Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.773
Filtrar
1.
Mol Cell ; 80(1): 140-155.e6, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007254

RESUMO

The tissue-specific deployment of highly extended neural 3' UTR isoforms, generated by alternative polyadenylation (APA), is a broad and conserved feature of metazoan genomes. However, the factors and mechanisms that control neural APA isoforms are not well understood. Here, we show that three ELAV/Hu RNA binding proteins (Elav, Rbp9, and Fne) have similar capacities to induce a lengthened 3' UTR landscape in an ectopic setting. These factors promote accumulation of chromatin-associated, 3' UTR-extended, nascent transcripts, through inhibition of proximal polyadenylation site (PAS) usage. Notably, Elav represses an unannotated splice isoform of fne, switching the normally cytoplasmic Fne toward the nucleus in elav mutants. We use genomic profiling to reveal strong and broad loss of neural APA in elav/fne double mutant CNS, the first genetic background to largely abrogate this distinct APA signature. Overall, we demonstrate how regulatory interplay and functionally overlapping activities of neural ELAV/Hu RBPs drives the neural APA landscape.


Assuntos
Regiões 3' não Traduzidas/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas ELAV/metabolismo , Neurônios/metabolismo , Processamento Alternativo/genética , Motivos de Aminoácidos , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Proteínas ELAV/química , Larva/metabolismo , Mutação/genética , Poli A/metabolismo , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
PLoS Pathog ; 16(9): e1008843, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32886723

RESUMO

ß- and γ-herpesviruses include the oncogenic human viruses Kaposi's sarcoma-associated virus (KSHV) and Epstein-Barr virus (EBV), and human cytomegalovirus (HCMV), which is a significant cause of congenital disease. Near the end of their replication cycle, these viruses transcribe their late genes in a manner distinct from host transcription. Late gene transcription requires six virally encoded proteins, one of which is a functional mimic of host TATA-box-binding protein (TBP) that is also involved in recruitment of RNA polymerase II (Pol II) via unknown mechanisms. Here, we applied biochemical protein interaction studies together with electron microscopy-based imaging of a reconstituted human preinitiation complex to define the mechanism underlying Pol II recruitment. These data revealed that the herpesviral TBP, encoded by ORF24 in KSHV, makes a direct protein-protein contact with the C-terminal domain of host RNA polymerase II (Pol II), which is a unique feature that functionally distinguishes viral from cellular TBP. The interaction is mediated by the N-terminal domain (NTD) of ORF24 through a conserved motif that is shared in its ß- and γ-herpesvirus homologs. Thus, these herpesviruses employ an unprecedented strategy in eukaryotic transcription, wherein promoter recognition and polymerase recruitment are facilitated by a single transcriptional activator with functionally distinct domains.


Assuntos
Herpesvirus Humano 8/metabolismo , RNA Polimerase II/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Células HEK293 , Herpesvirus Humano 8/genética , Humanos , Ligação Proteica , Domínios Proteicos , RNA Polimerase II/genética , Proteína de Ligação a TATA-Box/genética , Proteínas Virais/genética
3.
Int J Antimicrob Agents ; 56(3): 106119, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32738306

RESUMO

Coronavirus disease 2019 (COVID-19) is a highly transmissible viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical trials have reported improved outcomes resulting from an effective reduction or absence of viral load when patients were treated with chloroquine (CQ) or hydroxychloroquine (HCQ). In addition, the effects of these drugs were improved by simultaneous administration of azithromycin (AZM). The receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein binds to the cell surface angiotensin-converting enzyme 2 (ACE2) receptor, allowing virus entry and replication in host cells. The viral main protease (Mpro) and host cathepsin L (CTSL) are among the proteolytic systems involved in SARS-CoV-2 S protein activation. Hence, molecular docking studies were performed to test the binding performance of these three drugs against four targets. The findings showed AZM affinity scores (ΔG) with strong interactions with ACE2, CTSL, Mpro and RBD. CQ affinity scores showed three low-energy results (less negative) with ACE2, CTSL and RBD, and a firm bond score with Mpro. For HCQ, two results (ACE2 and Mpro) were firmly bound to the receptors, however CTSL and RBD showed low interaction energies. The differences in better interactions and affinity between HCQ and CQ with ACE2 and Mpro were probably due to structural differences between the drugs. On other hand, AZM not only showed more negative (better) values in affinity, but also in the number of interactions in all targets. Nevertheless, further studies are needed to investigate the antiviral properties of these drugs against SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Azitromicina/química , Betacoronavirus/química , Catepsina L/química , Cloroquina/química , Cisteína Endopeptidases/química , Hidroxicloroquina/química , Peptidil Dipeptidase A/química , Glicoproteína da Espícula de Coronavírus/química , Proteínas não Estruturais Virais/química , Motivos de Aminoácidos , Antivirais/química , Azitromicina/farmacologia , Betacoronavirus/metabolismo , Sítios de Ligação , Catepsina L/antagonistas & inibidores , Catepsina L/metabolismo , Cloroquina/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Hidroxicloroquina/farmacologia , Simulação de Acoplamento Molecular , Pandemias , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Termodinâmica , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Ligação Viral/efeitos dos fármacos
4.
Nat Commun ; 11(1): 3974, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32769995

RESUMO

Bacillus thuringiensis Vip3 (Vegetative Insecticidal Protein 3) toxins are widely used in biotech crops to control Lepidopteran pests. These proteins are produced as inactive protoxins that need to be activated by midgut proteases to trigger cell death. However, little is known about their three-dimensional organization and activation mechanism at the molecular level. Here, we have determined the structures of the protoxin and the protease-activated state of Vip3Aa at 2.9 Å using cryo-electron microscopy. The reconstructions show that the protoxin assembles into a pyramid-shaped tetramer with the C-terminal domains exposed to the solvent and the N-terminal region folded into a spring-loaded apex that, after protease activation, drastically remodels into an extended needle by a mechanism akin to that of influenza haemagglutinin. These results provide the molecular basis for Vip3 activation and function, and serves as a strong foundation for the development of more efficient insecticidal proteins.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/ultraestrutura , Modelos Moleculares , Domínios Proteicos , Estrutura Secundária de Proteína , Tripsina/metabolismo
5.
J Mol Graph Model ; 100: 107697, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32739642

RESUMO

Angiotensin-converting enzyme 2 (ACE2) is a membrane-bound zinc metallopeptidase that generates the vasodilatory peptide angiotensin 1-7 and thus performs a protective role in heart disease. It is considered an important therapeutic target in controlling the COVID-19 outbreak, since SARS-CoV-2 enters permissive cells via an ACE2-mediated mechanism. The present in silico study attempted to repurpose existing drugs for use as prospective viral-entry inhibitors targeting human ACE2. Initially, a clinically approved drug library of 7,173 ligands was screened against the receptor using molecular docking, followed by energy minimization and rescoring of docked ligands. Finally, potential binders were inspected to ensure molecules with different scaffolds were engaged in favorable contacts with both the metal cofactor and the critical residues lining the receptor's active site. The results of the calculations suggest that lividomycin, burixafor, quisinostat, fluprofylline, pemetrexed, spirofylline, edotecarin, and diniprofylline emerge as promising repositionable drug candidates for stabilizing the closed (substrate/inhibitor-bound) conformation of ACE2, thereby shifting the relative positions of the receptor's critical exterior residues recognized by SARS-CoV-2. This study is among the rare ones in the relevant scientific literature to search for potential ACE2 inhibitors. In practical terms, the drugs, unmodified as they are, may be introduced into the therapeutic armamentarium of the ongoing fight against COVID-19 now, or their scaffolds may serve as rich skeletons for designing novel ACE2 inhibitors in the near future.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Antivirais/química , Betacoronavirus/química , Peptidil Dipeptidase A/química , Bibliotecas de Moléculas Pequenas/química , Motivos de Aminoácidos , Betacoronavirus/enzimologia , Carbazóis/química , Domínio Catalítico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Reposicionamento de Medicamentos , Difilina/análogos & derivados , Difilina/química , Interações Hospedeiro-Patógeno , Humanos , Ácidos Hidroxâmicos/química , Ligantes , Simulação de Acoplamento Molecular , Pandemias , Paromomicina/análogos & derivados , Paromomicina/química , Pemetrexede/química , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Termodinâmica
6.
PLoS Genet ; 16(8): e1008569, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32810145

RESUMO

Correct bioriented attachment of sister chromatids to the mitotic spindle is essential for chromosome segregation. In budding yeast, the conserved protein shugoshin (Sgo1) contributes to biorientation by recruiting the protein phosphatase PP2A-Rts1 and the condensin complex to centromeres. Using peptide prints, we identified a Serine-Rich Motif (SRM) of Sgo1 that mediates the interaction with condensin and is essential for centromeric condensin recruitment and the establishment of biorientation. We show that the interaction is regulated via phosphorylation within the SRM and we determined the phospho-sites using mass spectrometry. Analysis of the phosphomimic and phosphoresistant mutants revealed that SRM phosphorylation disrupts the shugoshin-condensin interaction. We present evidence that Mps1, a central kinase in the spindle assembly checkpoint, directly phosphorylates Sgo1 within the SRM to regulate the interaction with condensin and thereby condensin localization to centromeres. Our findings identify novel mechanisms that control shugoshin activity at the centromere in budding yeast.


Assuntos
Adenosina Trifosfatases/metabolismo , Centrômero/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
7.
Mutat Res ; 785: 108319, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32800270

RESUMO

Cleft lip and palate (CL/P) is among the most common congenital malformations and affects 1 in 700 newborns. CL/P is caused by genetic and environmental factors (maternal smoking, alcohol or drug use and others). Many genes and loci were associated with cleft lip/palate but the amount of heterogeneity justifies identifying new causal genes and variants. AHRR (Aryl-Hydrocarbon Receptor Repressor) gene has recently been related to CL/P however, few functional studies analyze the genotypephenotype interaction of AHRR with CL/P. Several studies associate the molecular pathway of AHRR to CL/P which indicates this gene as a functional candidate in CL/P etiology. METHODS: Systematic Literature Review was performed using PUBMED database with the keywords cleft lip, cleft palate, orofacial cleft, AHRR and synonyms. SLR resulted in 37 included articles. RESULTS: AHRR is a positional and functional candidate gene for CL/P. In silico analysis detected interactions with other genes previously associated to CL/P like ARNT and CYP1A1. AHRR protein regulates cellular toxicity through TCDD mediated AHR pathway. Exposure to TCDD in animal embryos is AHR mediated and lead to cleft palate due to palate fusion failure and post fusion rupture. AHRR regulates cellular growth and differentiation, fundamental to lip and palatogenesis. AHRR decreases carcinogenesis and recently a higher tumor risk has been described in CL/P patients and families. AHRR is also a smoking biomarker due to changed methylation sites found in smokers DNA although folate intake may partially revert these methylation alterations. This corroborates the role of maternal smoking and lack of folate supplementation as risk factors for CL/P. CONCLUSION: This research identified the importance of AHRR in dioxin response and demonstrated an example of genetic and environmental interaction, indispensable in the development of many complex diseases.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fenda Labial/genética , Fissura Palatina/genética , Proteínas Repressoras/genética , Fumar/efeitos adversos , Motivos de Aminoácidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores/metabolismo , Metilação de DNA , Suplementos Nutricionais , Feminino , Ácido Fólico/metabolismo , Estudos de Associação Genética , Humanos , Recém-Nascido , Masculino , Modelos Moleculares , Domínios Proteicos , Isoformas de RNA/genética , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Fatores de Risco
8.
PLoS One ; 15(8): e0237177, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760115

RESUMO

LEA3 proteins, a family of abiotic stress proteins, are defined by the presence of a tryptophan-containing motif, which we name the W-motif. We use Pfam LEA3 sequences to search the Phytozome database to create a W-motif definition and a LEA3 sequence dataset. A comprehensive analysis of these sequences revealed four N-terminal motifs, as well as two previously undiscovered C-terminal motifs that contain conserved acidic and hydrophobic residues. The general architecture of the LEA3 sequences consisted of an N-terminal motif with a potential mitochondrial transport signal and the twin-arginine motif cut-site, followed by a W-motif and often a C-terminal motif. Analysis of species distribution of the motifs showed that one architecture was found exclusively in Commelinids, while two were distributed fairly evenly over all species. The physiochemical properties of the different architectures showed clustering in a relatively narrow range compared to the previously studied dehydrins. The evolutionary analysis revealed that the different sequences grouped into clades based on architecture, and that there appear to be at least two distinct groups of LEA3 proteins based on their architectures and physiochemical properties. The presence of LEA3 proteins in non-vascular plants but their absence in algae suggests that LEA3 may have arisen in the evolution of land plants.


Assuntos
Sequência Conservada , Proteínas de Plantas/genética , Motivos de Aminoácidos , Evolução Molecular , Proteínas de Plantas/química , Plantas/genética , Domínios Proteicos
9.
BMC Bioinformatics ; 21(1): 340, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738892

RESUMO

BACKGROUND: Ribosome profiling has been widely used for studies of translation under a large variety of cellular and physiological contexts. Many of these studies have greatly benefitted from a series of data-mining tools designed for dissection of the translatome from different aspects. However, as the studies of translation advance quickly, the current toolbox still falls in short, and more specialized tools are in urgent need for deeper and more efficient mining of the important and new features of the translation landscapes. RESULTS: Here, we present RiboMiner, a bioinformatics toolset for mining of multi-dimensional features of the translatome with ribosome profiling data. RiboMiner performs extensive quality assessment of the data and integrates a spectrum of tools for various metagene analyses of the ribosome footprints and for detailed analyses of multiple features related to translation regulation. Visualizations of all the results are available. Many of these analyses have not been provided by previous methods. RiboMiner is highly flexible, as the pipeline could be easily adapted and customized for different scopes and targets of the studies. CONCLUSIONS: Applications of RiboMiner on two published datasets did not only reproduced the main results reported before, but also generated novel insights into the translation regulation processes. Therefore, being complementary to the current tools, RiboMiner could be a valuable resource for dissections of the translation landscapes and the translation regulations by mining the ribosome profiling data more comprehensively and with higher resolution. RiboMiner is freely available at https://github.com/xryanglab/RiboMiner and https://pypi.org/project/RiboMiner .


Assuntos
Biologia Computacional/métodos , Biossíntese de Proteínas , Ribossomos/metabolismo , Software , Motivos de Aminoácidos , Sequência de Aminoácidos , Aminoácidos/genética , Códon/genética , Análise de Dados , Mineração de Dados
10.
PLoS One ; 15(8): e0238032, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32841304

RESUMO

Longan (Dimocarpus longan Lour.) is an important commercial fruit tree in southern China. The embryogenesis of longan affects the quality and yield of fruit. A large number of alternative splicing events occurs during somatic embryogenesis (SE), which is regulated by serine/arginine-rich (SR) proteins. However, the functions of SR proteins in longan are poorly understood. In this study, 21 Dlo-SR gene family members belonging to six subfamilies were identified, among which Dlo-RSZ20a, Dlo-SR30, Dlo-SR17, Dlo-SR53 and Dlo-SR32 were localized in the nucleus, Dlo-RSZ20b, Dlo-RSZ20c, Dlo-RSZ20d, Dlo-SC18, Dlo-RS2Z29, Dlo-SCL41, and Dlo-SR33 were localized in chloroplasts, and Dlo-RS43, Dlo-SC33, Dlo-SC37, Dlo-RS2Z33, Dlo-RS2Z16, Dlo-RS2Z24, Dlo-SCL43, Dlo-SR112, and Dlo-SR59 were localized in the nucleus and chloroplasts. The Dlo-SR genes exhibited differential expression patterns in different tissues of longan. The transcript levels of Dlo-RSZ20a, Dlo-SC18, Dlo-RS2Z29, DLo-SR59, Dlo-SR53, and Dlo-SR17 were low in all analyzed tissues, whereas Dlo-RS43, Dlo-RS2Z16, Dlo-RS2Z24, and Dlo-SR30 were highly expressed in all tissues. To clarify their function during SE, the transcript levels of Dlo-SR genes were analyzed at different four stages of SE, comprising non-embryonic callus (NEC), friable-embryogenic callus (EC), incomplete compact pro-embryogenic culture (ICpEC) and globular embryo (GE). Interestingly, the transcript levels of Dlo-RS2Z29 and Dlo-SR112 were increased in embryogenic cells compared with the NEC stage, whereas transcript levels of Dlo-RSZ20a, Dlo-RS43, Dlo-SC37, and Dlo-RS2Z16 were especially increased at the GE stage compared with the other stages. Alternative splicing events of Dlo-SR mRNA precursors (pre-mRNAs) was detected during SE, with totals of 41, 29, 35, and 44 events detected during NEC, EC, ICpEC, and GE respectively. Protein-protein interaction analysis showed that SR proteins were capable of interaction with each other. The results indicate that the alternative splicing of Dlo-SR pre-mRNAs occurs during SE and that Dlo-SR proteins may interact to regulate embryogenesis of longan.


Assuntos
Perfilação da Expressão Gênica , Genômica , Proteínas de Plantas/genética , Sapindaceae/genética , Motivos de Aminoácidos , Sequência Conservada , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Técnicas de Embriogênese Somática de Plantas , Regiões Promotoras Genéticas/genética , Mapeamento de Interação de Proteínas , Sapindaceae/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(33): 19661-19663, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747537

RESUMO

The structural unit of eukaryotic chromatin is a nucleosome, comprising two histone H2A-H2B heterodimers and one histone (H3-H4)2 tetramer, wrapped around by ∼146 bp of DNA. The N-terminal flexible histone tails stick out from the histone core and have extensive posttranslational modifications, causing epigenetic changes of chromatin. Although crystal and cryogenic electron microscopy structures of nucleosomes are available, the flexible tail structures remain elusive. Using NMR, we have examined the dynamics of histone H3 tails in nucleosomes containing unmodified and tetra-acetylated H4 tails. In unmodified nucleosome, the H3 tail adopts a dynamic equilibrium structure between DNA-contact and reduced-contact states. In acetylated H4 nucleosome, however, the H3 tail equilibrium shifts to a mainly DNA-contact state with a minor reduced-contact state. The acetylated H4 tail is dynamically released from its own DNA-contact state to a reduced-contact state, while the H3 tail DNA-contact state becomes major. Notably, H3 K14 in the acetylated H4 nucleosome is much more accessible to acetyltransferase Gcn5 relative to unmodified nucleosome, possibly due to the formation of a favorable H3 tail conformation for Gcn5. In summary, each histone tail adopts a characteristic dynamic state but regulates one other, probably creating a histone tail network even on a nucleosome.


Assuntos
Histonas/química , Histonas/metabolismo , Nucleossomos/metabolismo , Acetilação , Motivos de Aminoácidos , DNA/genética , DNA/metabolismo , Histonas/genética , Humanos , Conformação de Ácido Nucleico , Nucleossomos/genética
12.
Virology ; 548: 136-151, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32838935

RESUMO

Bovine herpesvirus envelope glycoprotein E (gE) and, in particular, the gE cytoplasmic tail (CT) is a virulence determinant in cattle. Also, the gE CT contributes to virus cell-to-cell spread and anterograde neuronal transport. In this study, our goal was to map the gE CT sub-domains that contribute to virus cell-to-cell spread property. A panel of gE-CT specific mutant viruses was constructed and characterized, in vitro, with respect to their plaque phenotypes, gE recycling and gE basolateral membrane targeting. The results revealed that disruption of the tyrosine-based motifs, 467YTSL470 and 563YTVV566, individually produced smaller plaque phenotypes than the wild type. However, they were slightly larger than the gE CT-null virus plaques. The Y467A mutation affected the gE endocytosis, gE trans-Golgi network (TGN) recycling, and gE virion incorporation properties. However, the Y563A mutation affected only the gE basolateral cell-surface redistribution function. Notably, the simultaneous Y467A/Y563A mutations produced gE CT-null virus-like plaque phenotypes.


Assuntos
Doenças dos Bovinos/virologia , Citoplasma/virologia , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 1/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Animais , Bovinos , Endocitose , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/genética , Proteínas Virais/genética , Rede trans-Golgi/virologia
13.
Nat Commun ; 11(1): 4136, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811816

RESUMO

During cellular reprogramming, the pioneer transcription factor GATA3 binds chromatin, and in a context-dependent manner directs local chromatin remodeling and enhancer formation. Here, we use high-resolution nucleosome mapping in human cells to explore the impact of the position of GATA motifs on the surface of nucleosomes on productive enhancer formation, finding productivity correlates with binding sites located near the nucleosomal dyad axis. Biochemical experiments with model nucleosomes demonstrate sufficiently stable transcription factor-nucleosome interaction to empower cryo-electron microscopy structure determination of the complex at 3.15 Å resolution. The GATA3 zinc fingers efficiently bind their target 5'-GAT-3' sequences in the nucleosome when they are located in solvent accessible, consecutive major grooves without significant changes in nucleosome structure. Analysis of genomic loci bound by GATA3 during reprogramming suggests a correlation of recognition motif sequence and spacing that may distinguish productivity of new enhancer formation.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Fator de Transcrição GATA3/química , Nucleossomos/química , Nucleossomos/genética , Motivos de Aminoácidos/genética , Sítios de Ligação , Sequenciamento de Cromatina por Imunoprecipitação , Microscopia Crioeletrônica , Elementos Facilitadores Genéticos , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/ultraestrutura , Histonas/metabolismo , Humanos , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Ligação Proteica , Dedos de Zinco/genética
14.
Nature ; 584(7821): 479-483, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32788728

RESUMO

Lipopolysaccharide (LPS) resides in the outer membrane of Gram-negative bacteria where it is responsible for barrier function1,2. LPS can cause death as a result of septic shock, and its lipid A core is the target of polymyxin antibiotics3,4. Despite the clinical importance of polymyxins and the emergence of multidrug resistant strains5, our understanding of the bacterial factors that regulate LPS biogenesis is incomplete. Here we characterize the inner membrane protein PbgA and report that its depletion attenuates the virulence of Escherichia coli by reducing levels of LPS and outer membrane integrity. In contrast to previous claims that PbgA functions as a cardiolipin transporter6-9, our structural analyses and physiological studies identify a lipid A-binding motif along the periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides selectively bind to LPS in vitro and inhibit the growth of diverse Gram-negative bacteria, including polymyxin-resistant strains. Proteomic, genetic and pharmacological experiments uncover a model in which direct periplasmic sensing of LPS by PbgA coordinates the biosynthesis of lipid A by regulating the stability of LpxC, a key cytoplasmic biosynthetic enzyme10-12. In summary, we find that PbgA has an unexpected but essential role in the regulation of LPS biogenesis, presents a new structural basis for the selective recognition of lipids, and provides opportunities for future antibiotic discovery.


Assuntos
Membrana Celular/química , Escherichia coli/química , Escherichia coli/patogenicidade , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Amidoidrolases/química , Amidoidrolases/metabolismo , Motivos de Aminoácidos , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/metabolismo , Sítios de Ligação , Membrana Celular/metabolismo , Estabilidade Enzimática , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Genes Essenciais , Hidrolases/química , Hidrolases/metabolismo , Lipídeo A/química , Lipídeo A/metabolismo , Lipopolissacarídeos/biossíntese , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Periplasma/química , Periplasma/metabolismo , Ligação Proteica , Virulência
15.
Nat Commun ; 11(1): 4171, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820176

RESUMO

Spiralia is a large, ancient and diverse clade of animals, with a conserved early developmental program but diverse larval and adult morphologies. One trait shared by many spiralians is the presence of ciliary bands used for locomotion and feeding. To learn more about spiralian-specific traits we have examined the expression of 20 genes with protein motifs that are strongly conserved within the Spiralia, but not detectable outside of it. Here, we show that two of these are specifically expressed in the main ciliary band of the mollusc Tritia (also known as Ilyanassa). Their expression patterns in representative species from five more spiralian phyla-the annelids, nemerteans, phoronids, brachiopods and rotifers-show that at least one of these, lophotrochin, has a conserved and specific role in particular ciliated structures, most consistently in ciliary bands. These results highlight the potential importance of lineage-specific genes or protein motifs for understanding traits shared across ancient lineages.


Assuntos
Motivos de Aminoácidos/genética , Cílios/genética , Invertebrados/genética , Proteínas/genética , Animais , Anelídeos/classificação , Anelídeos/genética , Anelídeos/fisiologia , Evolução Biológica , Cílios/fisiologia , Comportamento Alimentar/fisiologia , Perfilação da Expressão Gênica/métodos , Invertebrados/classificação , Invertebrados/fisiologia , Larva/genética , Larva/fisiologia , Locomoção/fisiologia , Moluscos/classificação , Moluscos/genética , Moluscos/fisiologia , Filogenia , Especificidade da Espécie
16.
PLoS Pathog ; 16(8): e1008736, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32745149

RESUMO

Human cytomegalovirus (HCMV) is one of the main causative agents of congenital viral infection in neonates. HCMV infection also causes serious morbidity and mortality among organ transplant patients. Glycoprotein B (gB) is a major target for HCMV neutralizing antibodies, yet the underlying neutralization mechanisms remain largely unknown. Here we report that 3-25, a gB-specific monoclonal antibody previously isolated from a healthy HCMV-positive donor, efficiently neutralized 14 HCMV strains in both ARPE-19 cells and MRC-5 cells. The core epitope of 3-25 was mapped to a highly conserved linear epitope on antigenic domain 2 (AD-2) of gB. A 1.8 Å crystal structure of 3-25 Fab in complex with the peptide epitope revealed the molecular determinants of 3-25 binding to gB at atomic resolution. Negative-staining electron microscopy (EM) 3D reconstruction of 3-25 Fab in complex with de-glycosylated postfusion gB showed that 3-25 Fab fully occupied the gB trimer at the N-terminus with flexible binding angles. Functionally, 3-25 efficiently inhibited HCMV infection at a post-attachment step by interfering with viral membrane fusion, and restricted post-infection viral spreading in ARPE-19 cells. Interestingly, bivalency was required for HCMV neutralization by AD-2 specific antibody 3-25 but not the AD-4 specific antibody LJP538. In contrast, bivalency was not required for HCMV binding by both antibodies. Taken together, our results reveal the structural basis of gB recognition by 3-25 and demonstrate that inhibition of viral membrane fusion and a requirement of bivalency may be common for gB AD-2 specific neutralizing antibody.


Assuntos
Anticorpos Antivirais/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Epitopos/imunologia , Proteínas do Envelope Viral/imunologia , Motivos de Aminoácidos , Anticorpos Neutralizantes/imunologia , Sequência Conservada , Citomegalovirus/química , Citomegalovirus/genética , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/virologia , Epitopos/química , Epitopos/genética , Humanos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Internalização do Vírus
17.
J Transl Med ; 18(1): 281, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32650788

RESUMO

BACKGROUND: The recent outbreak by SARS-CoV-2 has generated a chaos in global health and economy and claimed/infected a large number of lives. Closely resembling with SARS CoV, the present strain has manifested exceptionally higher degree of spreadability, virulence and stability possibly due to some unidentified mutations. The viral spike glycoprotein is very likely to interact with host Angiotensin-Converting Enzyme 2 (ACE2) and transmits its genetic materials and hijacks host machinery with extreme fidelity for self propagation. Few attempts have been made to develop a suitable vaccine or ACE2 blocker or virus-receptor inhibitor within this short period of time. METHODS: Here, attempt was taken to develop some therapeutic and vaccination strategies with a comparison of spike glycoproteins among SARS-CoV, MERS-CoV and the SARS-CoV-2. We verified their structure quality (SWISS-MODEL, Phyre2, and Pymol) topology (ProFunc), motifs (MEME Suite, GLAM2Scan), gene ontology based conserved domain (InterPro database) and screened several epitopes (SVMTrip) of SARS CoV-2 based on their energetics, IC50 and antigenicity with regard to their possible glycosylation and MHC/paratope binding (Vaxigen v2.0, HawkDock, ZDOCK Server) effects. RESULTS: We screened here few pairs of spike protein epitopic regions and selected their energetic, Inhibitory Concentration50 (IC50), MHC II reactivity and found some of those to be very good target for vaccination. A possible role of glycosylation on epitopic region showed profound effects on epitopic recognition. CONCLUSION: The present work might be helpful for the urgent development of a suitable vaccination regimen against SARS CoV-2.


Assuntos
Betacoronavirus/imunologia , Biologia Computacional/métodos , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Epitopos/imunologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Virais/imunologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , Infecções por Coronavirus/prevenção & controle , Glicosilação , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Concentração Inibidora 50 , Anotação de Sequência Molecular , Pandemias , Estrutura Secundária de Proteína , Glicoproteína da Espícula de Coronavírus/química
18.
Nat Commun ; 11(1): 3618, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681106

RESUMO

Global emergencies caused by the severe acute respiratory syndrome coronavirus (SARS-CoV), Middle-East respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV-2 significantly endanger human health. The spike (S) glycoprotein is the key antigen and its conserved S2 subunit contributes to viral entry by mediating host-viral membrane fusion. However, structural information of the post-fusion S2 from these highly pathogenic human-infecting coronaviruses is still lacking. We used single-particle cryo-electron microscopy to show that the post-fusion SARS-CoV S2 forms a further rotated HR1-HR2 six-helix bundle and a tightly bound linker region upstream of the HR2 motif. The structures of pre- and post-fusion SARS-CoV S glycoprotein dramatically differ, resembling that of the Mouse hepatitis virus (MHV) and other class I viral fusion proteins. This structure suggests potential targets for the development of vaccines and therapies against a wide range of SARS-like coronaviruses.


Assuntos
Betacoronavirus/química , Betacoronavirus/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Motivos de Aminoácidos , Coronavirus/química , Coronavirus/classificação , Infecções por Coronavirus/virologia , Microscopia Crioeletrônica , Humanos , Fusão de Membrana , Modelos Moleculares , Pandemias , Pneumonia Viral/virologia , Conformação Proteica , Multimerização Proteica , Internalização do Vírus
19.
PLoS Negl Trop Dis ; 14(7): e0008436, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32639997

RESUMO

Nodding syndrome (NS) is a devastating and enigmatic childhood epilepsy. NS is accompanied by multiple neurological impairments and neuroinflammation, and associated with the parasite Onchocerca volvulus (Ov) and other environmental factors. Moreover, NS seems to be an 'Autoimmune Epilepsy' since: 1. ~50% of NS patients have neurotoxic cross-reactive Ov/Leimodin-I autoimmune antibodies. 2. Our recently published findings: Most (~86%) of NS patients have glutamate-receptor AMPA-GluR3B peptide autoimmune antibodies that bind, induce Reactive Oxygen Species, and kill both neural cells and T cells. Furthermore, NS patient's IgG induce seizures, brain multiple damage alike occurring in brains of NS patients, and elevation of T cells and activated microglia and astrocytes, in brains of normal mice. Human Leukocyte antigen (HLA) class I and II molecules are critical for initiating effective beneficial immunity against foreign microorganisms and contributing to proper brain function, but also predispose to detrimental autoimmunity against self-peptides. We analyzed seven HLA loci, either by next-generation-sequencing or Sequence-Specific-Oligonucleotide-Probe, in 48 NS patients and 51 healthy controls from South Sudan. We discovered that NS associates significantly with both protective HLA haplotype: HLA-B*42:01, C*17:01, DRB1*03:02, DQB1*04:02 and DQA1*04:01, and susceptible motif: Ala24, Glu63 and Phe67, in the HLA-B peptide-binding groove. These amino acids create a hydrophobic and sterically closed peptide-binding HLA pocket, favoring proline residue. Our findings suggest that immunogenetic fingerprints in HLA peptide-binding grooves tentatively associate with protection or susceptibility to NS. Accordingly, different HLA molecules may explain why under similar environmental factors, only some children, within the same families, tribes and districts, develop NS, while others do not.


Assuntos
Antígenos HLA/química , Antígenos HLA/imunologia , Síndrome do Cabeceio/imunologia , Adolescente , Adulto , Motivos de Aminoácidos , Autoanticorpos/imunologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Suscetibilidade a Doenças , Feminino , Antígenos HLA/genética , Humanos , Masculino , Síndrome do Cabeceio/genética , Síndrome do Cabeceio/prevenção & controle , Receptores de AMPA/genética , Receptores de AMPA/imunologia , Sudão do Sul , Adulto Jovem
20.
Artigo em Inglês | MEDLINE | ID: mdl-32669265

RESUMO

The coronavirus (CoV) disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is a health threat worldwide. Viral main protease (Mpro, also called 3C-like protease [3CLpro]) is a therapeutic target for drug discovery. Herein, we report that GC376, a broad-spectrum inhibitor targeting Mpro in the picornavirus-like supercluster, is a potent inhibitor for the Mpro encoded by SARS-CoV-2, with a half-maximum inhibitory concentration (IC50) of 26.4 ± 1.1 nM. In this study, we also show that GC376 inhibits SARS-CoV-2 replication with a half-maximum effective concentration (EC50) of 0.91 ± 0.03 µM. Only a small portion of SARS-CoV-2 Mpro was covalently modified in the excess of GC376 as evaluated by mass spectrometry analysis, indicating that improved inhibitors are needed. Subsequently, molecular docking analysis revealed that the recognition and binding groups of GC376 within the active site of SARS-CoV-2 Mpro provide important new information for the optimization of GC376. Given that sufficient safety and efficacy data are available for GC376 as an investigational veterinary drug, expedited development of GC376, or its optimized analogues, for treatment of SARS-CoV-2 infection in human is recommended.


Assuntos
Antivirais/química , Betacoronavirus/efeitos dos fármacos , Cisteína Endopeptidases/química , Inibidores de Proteases/química , Pirrolidinas/química , Proteínas não Estruturais Virais/química , Motivos de Aminoácidos , Animais , Antivirais/farmacologia , Betacoronavirus/patogenicidade , Domínio Catalítico , Chlorocebus aethiops , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Expressão Gênica , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Pirrolidinas/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Células Vero , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA