Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.909
Filtrar
2.
Sci Total Environ ; 700: 134415, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31629265

RESUMO

Bioclimatic indices combine atmospheric parameters to provide analytical indication of climatic features and their evolution in space and time that can directly relate with natural resource availability, distribution, and related bio-physical processes. The availability of bioclimatic information can provide natural resource managers with analytical means to assess the magnitude and temporal evolution of drought and climate change parameters that could affect the availability, demand and use of natural resources for various sectors. This paper presents a methodology to process bioclimatic data in the space and time domains for assessing the moisture/dryness level and water requirements of a region, and inform water resource planning and management decisions related to drought, climate variability and change. The methodology relies on a modular assembly of statistical tests and methods, and utilizes point scale measurements of meteorological data to perform the analysis of the spatial behavior of derived bioclimatic indicators at the continuous regional scale, and evaluate the significance of the temporal trends. Also, the article presents an application of the proposed methodology to a coastal area of southern Italy (the Apulia Region) that is characterized by recurring water supply limitations, involving the use of the popular De Martonne bioclimatic aridity index. The methodology allowed to obtain qualitative and quantitative information about the aridity level of the Apulia region, the identification of main bioclimatic zones, and the evaluation of spatial pattern and time evolution of aridity. The determination of bioclimatic zones showed that nearly 40% of the regional territory is characterized by dry sub-humid (Mediterranean) climate, about 30% by sub-humid climate, while nearly 10% and 20% are characterized by semi-arid and humid climates, respectively. The temporal analysis revealed that the Salento and the Ionian coastal zone are areas at risk of increasing aridity, with resulting impacts on the water supply and demand for irrigated agriculture.


Assuntos
Monitoramento Ambiental , Mudança Climática , Secas , Ecossistema , Itália , Conceitos Meteorológicos , Estações do Ano , Abastecimento de Água
3.
Sci Total Environ ; 700: 134464, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31689648

RESUMO

Ocean acidification (OA) and warming currently threaten coastal ecosystems across the globe. However, it is possible that the former process could actually benefit marine plants, such as seagrasses. The purpose of this study was to examine whether the effects of the seagrass Thalassia hemprichii can increase the resilience of OA-challenged coral reef mesocosms whose temperatures were gradually elevated. It was found that seagrass shoot density, photosynthetic efficiency, and leaf growth rate actually increased with rising temperatures under OA. Macroalgal growth rates were higher in the seagrass-free mesocosms, but the calcification rate of the model reef coral Pocillopora damicornis was higher in coral reef mesocosms featuring seagrasses under OA at 25 and 28 °C. Both the macroalgal growth rate and the coral calcification rate decreased in all mesocosms when the temperature was raised to 31 °C under OA. However, the variation in gross primary production, ecosystem respiration, and net ecosystem production in the seagrass mesocosms was lower than in seagrass-free controls, suggesting that the presence of seagrass in the mesocosms helped to stabilize the metabolism of the system in response to simulated climate change.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Hydrocharitaceae/fisiologia , Animais , Mudança Climática , Concentração de Íons de Hidrogênio , Água do Mar/química , Temperatura Ambiente
4.
Chemosphere ; 240: 124938, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31574444

RESUMO

Clearwater Mesa (James Ross Island, northeast Antarctic Peninsula) provides a unique opportunity to study solute dynamics and geochemical weathering in the pristine lacustrine systems of a high latitude environment. In order to determine major controls on the solute composition of these habitats, a geochemical survey was conducted on 35 lakes. Differences between lakes were observed based on measured physico-chemical parameters, revealing neutral to alkaline waters with total dissolved solids (TDS) < 2500 mg L-1. Katerina and Trinidad-Tatana systems showed an increase in their respective TDS, total organic carbon values, and finner sediments from external to internal lakes, indicating an accumulation of solutes due to weathering. Norma and Florencia systems exhibited the most diluted and circumneutral waters, likely from the influence of glacier and snow melt. Finally, isolated lakes presented large variability in TDS values, indicating weathering and meltwater contributions at different proportions. Trace metal abundances revealed a volcanic mineral weathering source, except for Pb and Zn, which could potentially indicate atmospheric inputs. Geochemical modelling was also conducted on a subset of connected lakes to gain greater insight into processes determining solute composition, resulting in the weathering of salts, carbonates and silicates with the corresponding generation of clays. We found CO2 consumption accounted for 20-30% of the total species involved in weathering reactions. These observations allow insights into naturally occurring geochemical processes in a pristine environment, while also providing baseline data for future research assessing the impacts of anthropogenic pollution and the effects of climate change.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Lagos/química , Minerais/análise , Compostos Orgânicos/análise , Oligoelementos/análise , Regiões Antárticas , Carbonatos/análise , Mudança Climática , Ecossistema , Camada de Gelo/química , Chumbo/análise , Trinidad e Tobago , Tempo (Meteorologia) , Zinco/análise
5.
Ambio ; 49(1): 74-84, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30666613

RESUMO

Forest transitions occur when net reforestation replaces net deforestation in places. Because forest transitions can increase biodiversity and augment carbon sequestration, they appeal to policymakers contending with the degrading effects of forest loss and climate change. What then can policymakers do to trigger forest transitions? The historical record over the last two centuries provides insights into the precipitating conditions. The early transitions often occurred passively, through the spontaneous regeneration of trees on abandoned agricultural lands. Later forest transitions occurred more frequently after large-scale crisis narratives emerged and spurred governments to take action, often by planting trees on degraded, sloped lands. To a greater degree than their predecessors, latecomer forest transitions exhibit centralized loci of power, leaders with clearly articulated goals, and rapid changes in forest cover. These historical shifts in forest transitions reflect our growing appreciation of their utility for countering droughts, floods, land degradation, and climate change.


Assuntos
Mudança Climática , Agricultura Florestal , Conservação dos Recursos Naturais , Florestas , Árvores
6.
Ambio ; 49(1): 144-155, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30852777

RESUMO

The ability of resource-dependent communities to adapt to climate change depends in part on their perceptions and prioritization of specific climate-related threats. In the Maine lobster fishery, which is highly vulnerable to warming water associated with climate change, we found a strong majority (84%) of fishers viewed warming water as a threat, but rank its impacts lower than other drivers of change (e.g., pollution). Two-thirds believed they will be personally affected by warming waters, but only half had plans to adapt. Those with adaptation plans demonstrated fundamentally different views of human agency in this system, observing greater anthropogenic threats, but also a greater ability to control the fishery through their own actions on the water and fisheries management processes. Lack of adaptation planning was linked to the view that warming waters result from natural cycles, and the expectation that technological advancements will help buffer the industry from warming waters.


Assuntos
Pesqueiros , Nephropidae , Adaptação Fisiológica , Animais , Mudança Climática , Humanos , Maine
7.
Sci Total Environ ; 698: 133960, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31493573

RESUMO

Disentangling the processes that drive plant community assembly is critical for understanding the patterns of plant diversity. We studied how different abiotic and biotic factors shape the interplay between the facets of alpine plant diversity, functional (FD), phylogenetic (PD) and taxonomic diversity (TD), in three different mountain ranges with contrasting evolutionary histories and climate conditions (Pyrenees and Mediterranean-type mountains in central Spain and Chilean Andes). We hypothesized that the causal links vary in strength and sign across regions. We used species inventories, functional trait data, and a phylogeny from 84 plant communities spread throughout three high-mountain alpine grasslands. Structural equation models were used to test our causal hypotheses on the relationships observed between the three diversity facets, and the abiotic (elevation, potential solar radiation and soil total nitrogen) and biotic factors (C-score). Despite our causal model presented a high variability in each mountain range, TD always decreased with increasing elevation (sum of direct and indirect effects). We also found some patterns suggesting that assembly processes could be climatically/biogeographically structured such as the negative relationship between FD and elevation found in Mediterranean mountains and the negative relationship between FD and TD found in both Spanish mountain ranges (independently of their different climates). A remarkable finding of this study is that ecological factors such as soil total nitrogen and elevation indirectly alter the relationships between the diversity facets. Our results suggest that diversity facets are simultaneously affected by different ecological and biogeographical/evolutionary processes, resulting in some general trends but also in parallel idiosyncratic patterns. Our findings highlight that although FD stand out by its explanatory power of community processes, TD and PD provide a complementary and necessary view that should not be disregarded in the attempt to globally explain community assembly processes.


Assuntos
Biodiversidade , Clima , Filogenia , Altitude , Chile , Mudança Climática , Ecologia , Monitoramento Ambiental , Plantas , Solo , Espanha
8.
Sci Total Environ ; 698: 133761, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31493576

RESUMO

In Romania, natural Norway spruce forests are spread across upper mountain slopes (1300-1800 m). They perform multiple functions, being especially recognised for their economic value. However, where planted forests extend beyond the spruce's naturally occurring areas, they are frequently exposed to deleterious environmental factors. In Romania, forest planning is based on typological studies that were carried out between 1950 and 1970, and the regulations are applied in a somewhat flexible manner. In the context of the potential threats from climate change that could amplify induced destabilising phenomena, the risks to which these forests are becoming exposed can only be mediated through flexible management and the permanent adaptation of forest planning. For this reason, the purpose of this study was to develop a strategy for adapting forest management plan guidelines, with a view to improving ecosystem stability. A Norway spruce forest was chosen from the south-eastern Carpathians, which is included in the Natura 2000 Fagaras Mountains site. The models on which we based our current stand compositions resulted from long-term monitoring and analysis of species and stand structures. Stand structure - and forest structure, in general - is key to the continuous existence of stand functions and ecosystem services. Through design decisions, we promote biodiversity and the natural, better adapted, regeneration of local provenances. We highlight the rationale behind forest management planning and its regulations, with respect to the sustainable management of Norway spruce forests, which are vulnerable to potential changes in their structure as a result of climate change. Based on our findings, we propose the adaptation of measures used in forest management planning for Norway spruce forests to include protective functions that can be applied to all man-made Norway spruce forests introduced in former beech forest regions, and mixed coniferous/beech forests, that are vulnerable to changing environmental factors.


Assuntos
Mudança Climática , Agricultura Florestal/métodos , Florestas , Picea , Noruega , Romênia
9.
Sci Total Environ ; 698: 134129, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31499344

RESUMO

Forest health status is negatively influenced by climate change, air pollution and other disturbances. Extreme droughts reduce stand productivity, increase vulnerability to pests, and can even provoke mortality. Growth dynamics at tree and forest stand levels are considered the main indicators of stability and productivity in forest ecosystem structures. The main climate drivers for tree growth were identified using basal area increment (BAI) as a synthetic indicator. BAI chronologies were obtained from increment cores for 1960-2012 period. Six species were analysed in an attempt to identify their growth limiting factors. For the most important oak species in Romania, resilience components were computed in order to analyse their response to drought events. Moreover, growth dynamics were analysed for two species in mixed and monoculture forests. The results suggest that - in comparison to Picea abies and Fagus sylvatica, the sensitivity of Quercus spp. is much higher (0.3-0.47). Oakspecies situated in the most drought-affected areas are sensitive to rainfall values from the previous autumn, current spring, and early summer, with April monthly values having the most significant effect on BAI increment (r = 0.47*) The most sensitive species to drought is Q. cerris and Q. frainetto. Their BAI reduction during drought is >50% compared with the BAI values before the drought period. The recovery capacity of tree growth following drought events is lower for Q. robur and Q. petraea and higher for Q. cerris and Q. frainetto. The mixed forest stands have not showed a constant higher resistance to drought.


Assuntos
Mudança Climática , Monitoramento Ambiental , Agricultura Florestal , Florestas , Árvores , Secas , Ecossistema , Fagus , Quercus , Romênia , Estações do Ano
10.
Sci Total Environ ; 698: 134141, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505366

RESUMO

The rhizomes of Coptis chinensis Franch., Coptis deltoidea C. Y. Cheng et Hsiao and Coptis teeta Wall, are sources of renowned traditional Chinese medicines. Recently, human activities and climate change has caused degeneration of the natural habitats of these pharmacological plants. Analyzing the impact of climate change on the possible distribution of Coptis herbs is essential for their future conservation and domestication. The purpose of this study was to predict the potential distribution of these valuable plants and identify the potential effects of climate change on three Coptis species, using of species distribution modeling (SDM). In this study, we first predict the distribution size variations of the three plant species, under present and future conditions. Secondly, we carried out field sampling of these three species and analyzed the chemical composition by high performance liquid chromatography (HPLC). Results show that the predicted distributions of all three Coptis herbs were not limit to the reported regions, but also cover other potential areas. Among the environmental variables, annual precipitation range (Bio2) induced the largest impact on SDMs for C. chinensis (72.2%) and C. deltoidea (37.9%), while C. teeta was more significantly affected by isothermally (Bio3, 39.2%). When comparing the possible future distribution to the present distribution of these species, a decreasing tendency was observed in the highly suitable areas of C. chinensis and the generally suitable areas of C. teeta, indicating that the environmental changes would affect the distribution of these two species. In addition, the average alkaloid content was found to be the highest in highly suitable areas, while it was decreased in moderately and generally suitable areas, indicating that alkaloid content may be related to environmental factors. In summary, these findings improve our understanding of the ecological impact of climate on the distribution of three Coptis species.


Assuntos
Mudança Climática , Coptis , Monitoramento Ambiental , Modelos Estatísticos , China , Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa
11.
Sci Total Environ ; 699: 134285, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31520941

RESUMO

In the Mediterranean basin, diffuse-porous, semi-ring-porous and ring-porous tree species coexist in the same regions. Climate change might differently affect these types, but a mechanistic understanding of drought effects on their xylem structure is lacking. We investigated tree-ring width and xylem functional traits in ring-porous Quercus boissieri, semi-ring-porous Q. ithaburensis and diffuse-porous Q. calliprinos, at xeric (Galilee) and mesic (Golan) sites in the South-Eastern Mediterranean basin. We quantitatively assessed how dry and wet years affect growth and xylem traits in different porosity type oaks, and evaluated whether porosity type is preserved or altered during these years. We measured, counted or computed tree-ring width, vessel number, maximum lumen area, frequency, tree-ring and xylem theoretical hydraulic conductivity along 40-year ring series of 50 trees in total. We also quantified ring porosity in each year using two indices, the Gini coefficient and the porosity ratio of vessel area, and described vessel area intra-ring variations by distribution profiles. We then compared these parameters in the five driest and five wettest years of the 40-year period. Radial growth and functional trait variations were more similar between species in the same site (strong drought effects in Q. ithaburensis and Q. calliprinos in Galilee, moderate effects in Q. boissieri and Q. calliprinos in Golan) than between sites for the same species (Q. calliprinos was more affected in Galilee than in Golan). Ring porosity indices and distribution profiles showed that diffuse-porous xylem structure of Q. calliprinos was maintained even under dry conditions at both sites. However, Q. boissieri xylem shifted from ring-porous in wet and normal years to semi-ring-porous in dry years, i.e. the porous ring cannot be completely built under water constraint. This suggests that ring porous strategy, typical of temperate regions with strong seasonality, might not be realized under future drier conditions in the Mediterranean basin.


Assuntos
Monitoramento Ambiental , Quercus/crescimento & desenvolvimento , Chuva , Mudança Climática , Secas , Porosidade , Árvores/crescimento & desenvolvimento , Xilema
12.
Br J Gen Pract ; 70(690): 12-13, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31879293
13.
J Sci Food Agric ; 100(2): 595-606, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31591721

RESUMO

BACKGROUND: Climate change has posed great challenges to rice production. Temperature and solar radiation show significant variations in central China. This study aims to analyze the responses of different rice genotypes to the variations of temperature and solar radiation in central China, and to find the way of identifying the optimal sowing date to improve and stabilize rice production. For this end, four rice genotypes (two Indica and two Japonica cultivars) were cultivated at two locations under irrigation conditions in 2 years with six sowing dates. RESULTS: We investigated variations of rice grain yield, resource use efficiency, average daily temperature and solar radiation during different phenological stages. Rice grain yield could increase by about 2-17% in central China. Compared with solar radiation, temperature was a more important factor affecting rice grain yield in central China. The grain yield showed great correlation with the means temperature during different phenological stages, especially during the first 20 days after heading (GT20). Besides our results demonstrated that the grain yield displayed slender variations when the GT20 was within 24.9-26.4 °C. However, GT20 was higher than 26.4 °C in most cases, which became more frequent due to climate changes. Analysis of climate change during the last 25 years revealed that the frequency of GT20 within 24.9-26.4 °C was increased by the delay of sowing date. CONCLUSION: We propose that delaying sowing date to achieve the optimal GT20 (24.9 °C-26.4 °C) can be an effective strategy to stabilize and improve rice grain yield and resource use efficiency in central China. © 2019 Society of Chemical Industry.


Assuntos
Produção Agrícola/métodos , Oryza/crescimento & desenvolvimento , Irrigação Agrícola , China , Mudança Climática , Genótipo , Oryza/genética , Oryza/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Temperatura Ambiente , Água/análise , Água/metabolismo
14.
Ecol Lett ; 23(1): 140-148, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31663682

RESUMO

Ecologists expect species and biomes to shift poleward and upward with climate change, but non-climatic factors complicate these predictions. In mountains, forests are expected to expand upward along climate gradients into subalpine/alpine meadows, while meadows expand upward onto bare ground. However, soils also vary across elevation, with bare soil above the meadows potentially poorer for plant establishment. Poor soil might constrain expansion at meadows' upper edges, while rich meadow soil might facilitate contraction at lower edges by promoting tree establishment. We assessed climate and soil effects on establishment by transplanting soil and seedlings of meadow and tree species across climate gradients on Mount Rainier. There were considerable interspecific differences, but some generalisations emerged. Survival often declined with earlier snow disappearance, with somewhat smaller declines in meadow soil. Size often increased with earlier snow disappearance, with larger increases in meadow soil. Thus, soil patterns may complicate range shifts.


Assuntos
Plântula , Solo , Mudança Climática , Florestas , Neve , Árvores
15.
Ecol Lett ; 23(1): 172-180, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31724293

RESUMO

Global change influences species' seasonal occurrence, or phenology. In cold-adapted insects, the activity is expected to start earlier with a warming climate, but contradictory evidence exists, and the reactions may be linked to species-specific traits. Using data from the GBIF database, we selected 105 single-brooded Holarctic butterflies inhabiting broad latitudinal ranges. We regressed patterns of an adult flight against latitudes of the records, controlling for altitude and year effects. Species with delayed flight periods towards the high latitudes, or stable flight periods across latitudes, prevailed over those that advanced their flight towards the high latitudes. The responses corresponded with the species' seasonality (flight of early season species was delayed and flight of summer species was advanced at high latitudes) and oceanic vs. continental climatic niches (delays in oceanic, stability in continental species). Future restructuring of butterfly seasonal patterns in high latitudes will reflect climatic niches, and hence the evolutionary history of participating species.


Assuntos
Borboletas , Altitude , Animais , Mudança Climática , Ecologia , Estações do Ano , Temperatura Ambiente
16.
Ecol Lett ; 23(1): 181-192, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31729141

RESUMO

Contemporary climate change is proceeding at an unprecedented rate. The question remains whether populations adapted to historical conditions can persist under rapid environmental change. We tested whether climate change will disrupt local adaptation and reduce population growth rates using the perennial plant Boechera stricta (Brassicaceae). In a large-scale field experiment conducted over five years, we exposed > 106 000 transplants to historical, current, or future climates and quantified fitness components. Low-elevation populations outperformed local populations under simulated climate change (snow removal) across all five experimental gardens. Local maladaptation also emerged in control treatments, but it was less pronounced than under snow removal. We recovered local adaptation under snow addition treatments, which reflect historical conditions. Our results revealed that low elevation populations risk rapid decline, whereas upslope migration could enable population persistence and expansion at higher elevation locales. Local adaptation to historical conditions could increase vulnerability to climate change, even for geographically widespread species.


Assuntos
Brassicaceae , Mudança Climática , Aclimatação , Adaptação Fisiológica , Neve
17.
Sci Total Environ ; 699: 134404, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31678877

RESUMO

The climate change phenomenon has been occurring in every part of the world, including Malaysia. In particular, changes such as rising temperature, sea level rise, and unstable rain pattern are proven to affect the socio-economic routine of the community. Hence, it is necessary to learn how to adapt to it, especially those who heavily rely on nature stability. The present study examined the adaptation towards climate change among islanders in Malaysia. In addition, the current research was performed quantitatively using a developed questionnaire as the main data collection tool. In this case, a total of 400 islanders were selected as the respondents through a multi-stage sampling technique. The results revealed that the respondents recorded a moderate to high mean score for adaptation aspects namely awareness, dependency and structure. Accordingly, a number of recommendations that were highlighted can be utilized as a basis to develop community adaptation policy that is in line with the islanders' need, ability, and interests.


Assuntos
Mudança Climática , Aclimatação , Adaptação Fisiológica , Malásia , Chuva , Inquéritos e Questionários , Temperatura Ambiente
18.
Food Chem ; 307: 125518, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31644976

RESUMO

The Greek vineyard is home to many minor, indigenous grape cultivar whose diverse polyphenolic content has remained largely unexploited. The study aimed at assaying and assessing the polyphenolic content and antioxidant capacity of: (a) five obscure cultivars; (b) Six biotypes of cultivar 'Liatiko'; (c) Five prominent cultivars; and (d) three French varieties included for comparison reasons. Results revealed all samples exhibiting high polyphenol content and antioxidant capacity levels. 'Vertzami' recorded the highest concentrations in berry skins total anthocyanins, flavanols, flavonols, antioxidant capacity. 'Mandilaria' scored the highest value in seed total flavanols compared to all biotypes and cultivars. All 'Liatiko' biotypes scored the highest concentrations in seed total flavonoids and flavonols. 'Liatiko' and its biotypes exhibited different polyphenolic profiles between them. Owing to the climate change, those indigenous varieties' substantial polyphenol amounts, and the differences between biotypes, will allow viticulturists to select the varieties/biotypes most appropriate for obtaining higher quality products.


Assuntos
Antioxidantes/química , Polifenóis/química , Vitis/química , Antocianinas/análise , Mudança Climática , Flavonoides/análise , Flavonóis/análise , Frutas/química , Frutas/metabolismo , Grécia , Polifenóis/análise , Sementes/química , Sementes/metabolismo , Vitis/metabolismo
19.
Rev. argent. salud publica ; 10(41): 28-36, 29/12/2019.
Artigo em Espanhol | LILACS, BINACIS, ARGMSAL | ID: biblio-1048235

RESUMO

La mortalidad guarda relación con las temperaturas diarias y los eventos extremos. Este estudio buscó analizar los efectos de las bajas temperaturas sobre la mortalidad en las principales ciudades de Argentina en el período 2005-2015. MÉTODOS: Se realizó un estudio de series temporales con modelos aditivos generalizados, modelando la relación entre bajas temperaturas y mortalidad para 21 ciudades de Argentina entre 2005 y 2015. Se analizó la mortalidad general y por grupos de sexo, edad y causa de muerte, en días fríos y días de olas de frío, así como los rezagos de 7 y 14 días posteriores a dichos eventos. RESULTADOS: En los 7 días posteriores a un día frío, el riesgo de muerte aumenta en la mitad de las ciudades entre un 1,04 [IC95%: 1,00-1,08] y un 1,14 [IC95%: 1,06-1,23] según la ciudad. El grupo de 65 años y más es el que muestra mayor impacto, con un incremento de hasta el 1,20 [IC95%: 1,05-1,39]. Las olas de frío se asocian con un aumento más pronunciado en el riesgo de morir en los siguientes 7 días en 8 ciudades (1,05 [IC95%: 1,03-1,08] a 1,30 [IC95%: 1,03-1,65]), y en 10 ciudades en los siguientes 14 días, aunque con valores algo más bajos. CONCLUSIONES: Con diferencias en magnitud y robustez estadística según las ciudades, la población de las áreas urbanas presenta un riesgo aumentado de muerte durante los 7 y 14 días posteriores a un evento de frío extremo


Assuntos
Mudança Climática , Mortalidade , Temperatura Baixa , Frio Extremo
20.
J Water Health ; 17(6): 989-1001, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31850905

RESUMO

Unsafe drinking water is a recognized health threat in Ethiopia, and climate change, rapid population growth, urbanization and agricultural practices put intense pressure on availability and quality of water. Climate change-related health problems due to floods and waterborne diseases are increasing. With increasing insight into impacts of climate change and urbanization on water availability and quality and of required adaptations, a shift towards climate-resilient water safety planning was introduced into an Ethiopian strategy and guidance document to guarantee safe drinking water. Climate-resilient water safety planning was implemented in the urban water supplies of Addis Ababa and Adama, providing drinking water to 5 million and 500,000 people, respectively. Based on the risks identified with climate-resilient water safety planning, water quality monitoring can be optimized by prioritizing parameters and events which pose a higher risk for contaminating the drinking water. Water quality monitoring was improved at both drinking water utilities and at the Public Health Institute to provide relevant data used as input for climate-resilient water safety planning. By continuously linking water quality monitoring and climate-resilient water safety planning, utilization of information was optimized, and both approaches benefit from linking these activities.


Assuntos
Mudança Climática , Água Potável , Qualidade da Água , Abastecimento de Água/normas , Etiópia , Humanos , Medição de Risco , Gestão de Riscos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA