Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.898
Filtrar
1.
Anticancer Res ; 39(10): 5311-5327, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31570425

RESUMO

BACKGROUND/AIM: MiR-221, often described both as an oncogenic microRNA and as a tumour suppressor, targets mRNAs involved in carcinogenesis. While other oncogenic microRNAs showed correlations with prostate cancer cell lines' aggressiveness, miR-221 showed an unusual overexpression in PC3. MATERIALS AND METHODS: CRISPR was used to delete miR-221 from PC3 cells. Analysing the characteristics of PC3miR-221del cells, a reduced growth rate and expression of cell-cycle genes was observed. In global gene expression/ontology analysis of PC3miR-221del cells, cell-cell and cell-substrate adhesion pathways were found to be greatly affected. In addition, reduced levels of adhesion, invasion and motility for PC3miR-221del cells, a change in F-actin localisation and a reduction of EMT markers were observed. RESULTS: The tumour suppressor gene, DIRAS3, was a predicted target of miR-221. In PC3miR-221del cells DIRAS3 was up-regulated at the gene and protein level. Ectopic expression of DIRAS3 in PC3wt cells recapitulated the cellular morphology changes seen in PC3miR-221del cells. DIRAS3 3'UTR was more stable in PC3miR-221del cells, as measured by semi-quantitative PCR and luciferase fusion reporter assays. CONCLUSION: MiR-221 promotes aggressiveness of PC3 cells by down-regulating DIRAS3, and promoting epithelial-to-mesenchymal transition.


Assuntos
Adesão Celular/genética , Movimento Celular/genética , Proliferação de Células/genética , MicroRNAs/genética , Deleção de Sequência/genética , Regiões 3' não Traduzidas/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Oncogenes/genética , Células PC-3 , Neoplasias da Próstata/genética , Regulação para Cima/genética , Proteínas rho de Ligação ao GTP/genética
2.
Anticancer Res ; 39(10): 5381-5391, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31570433

RESUMO

BACKGROUND/AIM: Long noncoding RNAs (lncRNAs) are noncoding transcripts that are >200 nucleotides in length. However, the biological functions and regulation mechanisms of lncRNAs in gastric carcinogenesis remain unknown. MATERIALS AND METHODS: The expression levels of Linc00472 were analyzed by real-time PCR. The DNA methylation status was assessed using Combined Bisulfite Restriction Analysis (COBRA). The biological role of Linc00472 was assessed in AGS cells with Linc00472 overexpression. RESULTS: Using the next-generation sequencing approach, we identified DNA methylation-associated lncRNAs in gastric cancer cells. Among them, the expression level of Linc00472 significantly decreased in gastric cancer tissues compared to adjacent normal tissues. Furthermore, we observed a more frequent hypermethylation of CpG islands upstream of Linc00472 in gastric cancer tissues. Ectopic Linc00472 expression could significantly inhibit gastric cancer cell growth and migration. CONCLUSION: Epigenetically regulated Linc00472 expression plays a crucial role in modulating gastric cancer cell growth and motility.


Assuntos
Metilação de DNA/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Ilhas de CpG/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos
3.
Anticancer Res ; 39(8): 4149-4164, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31366500

RESUMO

BACKGROUND/AIM: Signaling regulation of myeloid zinc finger 1 (MZF1) has been implicated in the progression of many human malignancies; however, the mechanistic action of MZF1 in triple-negative breast cancer (TNBC) progression remains elusive. In this study, the aim was to investigate the molecular mechanisms of MZF1 and its functional role in TNBC cellular migration and invasion. MATERIALS AND METHODS: Hs578T and MDA-MB-231 cells were transfected to stably express the acidic domain of MZF1 (MZF160-72), or were transfected with MZF1-specific or ELK1-specific short hairpin RNA (shRNA). Changes in cell morphology and distributions of cellular proteins were observed and subsequently migration and invasion were measured by wound healing and transwell assays. Expression levels of epithelial-mesenchymal transition (EMT)-related genes were carried out using immunoblotting and quantitative reverse transcription-polymerase chain reaction (RT-PCR) assays. Data of transcriptional regulation were obtained from promoter-luciferase reporter and chromatin immunoprecipitation (ChIP) assays. RESULTS: Herein, we found that MZF1 in high-level MZF1-expressing TNBC cells is associated with cell migration, invasion, and mesenchymal phenotype. MZF1 interacted with the promoter region of insulin-like growth factor 1 receptor (IGF1R) to drive invasion and metastasis of high-level MZF1-expressing TNBC cells. Exogenous expression of the acidic domain of MZF1 repressed the binding of endogenous MZF1 to IGF1R promoter via blocking the interaction with ETS-like gene 1 (ELK1). This blockage not only caused MZF1 protein degradation, but also restrained ELK1 nuclear localization in high-level MZF1-expressing TNBC cells. MZF1, but not ELK1, was necessary for the retention of mesenchymal phenotype by repressing IGF1R promoter activity in TNBC cells expressing high levels of MZF1. Activation of the IGF1R-driven p38MAPK-ERα-slug-E-cadherin signaling axis mediated the conversion of mesenchymal cell to epithelial phenotype, caused by MZF1 destabilization. These results suggest that MZF1 is an oncogenic inducer. CONCLUSION: Blocking of the MZF1/ELK1 interaction to reduce MZF1 protein stability by saturating the endogenous MZF1/ELK1 binding domains might be a promising therapeutic strategy for the treatment of high-level MZF1-expressing TNBC.


Assuntos
Fatores de Transcrição Kruppel-Like/genética , Receptores de Somatomedina/genética , Neoplasias de Mama Triplo Negativas/genética , Proteínas Elk-1 do Domínio ets/genética , Caderinas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proteínas de Ligação a DNA/genética , Transição Epitelial-Mesenquimal/genética , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Regiões Promotoras Genéticas/genética , Domínios Proteicos/genética , Transdução de Sinais/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética
4.
Yonsei Med J ; 60(8): 727-734, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31347327

RESUMO

PURPOSE: Hepatocellular carcinoma (HCC) is a common cancer worldwide. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long noncoding RNA (lncRNA), has been reported to be aberrantly expressed in hypoxic cancer cells. MALAT1 plays a significant role in many malignancies, including HCC. The aim of this study was to explore the role of MALAT1 in hypoxic HCC cells and its underlying regulatory mechanism. MATERIALS AND METHODS: Quantitative reverse transcription PCR (qRT-PCR) assay was performed to detect the mRNA levels of MALAT1 and microRNA-200a (miR-200a) in HCC cells. Cell invasion and migration ability were evaluated by Transwell assay. Starbase v2.0 and luciferase reporter assay were employed to identify the association between MALAT1 and miR-200a. Cell proliferation and apoptosis were measured by MTT assay and flow cytometry, respectively. RESULTS: MALAT1 levels were significantly upregulated in HCC cells under hypoxia. Hypoxia promoted proliferation, migration, and invasion, and blocked apoptosis in Hep3B cells, which were weakened by knockdown of MALAT1. Starbase v2.0 showed that MALAT1 and miR-200a have a complementarity region, and luciferase reporter assay verified that MALAT1 interacted with miR-200a in Hep3B cells. Moreover, MALAT1 negatively regulated the expression of miR-200a. miR-200a levels were dramatically downregulated in HCC cells under hypoxia. Upregulation of miR-200a inhibited proliferation, migration, and invasion, and induced apoptosis in Hep3B cells under hypoxia. Interestingly, downregulation of miR-200a partially reversed the tumor-suppressive effect of knockdown of MALAT1 on Hep3B cells in hypoxic condition. CONCLUSION: LncRNA MALAT1 was involved in proliferation, migration, invasion, and apoptosis by interacting with miR-200a in hypoxic Hep3B cells, revealing a new mechanism of MALAT1 involved in hypoxic HCC progression.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Hipóxia Tumoral/genética , Apoptose/genética , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Invasividade Neoplásica , RNA Longo não Codificante/genética , Regulação para Cima/genética
5.
Cancer Sci ; 110(9): 2760-2772, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31325400

RESUMO

Long noncoding RNAs (lncRNAs) are emerging as key regulators in cancer initiation and progression. TP53TG1 is a recently identified lncRNA and several studies have shown that TP53TG1 may play the role of tumor suppressor gene or oncogene in different tumors. Nevertheless, the involvement of TP53TG1 in carcinogenesis of pancreatic ductal adenocarcinoma (PDAC) has not been characterized. In our studies, we identified that TP53TG1 was highly expressed in PDAC and was a novel regulator of PDAC development. Knockdown of TP53TG1 inhibited proliferation, induced apoptosis, and decreased migration and invasion in PDAC cells, whereas enhanced expression of TP53TG1 had the opposite effects. Mechanistically, TP53TG1 could directly bind to microRNA (miR)-96 and effectively function as a sponge for miR-96, thus antagonizing the functions of miR-96 and leading to derepression of its endogenous target KRAS, which is a core oncogene in the initiation and maintenance of PDAC. Taken together, these observations imply that TP53TG1 contributes to the growth and progression of PDAC by acting as a competing endogenous RNA (ceRNA) to competitively bind to miR-96 and regulate KRAS expression, which highlights the importance of the complicated miRNA-lncRNA network in modulating the progression of PDAC.


Assuntos
Carcinoma Ductal Pancreático/genética , Proteínas de Ligação a DNA/metabolismo , MicroRNAs/antagonistas & inibidores , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , RNA Longo não Codificante/metabolismo , Carcinogênese/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , RNA Longo não Codificante/genética
6.
Gene ; 714: 143994, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31330233

RESUMO

Long non-coding RNA (lncRNA) potentially regulates tumorigenesis. LncRNA small nucleolar RNA host gene 1 (SNHG1) expression remains high in hepatocellular carcinoma cells; however, its biological mechanism in hepatocellular carcinoma remains unknown. In this study, SNHG1 expression in hepatocellular carcinoma cells was detected by qRT-PCR. Proliferative and migratory potentials of hepatocellular carcinoma cells were determined by CCK-8 and Transwell assay, respectively. Then, the nude mice model of xenograft was employed to verify the effect of SNHG1 on tumor formation in vivo. We identified the potential target of SNHG1 through bioinformatics and dual-luciferase reporter gene. Furthermore, Western blot and RIP assay was used for clarifying their interaction and functions in regulating the development of hepatocellular carcinoma. Our results indicated a high expression of SNHG1 in hepatocellular carcinoma cells. Downregulation of SNHG1 inhibited proliferative and migratory potentials of hepatocellular carcinoma cells in vitro and in vivo. Moreover, the expression of programmed cell death 4 (PDCD4) was positively regulated by SNHG1 through competing with miR-195-5p. These results indicated that SNHG1 participated in the development of hepatocellular carcinoma as a ceRNA to competitively bind to miR-195-5p and thus mediate PDCD4 expression.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Animais , Apoptose/genética , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Hepatocelular/patologia , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
7.
Gene ; 714: 143992, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31330234

RESUMO

Increasing studies have demonstrated the important roles of circular RNAs (circRNAs) in human malignancies. Nevertheless, the molecular mechanisms and functions of circRNAs in hepatocellular carcinoma (HCC) are still not fully understood. In the present study, we evaluated circ_0021093 expression in 82 pairs of HCC tissues and 5 cell lines by qRT-PCR. The clinical implications of circ_0021093 were evaluated. In addition, the viability, apoptosis, migration and invasion capacities of different HCC cells were evaluated by gain-/loss-of-function experiments. Target prediction and dual-luciferase reporter experiments were performed to identify the molecular mechanisms of circ_0021093. Upregulation of circ_0021093 was found in HCC tumor samples and cells. Additionally, upregulated circ_0021093 was related to adverse clinical characteristics and an unfavorable prognosis. Furthermore, downregulated circ_0021093 attenuated cell growth, migration and invasion but increased cell apoptosis. By contrast, ectopically expressed circ_0021093 enhanced the abovementioned malignant biological behaviors. For mechanism exploration, circ_0021093 sponges of miR-766-3p were used in HCC cells. In addition, we found that metastasis-associated protein 3 (MTA3) was a direct target of miR-766-3p and that the oncogenic function of circ_0021093 was partly dependent on the miR-766-3p/MTA3 axis according to rescue assays. In conclusion, the circ_0021093/miR-766-3p/MTA3 regulatory axis may be an effective therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , Proteínas de Neoplasias/genética , RNA/genética , Apoptose/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Regulação para Cima/genética
8.
Int J Oncol ; 55(1): 93-102, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31180520

RESUMO

Neuroblastoma (NB) is one of the most common extracranial solid tumors in children, which has complex molecular mechanisms. Increasing evidence has suggested that long noncoding RNAs (lncRNAs) account for NB pathogenesis. However, the function of small nucleolar RNA host gene 16 (SNHG16) in NB is currently unclear. In the present study, publically available data and clinical specimens were employed to verify the expression of SNHG16 in NB. Colony formation, real­time cell proliferation and migration assays were performed to demonstrate the status of cellular proliferation and migration. Flow cytometry was used to examine cell cycle progression in SH­SY5Y cells, and acridine orange/ethidium bromide staining and caspase­3/7 activity measurements were applied to study cell apoptosis. To explore the underlying mechanism of SNHG16 function, an online database was used to identify potential RNA­binding proteins that bind SNHG16. The expression of SNHG16 was revealed to be in line with the clinical staging of NB, and high SNHG16 expression was positively associated with poor clinical outcome. Furthermore, SNHG16 silencing inhibited cell proliferation, repressed migration, and induced cell cycle arrest at the G0/G1 phase in SH­SY5Y cells. Additionally, apoptosis was undetectable in SH­SY5Y cells following SNHG16 silencing. Bioinformatics analysis revealed that SNHG16 regulated cell proliferation in NB through transcriptional and translational pathways. These results suggested that SNHG16 may serve important roles in the development and progression of NB, and could represent a potential target for NB therapy.


Assuntos
Neuroblastoma/genética , RNA Longo não Codificante/genética , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Criança , Pré-Escolar , Inativação Gênica , Humanos , Lactente , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Oncogenes , RNA Longo não Codificante/biossíntese , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Transfecção
9.
Nat Commun ; 10(1): 2685, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213605

RESUMO

Hypertrophic cardiomyopathy (HCM) affects 1 in 500 people and leads to hyper-contractility of the heart. Nearly 40 percent of HCM-causing mutations are found in human ß-cardiac myosin. Previous studies looking at the effect of HCM mutations on the force, velocity and ATPase activity of the catalytic domain of human ß-cardiac myosin have not shown clear trends leading to hypercontractility at the molecular scale. Here we present functional data showing that four separate HCM mutations located at the myosin head-tail (R249Q, H251N) and head-head (D382Y, R719W) interfaces of a folded-back sequestered state referred to as the interacting heads motif (IHM) lead to a significant increase in the number of heads functionally accessible for interaction with actin. These results provide evidence that HCM mutations can modulate myosin activity by disrupting intramolecular interactions within the proposed sequestered state, which could lead to hypercontractility at the molecular level.


Assuntos
Miosinas Cardíacas/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Contração Miocárdica/genética , Cadeias Pesadas de Miosina/metabolismo , Actinas/metabolismo , Animais , Miosinas Cardíacas/genética , Linhagem Celular , Movimento Celular/genética , Coração/fisiopatologia , Humanos , Camundongos , Mutação , Mioblastos , Cadeias Pesadas de Miosina/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Gen Physiol Biophys ; 38(4): 295-304, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31241046

RESUMO

Glioma is a serious malignant tumor without effective therapies till now. lncRNA PEG10 was reported to have some biological activities in cancers. Hence, we explored the effects of PEG10 on the human glioma cell line U251 cells. U251 cells were transfected with sh-PEG10 and/or miR-506 inhibitor. The expression of PEG10 and miR-506 was measured by qRT-PCR. Cell viability, cell apoptosis, cell migration and invasion were detected by CCK-8 assay, flow cytometry and Transwell chamber assay, respectively. The cell proliferation and apoptosis related p16, p53, Bcl-2, Bax, and pro-/Cleaved-Caspase-3/9, migration and invasion related-protein: matrix metalloproteinases MMP-2, MMP-9 and vimentin, and Raf/MEK/ERK and JAK1/STAT3 pathways-related proteins were accessed by Western blot. Transfection with sh-PEG10 inhibited cell viability, migration and invasion, and increased cell apoptosis. Meanwhile, PEG10 silence upregulated the expression of p16 and p53, Bax, cleaved-Caspase-3/9 expression, and downregulated Bcl-2 expression. PEG10 silence upregulated miR-506 expression. Co-transfection with sh-PEG10 and miR-506 inhibitor impaired the tumor suppressive effects. PEG10 knockdown decreased the phosphorylation of Raf/MEK/ERK and JAK1/STAT3-related proteins Raf, MEK, ERK, JAK1 and STAT3. PEG10 knockdown inhibited cell viability, migration and invasion, induced cell apoptosis through miR-506 upregulation, as well as inactivation of Raf/MEK/ERK and JAK1/STAT3 signal pathways.


Assuntos
Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioma/patologia , MicroRNAs/genética , Invasividade Neoplásica/genética , Proteínas/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Glioma/genética , Humanos , MicroRNAs/biossíntese
11.
Artigo em Inglês | MEDLINE | ID: mdl-31176867

RESUMO

In rice field eel (Monopterus albus), germ cell development in the developing gonad has been revealed in detail. However, it is unclear how primordial germ cells (PGCs) migrate to the somatic part of the gonad (genital ridge). This study visualized PGC migration by injecting a chimeric mRNA containing a fluorescent protein fused to the 3' untranslated region (3'UTR) of three different genes, nanos3 of zebrafish (Danio rerio) and dead end (dnd) and vasa of rice field eel. The mRNAs were injected either alone or in pairs into embryos at the one-cell stage. The results showed that mRNAs containing nanos3 and dnd 3'UTRs labeled PGCs over a wider time frame than those containing vasa 3'UTR, suggesting that nanos3 and dnd 3'UTRs are suitable for visualizing PGCs in rice field eel. Using this direct visualization method, the normal migration route of PGCs was observed from the 50%-epiboly stage to hatching stage for the first time, and the ectopic PGCs were also visualized during this period in rice field eel. These findings extend our knowledge of germ cell development, and lay a foundation for further research on the relationship between PGCs and sex differentiation, and on incubation conditions for embryos in rice field eel.


Assuntos
Células Germinativas/metabolismo , Smegmamorpha/embriologia , Regiões 3' não Traduzidas , Sequência de Aminoácidos , Animais , Movimento Celular/genética , Movimento Celular/fisiologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Células Germinativas/citologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , RNA/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Smegmamorpha/genética , Smegmamorpha/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
12.
BMC Bioinformatics ; 20(Suppl 12): 313, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31216978

RESUMO

BACKGROUND: Schizophrenia and autism are examples of polygenic diseases caused by a multitude of genetic variants, many of which are still poorly understood. Recently, both diseases have been associated with disrupted neuron motility and migration patterns, suggesting that aberrant cell motility is a phenotype for these neurological diseases. RESULTS: We formulate the POLYGENIC DISEASE PHENOTYPE Problem which seeks to identify candidate disease genes that may be associated with a phenotype such as cell motility. We present a machine learning approach to solve this problem for schizophrenia and autism genes within a brain-specific functional interaction network. Our method outperforms peer semi-supervised learning approaches, achieving better cross-validation accuracy across different sets of gold-standard positives. We identify top candidates for both schizophrenia and autism, and select six genes labeled as schizophrenia positives that are predicted to be associated with cell motility for follow-up experiments. CONCLUSIONS: Candidate genes predicted by our method suggest testable hypotheses about these genes’ role in cell motility regulation, offering a framework for generating predictions for experimental validation.


Assuntos
Movimento Celular/genética , Doença/genética , Redes Reguladoras de Genes , Herança Multifatorial/genética , Algoritmos , Transtorno Autístico/genética , Estudos de Associação Genética , Humanos , Aprendizado de Máquina , Fenótipo , Curva ROC , Reprodutibilidade dos Testes , Esquizofrenia/genética
13.
J Cancer Res Clin Oncol ; 145(8): 2027-2038, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31243545

RESUMO

BACKGROUND: Increasing evidence has shown that long non-coding RNAs (lncRNAs) are important in hepatocellular carcinoma (HCC) development and progression. In this study, we aim to evaluate the expression of lncRNA FAM99B and its biological function in HCC. METHODS: The expression level of FAM99B in HCC was assessed based on data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), verified using quantitative real-time polymerase chain reaction (qRT-PCR). HCCLM3 was transfected with lentivirus containing full-length FAM99B to obtain stable overexpressing cell line. Cell Counting Kit 8, clone formation, and transwell assays were used to investigate the effects of FAM99B in HCC progression. In addition, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and PANTHER pathway analyses were conducted to investigate the underlying molecular mechanisms. RESULTS: FAM99B was found to be downregulated in HCC tissues compared with adjacent normal tissues based on TCGA, GEO, and qRT-PCR data. Our results revealed that downregulated FAM99B was significantly associated with vascular invasion, advanced histologic grade, and T stage. Kaplan-Meier analysis using TCGA data indicated that decreased FAM99B levels were significantly associated with poor overall survival in patients with HCC. Moreover, overexpression of FAM99B significantly inhibited cell proliferation, migration, and invasion in vitro. Pathway analyses showed that the co-expressed genes of FAM99B mainly participated in the pathways "Metabolic pathways" and "Blood coagulation". CONCLUSION: Our results suggest that FAM99B may serve as a tumor suppressor in HCC and may provide a promising therapy target for patients with HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Hepáticas/patologia , Fígado/metabolismo , RNA Longo não Codificante/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidade , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidade , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Especificidade de Órgãos/genética , RNA Longo não Codificante/genética , Análise de Sobrevida
14.
Cancer Sci ; 110(8): 2442-2455, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31148345

RESUMO

The human prolyl isomerase PIN1, best known for its association with carcinogenesis, has recently been indicated in the disease of pancreatic ductal adenocarcinoma (PDAC). However, the functions of PIN1 and the feasibility of targeting PIN1 in PDAC remain elusive. For this purpose, we examined the expression of PIN1 in cancer, related paracarcinoma and metastatic cancer tissues by immunohistochemistry and analyzed the associations with the pathogenesis of PDAC in 173 patients. The functional roles of PIN1 in PDAC were explored in vitro and in vivo using both genetic and chemical PIN1 inhibition. We showed that PIN1 was upregulated in pancreatic cancer and metastatic tissues. High PIN1 expression is significantly association with poor clinicopathological features and shorter overall survival and disease-free survival. Further stratified analysis showed that PIN1 phenotypes refined prognostication in PDAC. Inhibition of PIN1 expression with RNA interference or with all trans retinoic acid decreased not only the growth but also the migration and invasion of PDAC cells through regulating the key molecules of multiple cancer-driving pathways, simultaneously resulting in cell cycle arrest and mesenchymal-epithelial transition in vitro. Furthermore, genetic and chemical PIN1 ablation showed dramatic inhibition of the tumorigenesis and metastatic spread and then reduced the tumor burden in vivo. We provided further evidence for the use of PIN1 as a promising therapeutic target in PDAC. Genetic and chemical PIN1 ablation exerted potent antitumor effects through blocking multiple cancer-driving pathways in PDAC. More potent and specific PIN1 targeted inhibitors could be exploited to treat this aggressive cancer.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Peptidilprolil Isomerase de Interação com NIMA/genética , Metástase Neoplásica/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Ductal Pancreático/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Intervalo Livre de Doença , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Metástase Neoplásica/patologia , Neoplasias Pancreáticas/patologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
15.
Scand J Immunol ; 90(4): e12800, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31241785

RESUMO

Lymphatic malformations (LMs) are disfiguring congenital anomalies characterized by aberrant growth of lymphatic vessels. They are broadly categorized histopathologically as macrocystic and microcystic. Although sclerotherapy has shown some success in the treatment of macrocystic malformations, there has been less progress with developing treatment strategies for microcystic malformations. In this study, we characterized lymphatic endothelial cells isolated from lymphatic and lymphaticovenous malformations. When compared to cells from normal lymphatic vessels, we found that the primary cultured malformed cells are morphologically different and also exhibited differences in binding, proliferation, migration and tube formation. Transcriptome analysis identified several genes whose expression was substantially higher in malformed compared to normal lymphatic endothelium, including DIRAS3 and FOXF1. Further analysis of LM tissue samples revealed distinguishing gene expression patterns that could pave the way to understanding the molecular pathogenesis of LMs. Based on gene expression signatures, we propose a new hypothesis that the subtype of localized LMs could be formed because of disruptions in lymph node development.


Assuntos
Linfonodos/crescimento & desenvolvimento , Anormalidades Linfáticas/genética , Vasos Linfáticos/patologia , Transcriptoma , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Linfonodos/embriologia , Cultura Primária de Células , Ligação Proteica , Análise Serial de Tecidos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas rho de Ligação ao GTP/genética
16.
Genet Test Mol Biomarkers ; 23(6): 409-417, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31161818

RESUMO

Aim: Cervical cancer is the most common gynecological cancer. Recent studies have revealed that the F-box and WD repeat domain containing 7 (FBXW7) gene, which encodes a subunit of Skp1-Cul1-F-box protein (SCF) ubiquitin ligase, is frequently mutated in cervical squamous cell carcinomas. In this study, we investigated whether Chinese cervical cancer cells also harbor these mutations. Methods: Using PCR and sequencing assays, a total of 190 specimens from Han Chinese patients with cervical cancer were analyzed for FBXW7 mutations. Results: Two FBXW7 mutations (p.R479P and p.L443H), were identified from a study of 145 (1.4%) cervical squamous cell carcinomas. The p.L443H somatic mutation has not been previously reported. Functional assays showed that both of these FBXW7 mutations could promote cell proliferation, migration, and invasion. Conclusion: A low frequency (1.4%) of cervical squamous cell carcinomas were identified with FBXW7 mutations. We did, however, identify a novel FBXW7 mutation. Our results also demonstrated that the identified FBXW7 mutations could promote cell proliferation, migration, and invasion in cervical cancer cells.


Assuntos
Proteína 7 com Repetições F-Box-WD/genética , Neoplasias do Colo do Útero/genética , Adulto , Idoso , Grupo com Ancestrais do Continente Asiático/genética , Carcinoma de Células Escamosas/genética , Proteínas de Ciclo Celular , Movimento Celular/genética , Proliferação de Células/genética , China , Proteínas F-Box , Proteína 7 com Repetições F-Box-WD/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Pessoa de Meia-Idade , Mutação/genética , Invasividade Neoplásica/genética
17.
Life Sci ; 231: 116459, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31075234

RESUMO

AIM: Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent types of cancer worldwide with unfavorable patient outcomes and relatively low survival rates. Long non-coding RNAs (lncRNAs) have been demonstrated to participate in the progression of HNSCC. The present study aimed to investigate the functional mechanism of lncRNA LINC00460 in HNSCC by mediating microRNA-206 (miR-206)/stanniocalcin-2 (STC2) axis. METHODS: The interactions among miR-206, LINC00460 and STC2 were identified, and the expression of LINC00460, miR-206 and STC2 in tissues and cells was determined. Gain- and loss-of function experiments were conducted to analyze effects of LINC00460, miR-206 and STC2 on the expression of apoptosis-related proteins, autophagy-related proteins, and the extents of AKT, ERK phosphorylation. Cell cycle distribution, apoptosis and the production of autophagosomes after transfection were evaluated to further explore the role of LINC00460/miR-206/STC2 axis in HNSCC. RESULTS: LINC00460 and STC2 were highly expressed while miR-206 was poorly expressed in HNSCC. Besides, miR-206 was found to bind to both LINC00460 and STC2. After the transfection of HNSCC cells with miR-206 mimic or si-LINC00460, the expression of STC2, AKT, ERK, as well as the extent of AKT, ERK phosphorylation all decreased, which facilitated the apoptosis and autophagy of HNSCC cells. CONCLUSION: Collectively, the apoptosis and autophagy of HNSCC can be facilitated by downregulating LINC00460, which highlights a novel target in the treatment of HNSCC.


Assuntos
Glicoproteínas/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose/genética , Autofagia/fisiologia , Linfócitos T CD8-Positivos/metabolismo , Carcinogênese , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica , Feminino , Glicoproteínas/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Ativação Transcricional , Regulação para Cima
18.
J Mol Histol ; 50(3): 239-251, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31049798

RESUMO

Reduced expression of endothelial nitric oxide synthase (eNOS) is a hallmark of endothelial dysfunction in diabetes, which predisposes diabetic patients to numerous cardiovascular complications including blunted angiogenesis. The Krüppel-like factor (KLF) five has been implicated as a central regulator of cardiovascular remodeling, but its role in endothelial cells (ECs) remains poorly understood. We show here that expression of endothelial KLF5 was significantly increased in the ECs from mouse diabetes mellitus type 2 (T2DM) model, when compared to non-diabetic or T1DM mouse. KLF5 up-regulation by insulin was dependent on activation of multiple pathways, including mammalian target of rapamycin, oxidative stress and Protein kinase C pathways. Hyperinsulinemia-induced KLF5 inhibited endothelial function and migration, and thereby compromised in vitro and in vivo angiogenesis. Mechanistically, KLF5 acted in concert with the MTA1 coregulator to negatively regulate NOS3 transcription, thereby leading to the diminished eNOS levels in ECs. Conversely, potentiation of cGMP content (the essential downstream effector of eNOS signaling) by pharmacological approaches successfully rescued the endothelial proliferation and in vitro tube formation, in the HUVECs overexpressing the exogenous KLF5. Collectively, the available data suggest that the augmentation of endothelial KLF5 expression by hyperinsulinemia may represent a novel mechanism for negatively regulating eNOS expression, and may thus help to explain for the T2DM-related endothelial dysfunction at the transcriptional level.


Assuntos
Hiperinsulinismo/genética , Fatores de Transcrição Kruppel-Like/genética , Neovascularização Patológica/genética , Óxido Nítrico Sintase Tipo III/genética , Animais , Movimento Celular/genética , Proliferação de Células/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Expressão Gênica/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Hiperinsulinismo/patologia , Masculino , Camundongos , Estresse Oxidativo/genética , Proteína Quinase C/genética , Transdução de Sinais/genética
19.
J Exp Clin Cancer Res ; 38(1): 182, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046781

RESUMO

BACKGROUND: MicroRNA-139-5p (miR-139) has been shown to play important roles in hepatocellular carcinoma (HCC) development. However, the exact mechanism of miR-139 in HCC remains largely unknown. METHODS: We investigated the function in human cell lines and patient tissue samples by experimental techniques in molecular biology including Co-IP assay, cell viability assay, quantitative real-time-PCR, et al. In addition, datasets were used to verify the results by database analysis. Statistical analysis was performed by using the GraphPad Prism 6 (GraphPad Software Inc., USA). A P value < 0.05 was defined as statistically significant. RESULTS: In this study, we found that miR-139 was significantly down-regulated in HCC. MiR-139 level was negatively associated with the stage of HCC, and HCC patients with higher miR-139 level had longer overall survival (OS) than these having lower miR-139 expression. Overexpression of miR-139 led to reduced cell viability, elevated apoptosis, and decreased colony forming, migratory and invasive capacities in HCC cells, while down-regulation of miR-139 led to opposite phenotypes. MiR-139 also inhibited HCC growth in a xenograft mouse model. We identified karyopherin alpha 2 (KPNA2) as a direct target of miR-139. KPNA2 is up-regulated in HCC and higher KPNA2 level is associated with poor patient prognosis. Silencing of KPNA2 expression led to similar phenotypic changes as miR-139 overexpression. Restoration of KPNA2 attenuated the suppressive effects of miR-139 overexpression on cell viability, apoptosis, colony formation, migration and invasion. In addition, miR-139 overexpression and KPNA2 depletion led to decreased nucleus level of POU class 5 homeobox 1 (POU5F1) and c-myc, two well-known pro-oncogenes. CONCLUSION: In together, these data revealed the essential roles of the miR-139/KPNA2 axis in HCC.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , alfa Carioferinas/genética , Apoptose/genética , Carcinoma Hepatocelular/patologia , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Masculino , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Fator 3 de Transcrição de Octâmero/genética , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais/genética
20.
J Exp Clin Cancer Res ; 38(1): 188, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31072351

RESUMO

BACKGROUND: Forkhead box M1 (FOXM1) is a proliferation-associated transcription factor of the forkhead box proteins superfamily, which includes four isoforms FOXM1a, b, c, and d. FOXM1 has been implicated in hepatocellular carcinoma (HCC) progression, but the underlying molecular mechanism remains elusive. In this study, we aim to clarify the molecular basis for FOXM1-mediated HCC progression. METHODS: Bioinformatic analysis was used to explore the differentially expressed genes predicting HCC proliferation. The expression of FOXM1 and kinesin family member (KIF)4A was confirmed by western blotting and immunohistochemistry in HCC tissues. Kaplan-Meier survival analysis was conducted to analyze the clinical impact of FOXM1 and KIF4A on HCC. The effect of FOXM1 on the regulation of KIF4A expression was studied in cell biology experiments. The interaction between KIF4A and FOXM1 was analyzed by chromatin immunoprecipitation and luciferase experiments. A series of experiments was performed to explore the functions of FOXM1/KIF4A in HCC progression, such as cell proliferation, cell growth, cell viability, and cell cycle. A xenograft mouse model was used to explore the regulatory effect of FOXM1-KIF4A axis on HCC tumor growth. RESULTS: FOXM1 and KIF4A were overexpressed in human primary HCC tissues compared to that in matched adjacent normal liver tissue and are significant risk factors for HCC recurrence and shorter survival. We found that KIF4A was dominantly regulated by FOXM1c among the four isoforms, and further identified KIF4A as a direct downstream target of FOXM1c. Inhibiting FOXM1 decreased KIF4A expression in HCC cells, whereas its overexpression had the opposite effect. FOXM1-induced HCC cell proliferation was dependent on elevated KIF4A expression as KIF4A knockdown abolished FOXM1-induced proliferation of HCC cells both in vitro and in vivo. CONCLUSION: The FOXM1-KIF4A axis mediates human HCC progression and is a potential therapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular/genética , Proteína Forkhead Box M1/genética , Cinesina/genética , Neoplasias Hepáticas/genética , Adulto , Animais , Carcinoma Hepatocelular/patologia , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Estimativa de Kaplan-Meier , Cinesina/antagonistas & inibidores , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA