactobacillus/metabolismo , Morus/metabolismo , Morus/microbiologia , Fenóis/análise , Antioxidantes/análise , Antioxidantes/química , Cor , Morus/química , Fenóis/química
13.
Sci Rep ; 8(1): 812, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339758

RESUMO

A wide range of miRNAs have been identified as phloem-mobile molecules that play important roles in coordinating plant development and physiology. Phytoplasmas are associated with hundreds of plant diseases, and the pathogenesis involved in the interactions between phytoplasmas and plants is still poorly understood. To analyse the molecular mechanisms of phytoplasma pathogenicity, the miRNAs profiles in mulberry phloem saps were examined in response to phytoplasma infection. A total of 86 conserved miRNAs and 19 novel miRNAs were identified, and 30 conserved miRNAs and 13 novel miRNAs were differentially expressed upon infection with phytoplasmas. The target genes of the differentially expressed miRNAs are involved in diverse signalling pathways showing the complex interactions between mulberry and phytoplasma. Interestingly, we found that mul-miR482a-5p was up-regulated in the infected phloem saps, and grafting experiments showed that it can be transported from scions to rootstock. Based on the results, the complexity and roles of the miRNAs in phloem sap and the potential molecular mechanisms of their changes were discussed. It is likely that the phytoplasma-responsive miRNAs in the phloem sap modulate multiple pathways and work cooperatively in response to phytoplasma infection, and their expression changes may be responsible for some symptoms in the infected plants.


Assuntos
Interações Hospedeiro-Patógeno , MicroRNAs/análise , Morus/microbiologia , Floema/microbiologia , Phytoplasma/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Perfilação da Expressão Gênica , Morus/genética , Floema/genética , Phytoplasma/patogenicidade , Doenças das Plantas/genética , Análise de Sequência de RNA
14.
PLoS One ; 12(6): e0179189, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28640826

RESUMO

Chalcone synthase (CHS) is an essential enzyme in the phenylpropanoid pathway that catalyzes the first step in flavonoid biosynthesis in plants under diverse environmental stress. We have used CHS as a candidate gene in mulberry and developed Single Nucleotide Polymorphism (SNP) based co-dominant Cleaved Amplified Polymorphic Sequence (CAPS) marker associated with the CHS locus. The segregation pattern of the marker was studied in an F1 population derived from a hybridization program between two mulberry genotypes showing polymorphism for the CHS locus. Differential CHS activity of the recombinants has been correlated with the segregation pattern of the marker. Homology modelling and docking studies are performed for both the identified CHS alleles and correlated with respective CHS activity. Phenotyping of Powdery Mildew infected F1 population indicated a probable association with the CAPS marker.


Assuntos
Aciltransferases/genética , Alelos , Marcadores Genéticos/genética , Morus/enzimologia , Morus/genética , Polimorfismo de Nucleotídeo Único , Aciltransferases/química , Sequência de Aminoácidos , Simulação de Acoplamento Molecular , Morus/microbiologia , Fenótipo , Doenças das Plantas/microbiologia , Conformação Proteica
15.
Lett Appl Microbiol ; 64(6): 459-468, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28378512

RESUMO

The objective of the present study was to evaluate the effect of mulberry leaf extract (ME) fermented with Lactobacillus acidophilus A4 (A4) on intestinal mucositis induced by 5-fluorouracil (5-FU) in a rat model. Male Wistar rats were gavaged with A4, ME, fermented mulberry leaf extract FME) or lafutidine (LAF) for 10 days and injected intraperitoneally with 5-FU (150 mg kg-1 ) or saline (normal control) on day 7 to induce mucositis. After euthanizing the animals, their small and large intestines were removed for evaluation of histopathologic parameters, myeloperoxidase (MPO) activity, mucin content, and mRNA expression of the mucin gene and pro-inflammatory cytokine interleukin (IL)-1ß. 5-FU induced significant weight loss, shortened villi height, and increased histological severity, IL-1ß expression, and MPO activity compared to the normal control group. These pathological changes were markedly ameliorated by treatment with A4, ME and FME. These treatments also stimulated MUC2 and MUC5AC gene expression and mucin production, and reduced IL-1ß expression and MPO level. Interestingly, FME had the greatest protective effect on 5-FU-induced mucositis in rats. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results suggest that fermented mulberry leaf extract (ME) may provide synergistic therapeutic benefits of both probiotics and natural plant extracts in prevention of 5-fluorouracil-induced mucositis. These impacts are particularly significant given the induction of MUC2 and MUC5AC gene expressions for production of mucins and the reduction of pro-inflammatory cytokine interleukin-1ß in gut environments. Therefore, we proposed that enhanced functionality of ME by fermentation of Lactobacillus acidophilus A4 can be applied as food-grade adjuncts for mucositis therapy and prevention in food industry.


Assuntos
Fluoruracila/efeitos adversos , Lactobacillus acidophilus/metabolismo , Morus/microbiologia , Mucosite/tratamento farmacológico , Probióticos/administração & dosagem , Acetamidas/administração & dosagem , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Fermentação , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Intestinos/microbiologia , Masculino , Mucosite/induzido quimicamente , Piperidinas/administração & dosagem , Folhas de Planta/microbiologia , Piridinas/administração & dosagem , Ratos , Ratos Wistar
16.
Nat Prod Commun ; 12(4): 479-482, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30520575

RESUMO

Three Agrobacterium rhizogenes strains were tested for their ability to transform the plant Mois alba L. and to induce production of the secondary metabolites betulin and betulinic acid. All the tested strains of A. rhizogenes (R1601, LBA9402 and R1000) were able to induce hairy root formation in leaf tissue explants. Strain LBA9402 had the highest rate of infection (92.7% ± 8.8%), whereas strain R1601 had the lowest rate (87.4% ± 9.3%). The highest number of hairy roots per explant (5.6 ±0.5) and the greatest root length (2.4 ± 0.2 mm) were obtained with strain LBA9402. We also evaluated dry weight (a measure of growth) and betulin and betulinic acid production in hairy roots and found that the highest growth (167.8 ± 14.5 mg/flask) occurred after infection with strain LBA9402. Furthermore the highest production of betulin (5.4 ± 0.4 mg/g dry weight) and betulinic acid (2.3 ± 0.2 mg/g dry weight) was noted using strain LBA9402. Among three elicitors, yeast extract showed the highest induction of betulin production (8.7 ± 0.4 mg/g) and silver nitrate induced the highest yield of betulinic acid (4.1 ± 0.2 mg/g). Our study showed that A. rhizogenes strain LBA9402 was the most effective of the three tested strains for production-of transformed root cultures and betulin and betulinic acid.


Assuntos
Agrobacterium/fisiologia , Morus/metabolismo , Raízes de Plantas/microbiologia , Triterpenos/metabolismo , Morus/classificação , Morus/crescimento & desenvolvimento , Morus/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
17.
Wei Sheng Wu Xue Bao ; 57(3): 388-98, 2017 Mar 04.
Artigo em Chinês | MEDLINE | ID: mdl-29756437

RESUMO

Objective: We studied the biological and the epidemiological characteristics of the pathogen of hypertrophy sorosis scleroteniosis, which is a devastating fungal disease of mulberry. Methods: We studied the asexual and sexual reproductive phase stages of C. shiraiana, including the infection ability of hyphal, dormancy of sclerotia, the structures, release, number and germination of ascospores from apothecia, as well as the phenology of sclerotial germination. Results: In C. shiraiana, hyphae had no infection ability toward the female flowers of mulberry. Sclerotia of C. shiraiana must undergo cold treatment above 6 weeks, then the dormancy-breaking sclerotia could germinate to apothecia. One to fifteen apothecia were germinated from one sclerotium, and the number of ascospores in a 1.5 cm diameter apothecia could contain up to (5.6-6.3)×107. Ascospore C. shiraiana had significantly higher germination rates in acid than in neutral and alkaline environments. From late January to middle April, sclerotia germinated to apothecia, and got the highest value in the middle of March. Conclusion: C. shiraiana is a formidable pathogen to cause epidemic disease and damage in mulberry.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Morus/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/classificação , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Hifas/classificação , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/isolamento & purificação , Esporos Fúngicos/classificação , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/isolamento & purificação
18.
Food Sci Technol Int ; 23(2): 119-127, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27413016

RESUMO

The aim of this study was to investigate the effects of high hydrostatic pressure and thermal processing on microbiological quality, bioactive compounds, antioxidant activity, and volatile profile of mulberry juice. High hydrostatic pressure processing at 500 MPa for 10 min reduced the total viable count from 4.38 log cfu/ml to nondetectable level and completely inactivated yeasts and molds in raw mulberry juice, ensuring the microbiological safety as thermal processing at 85 ℃ for 15 min. High hydrostatic pressure processing maintained significantly (p < 0.05) higher contents of total phenolic, total flavonoid and resveratrol, and antioxidant activity of mulberry juice than thermal processing. The main volatile compounds of mulberry juice were aldehydes, alcohols, and ketones. High hydrostatic pressure processing enhanced the volatile compound concentrations of mulberry juice while thermal processing reduced them in comparison with the control. These results suggested that high hydrostatic pressure processing could be an alternative to conventional thermal processing for production of high-quality mulberry juice.


Assuntos
Antioxidantes/química , Bebidas/análise , Manipulação de Alimentos/métodos , Frutas/química , Morus/química , Compostos Orgânicos Voláteis/química , Bebidas/microbiologia , Contagem de Colônia Microbiana , Contaminação de Alimentos/análise , Manipulação de Alimentos/instrumentação , Microbiologia de Alimentos , Inocuidade dos Alimentos , Frutas/microbiologia , Fungos/isolamento & purificação , Temperatura Alta , Pressão Hidrostática , Morus/microbiologia , Extratos Vegetais/química
19.
Animal ; 11(5): 755-761, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27804905

RESUMO

To alleviate adverse effects of heavy metal toxicity, diverse range of removing methods have been suggested, that is usage of algae, agricultural by-products and microorganisms. Here, we investigated lead (Pb) biosorption efficacy by two lactic acid bacteria species (LABs) in broiler chickens. In an in vitro study, Pb was added to culture medium of LABs (Lactobacillus pentosus ITA23 and Lactobacillus acidipiscis ITA44) in the form of lead acetate. Results showed that these LABs were able to absorb more than 90% of Pb from the culture medium. In follow-up in vivo study, LABs mixture was added to diet of broiler chickens contained lead acetate (200 mg/kg). Pb exposure significantly increased lipid peroxidation and decreased antioxidant activity in liver. The changes were recovered back to normal level upon LABs supplementation. Moreover, addition of LABs eliminated the liver tissue lesion and the suppressed performance in Pb-exposed chicks. Analysis of liver and serum samples indicated 48% and 28% reduction in Pb accumulation, respectively. In conclusion, results of this study showed that L. pentosus ITA23 and L. acidipiscis ITA44 effectively biosorb and expel dietary Pb from gastrointestinal tract of chickens.


Assuntos
Galinhas/metabolismo , Poluentes Ambientais/metabolismo , Lactobacillus/química , Chumbo/metabolismo , Probióticos/farmacologia , Ração Animal/análise , Animais , Dieta/veterinária , Masculino , Morus/microbiologia , Probióticos/administração & dosagem , Distribuição Aleatória , Silagem/microbiologia
20.
Phytopathology ; 107(3): 353-361, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27870600

RESUMO

Scleromitrula shiraiana causes the popcorn disease in mulberry trees resulting in severe economic losses. Previous studies have shown that melanin may play a vital role in establishing the pathogenicity of fungi. In the present study, we identified the melanin produced in S. shiraiana belongs to DHN melanin by gas chromatography-mass spectrometry, and cloned the laccase Sh-lac, a potential DHN melanin biosynthesis gene from S. shiraiana. We obtained two stable Sh-lac silenced transformants using RNAi, ilac-4 and 8 to elucidate the DHN melanin biosynthetic pathway in S. shiraiana. The melanin production of ilac-4 and ilac-8 was significantly reduced, and their vegetative growth was also suppressed. Results such as these led to a proposal that Sh-lac played a key role in DHN melanin formation in S. shiraiana and may function differentially with other melanin biosynthetic genes. The inhibition of melanin was accompanied by the decrease of oxalic acid and the adhesion of hyphae was impaired. Our results indicated that laccase was an important enzyme in the synthesis of melanin and might play a critical role in the pathogenicity of S. shiraiana.


Assuntos
Ascomicetos/enzimologia , Lacase/genética , Melaninas/metabolismo , Morus/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Lacase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA