Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.496
Filtrar
1.
Nat Commun ; 11(1): 4974, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009381

RESUMO

Generation of bispecific antibodies (bsAbs) requires a combination of compatible binders in formats that support desired functionalities. Here, we report that bsAb-matrices can be generated by Format Chain Exchange (FORCE), enabling screening of combinatorial binder/format spaces. Input molecules for generation of bi/multi-valent bsAbs are monospecific entities similar to knob-into-hole half-antibodies, yet with complementary CH3-interface-modulated and affinity-tagged dummy-chains. These contain mutations that lead to limited interface repulsions without compromising expression or biophysical properties of educts. Mild reduction of combinations of educts triggers spontaneous chain-exchange reactions driven by partially flawed CH3-educt interfaces resolving to perfect complementarity. This generates large bsAb matrices harboring different binders in multiple formats. Benign biophysical properties and good expression yields of educts, combined with simplicity of purification enables process automation. Examples that demonstrate the relevance of screening binder/format combinations are provided as a matrix of bsAbs that simultaneously bind Her1/Her2 and DR5 without encountering binder or format-inflicted interferences.


Assuntos
Anticorpos Biespecíficos/biossíntese , Ensaios de Triagem em Larga Escala , Anticorpos Biespecíficos/isolamento & purificação , Automação , Células HEK293 , Humanos , Mutação/genética , Multimerização Proteica
2.
Nat Commun ; 11(1): 4947, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009392

RESUMO

Pseudomonas syringae is a Gram-negative and model pathogenic bacterium that causes plant diseases worldwide. Here, we set out to identify binding motifs for all 301 annotated transcription factors (TFs) of P. syringae using HT-SELEX. We successfully identify binding motifs for 100 TFs. We map functional interactions between the TFs and their targets in virulence-associated pathways, and validate many of these interactions and functions using additional methods such as ChIP-seq, electrophoretic mobility shift assay (EMSA), RT-qPCR, and reporter assays. Our work identifies 25 virulence-associated master regulators, 14 of which had not been characterized as TFs before.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Pseudomonas syringae/metabolismo , Fatores de Transcrição/metabolismo , Sistemas de Secreção Bacterianos , Sítios de Ligação , Matrizes de Pontuação de Posição Específica , Ligação Proteica , Multimerização Proteica , Pseudomonas syringae/patogenicidade , Reprodutibilidade dos Testes , Técnica de Seleção de Aptâmeros , Virulência
3.
Nat Commun ; 11(1): 5066, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033255

RESUMO

The inducible co-stimulator (ICOS) is a member of the CD28/B7 superfamily, and delivers a positive co-stimulatory signal to activated T cells upon binding to its ligand (ICOS-L). Dysregulation of this pathway has been implicated in autoimmune diseases and cancer, and is currently under clinical investigation as an immune checkpoint blockade. Here, we describe the molecular interactions of the ICOS/ICOS-L immune complex at 3.3 Å resolution. A central FDPPPF motif and residues within the CC' loop of ICOS are responsible for the specificity of the interaction with ICOS-L, with a distinct receptor binding orientation in comparison to other family members. Furthermore, our structure and binding data reveal that the ICOS N110 N-linked glycan participates in ICOS-L binding. In addition, we report crystal structures of ICOS and ICOS-L in complex with monoclonal antibodies under clinical evaluation in immunotherapy. Strikingly, antibody paratopes closely mimic receptor-ligand binding core interactions, in addition to contacting peripheral residues to confer high binding affinities. Our results uncover key molecular interactions of an immune complex central to human adaptive immunity and have direct implications for the ongoing development of therapeutic interventions targeting immune checkpoint receptors.


Assuntos
Anticorpos/uso terapêutico , Complexo Antígeno-Anticorpo/química , Ligante Coestimulador de Linfócitos T Induzíveis/química , Proteína Coestimuladora de Linfócitos T Induzíveis/química , Mimetismo Molecular/imunologia , Sequência de Aminoácidos , Complexo Antígeno-Anticorpo/metabolismo , Antígenos CD28/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Cinética , Ligantes , Modelos Moleculares , Ligação Proteica , Multimerização Proteica
4.
Nat Commun ; 11(1): 4905, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999288

RESUMO

Transcription factor (TF) IIIC is a conserved eukaryotic six-subunit protein complex with dual function. It serves as a general TF for most RNA polymerase (Pol) III genes by recruiting TFIIIB, but it is also involved in chromatin organization and regulation of Pol II genes through interaction with CTCF and condensin II. Here, we report the structure of the S. cerevisiae TFIIIC subcomplex τA, which contains the most conserved subunits of TFIIIC and is responsible for recruitment of TFIIIB and transcription start site (TSS) selection at Pol III genes. We show that τA binding to its promoter is auto-inhibited by a disordered acidic tail of subunit τ95. We further provide a negative-stain reconstruction of τA bound to the TFIIIB subunits Brf1 and TBP. This shows that a ruler element in τA achieves positioning of TFIIIB upstream of the TSS, and suggests remodeling of the complex during assembly of TFIIIB by TFIIIC.


Assuntos
Regulação Fúngica da Expressão Gênica , RNA Polimerase III/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/genética , Fatores de Transcrição TFIII/ultraestrutura , Animais , Linhagem Celular , Microscopia Crioeletrônica , DNA Fúngico/genética , DNA Fúngico/metabolismo , Genes Fúngicos/genética , Insetos , Domínios Proteicos , Multimerização Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIIB/genética , Fator de Transcrição TFIIIB/isolamento & purificação , Fator de Transcrição TFIIIB/metabolismo , Fatores de Transcrição TFIII/genética , Fatores de Transcrição TFIII/isolamento & purificação , Fatores de Transcrição TFIII/metabolismo , Sítio de Iniciação de Transcrição , Iniciação da Transcrição Genética
5.
PLoS Pathog ; 16(8): e1008753, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32866207

RESUMO

The induction of broad and potent immunity by vaccines is the key focus of research efforts aimed at protecting against HIV-1 infection. Soluble native-like HIV-1 envelope glycoproteins have shown promise as vaccine candidates as they can induce potent autologous neutralizing responses in rabbits and non-human primates. In this study, monoclonal antibodies were isolated and characterized from rhesus macaques immunized with the BG505 SOSIP.664 trimer to better understand vaccine-induced antibody responses. Our studies reveal a diverse landscape of antibodies recognizing immunodominant strain-specific epitopes and non-neutralizing neo-epitopes. Additionally, we isolated a subset of mAbs against an epitope cluster at the gp120-gp41 interface that recognize the highly conserved fusion peptide and the glycan at position 88 and have characteristics akin to several human-derived broadly neutralizing antibodies.


Assuntos
Vacinas contra a AIDS/imunologia , Mapeamento de Epitopos , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/imunologia , Vacinas contra a AIDS/genética , Animais , Anticorpos Monoclonais Murinos/imunologia , Epitopos/genética , Anticorpos Anti-HIV/genética , Proteína gp41 do Envelope de HIV/genética , HIV-1/genética , Macaca mulatta , Multimerização Proteica/genética , Multimerização Proteica/imunologia
6.
Mol Cell ; 80(1): 72-86.e7, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32910895

RESUMO

Membrane protein biogenesis faces the challenge of chaperoning hydrophobic transmembrane helices for faithful membrane insertion. The guided entry of tail-anchored proteins (GET) pathway targets and inserts tail-anchored (TA) proteins into the endoplasmic reticulum (ER) membrane with an insertase (yeast Get1/Get2 or mammalian WRB/CAML) that captures the TA from a cytoplasmic chaperone (Get3 or TRC40, respectively). Here, we present cryo-electron microscopy reconstructions, native mass spectrometry, and structure-based mutagenesis of human WRB/CAML/TRC40 and yeast Get1/Get2/Get3 complexes. Get3 binding to the membrane insertase supports heterotetramer formation, and phosphatidylinositol binding at the heterotetramer interface stabilizes the insertase for efficient TA insertion in vivo. We identify a Get2/CAML cytoplasmic helix that forms a "gating" interaction with Get3/TRC40 important for TA insertion. Structural homology with YidC and the ER membrane protein complex (EMC) implicates an evolutionarily conserved insertion mechanism for divergent substrates utilizing a hydrophilic groove. Thus, we provide a detailed structural and mechanistic framework to understand TA membrane insertion.


Assuntos
Proteínas de Membrana/biossíntese , Proteínas de Membrana/química , Complexos Multiproteicos/metabolismo , Linhagem Celular , Sequência Conservada , Evolução Molecular , Humanos , Proteínas de Membrana/metabolismo , Modelos Moleculares , Fosfatidilinositóis/metabolismo , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Nat Commun ; 11(1): 4370, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873792

RESUMO

BRAF kinase, a critical effector of the ERK signaling pathway, is hyperactivated in many cancers. Oncogenic BRAFV600E signals as an active monomer in the absence of active RAS, however, in many tumors BRAF dimers mediate ERK signaling. FDA-approved RAF inhibitors poorly inhibit BRAF dimers, which leads to tumor resistance. We found that Ponatinib, an FDA-approved drug, is an effective inhibitor of BRAF monomers and dimers. Ponatinib binds the BRAF dimer and stabilizes a distinct αC-helix conformation through interaction with a previously unrevealed allosteric site. Using these structural insights, we developed PHI1, a BRAF inhibitor that fully uncovers the allosteric site. PHI1 exhibits discrete cellular selectivity for BRAF dimers, with enhanced inhibition of the second protomer when the first protomer is occupied, comprising a novel class of dimer selective inhibitors. This work shows that Ponatinib and BRAF dimer selective inhibitors will be useful in treating BRAF-dependent tumors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Sítio Alostérico/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Cristalografia por Raios X , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Sistema de Sinalização das MAP Quinases/genética , Simulação de Acoplamento Molecular , Mutação , Neoplasias/genética , Neoplasias/patologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Multimerização Proteica/efeitos dos fármacos , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/ultraestrutura , Piridazinas/farmacologia , Piridazinas/uso terapêutico , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
8.
Nat Commun ; 11(1): 4476, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32900995

RESUMO

Mechanically stable specific heterodimerization between small protein domains have a wide scope of applications, from using as a molecular anchorage in single-molecule force spectroscopy studies of protein mechanics, to serving as force-bearing protein linker for modulation of mechanotransduction of cells, and potentially acting as a molecular crosslinker for functional materials. Here, we explore the possibility to develop heterodimerization system with a range of mechanical stability from a set of recently engineered helix-heterotetramers whose mechanical properties have yet to be characterized. We demonstrate this possibility using two randomly chosen helix-heterotetramers, showing that their mechanical properties can be modulated by changing the stretching geometry and the number of interacting helices. These helix-heterotetramers and their derivatives are sufficiently stable over physiological temperature range. Using it as mechanically stable anchorage, we demonstrate the applications in single-molecule manipulation studies of the temperature dependent unfolding and refolding of a titin immunoglobulin domain and α-actinin spectrin repeats.


Assuntos
Engenharia de Proteínas , Multimerização Proteica , Estabilidade Proteica , Actinina/química , Fenômenos Biomecânicos , Conectina/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Dobramento de Proteína , Estrutura Quaternária de Proteína , Desdobramento de Proteína , Imagem Individual de Molécula , Temperatura
9.
Nat Commun ; 11(1): 3848, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737286

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a fatal disease characterized by the degeneration of upper and lower motor neurons (MNs). We find a significant reduction of the retromer complex subunit VPS35 in iPSCs-derived MNs from ALS patients, in MNs from ALS post mortem explants and in MNs from SOD1G93A mice. Being the retromer involved in trafficking of hydrolases, a pathological hallmark in ALS, we design, synthesize and characterize an array of retromer stabilizers based on bis-guanylhydrazones connected by a 1,3-phenyl ring linker. We select compound 2a as a potent and bioavailable interactor of VPS35-VPS29. Indeed, while increasing retromer stability in ALS mice, compound 2a attenuates locomotion impairment and increases MNs survival. Moreover, compound 2a increases VPS35 in iPSCs-derived MNs and shows brain bioavailability. Our results clearly suggest the retromer as a valuable druggable target in ALS.


Assuntos
Esclerose Amiotrófica Lateral/tratamento farmacológico , Hidrazonas/farmacologia , Neurônios Motores/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteínas de Transporte Vesicular/genética , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Esclerose Amiotrófica Lateral/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Diferenciação Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Hidrazonas/síntese química , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/síntese química , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica , Relação Estrutura-Atividade , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Proteínas de Transporte Vesicular/metabolismo
10.
Int J Mol Sci ; 21(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731361

RESUMO

Given the enormous social and health impact of the pandemic triggered by severe acute respiratory syndrome 2 (SARS-CoV-2), the scientific community made a huge effort to provide an immediate response to the challenges posed by Coronavirus disease 2019 (COVID-19). One of the most important proteins of the virus is an enzyme, called 3CLpro or main protease, already identified as an important pharmacological target also in SARS and Middle East respiratory syndrome virus (MERS) viruses. This protein triggers the production of a whole series of enzymes necessary for the virus to carry out its replicating and infectious activities. Therefore, it is crucial to gain a deeper understanding of 3CLpro structure and function in order to effectively target this enzyme. All-atoms molecular dynamics (MD) simulations were performed to examine the different conformational behaviors of the monomeric and dimeric form of SARS-CoV-2 3CLpro apo structure, as revealed by microsecond time scale MD simulations. Our results also shed light on the conformational dynamics of the loop regions at the entry of the catalytic site. Studying, at atomic level, the characteristics of the active site and obtaining information on how the protein can interact with its substrates will allow the design of molecules able to block the enzymatic function crucial for the virus.


Assuntos
Betacoronavirus/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Betacoronavirus/química , Domínio Catalítico , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Multimerização Proteica
11.
Nat Commun ; 11(1): 4316, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859932

RESUMO

Plants utilize a UV-B (280 to 315 nm) photoreceptor UVR8 (UV RESISTANCE LOCUS 8) to sense environmental UV levels and regulate gene expression to avoid harmful UV effects. Uniquely, UVR8 uses intrinsic tryptophan for UV-B perception with a homodimer structure containing 26 structural tryptophan residues. However, besides 8 tryptophans at the dimer interface to form two critical pyramid perception centers, the other 18 tryptophans' functional role is unknown. Here, using ultrafast fluorescence spectroscopy, computational methods and extensive mutations, we find that all 18 tryptophans form light-harvesting networks and funnel their excitation energy to the pyramid centers to enhance light-perception efficiency. We determine the timescales of all elementary tryptophan-to-tryptophan energy-transfer steps in picoseconds to nanoseconds, in excellent agreement with quantum computational calculations, and finally reveal a significant leap in light-perception quantum efficiency from 35% to 73%. This photoreceptor is the first system discovered so far, to be best of our knowledge, using natural amino-acid tryptophans to form networks for both light harvesting and light perception.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Fotorreceptores de Plantas/química , Fotorreceptores de Plantas/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Transferência de Energia , Fluorescência , Cinética , Luz , Modelos Moleculares , Mutação , Conformação Proteica , Multimerização Proteica , Triptofano/metabolismo , Raios Ultravioleta
12.
Biochem Biophys Res Commun ; 532(1): 134-138, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32829876

RESUMO

SARS-CoV-2 is the etiologic agent of COVID-19. There is currently no effective means of preventing infections by SARS-CoV-2, except through restriction of population movement and contact. An understanding of the origin, evolution and biochemistry (molecular biology) of SARS-CoV-2 is a prerequisite to its control. Mutations in the phosphorylation sites of SARS-CoV-2 encoded nucleocapsid protein isolated from various populations and locations, are described. Mutations occurred in the phosphorylation sites, all located within a stretch which forms a phosphorylation dependent interaction site, including C-TAK1 phosphorylation sites for 14-3-3. The consequences of these mutations are discussed and a structure-based model for the role of protein 14-3-3 in the sequestration and inhibition of SARS-CoV-2 nucleocapsid protein's function is presented. It is proposed that the phosphorylation of SARS-CoV-2 nucleocapsid protein and its sequestration by Protein 14-3-3 is a cellular response mechanism for the control and inhibition of the replication, transcription and packaging of the SARS-CoV-2 genome.


Assuntos
Proteínas 14-3-3/química , Betacoronavirus/genética , Genoma Viral , Interações Hospedeiro-Patógeno/genética , Proteínas do Nucleocapsídeo/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Sequência de Aminoácidos , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidade , Sítios de Ligação , Infecções por Coronavirus/virologia , Expressão Gênica , Humanos , Simulação de Acoplamento Molecular , Mutação , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Pandemias , Fosforilação , Pneumonia Viral/virologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica
13.
PLoS One ; 15(8): e0237667, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32833960

RESUMO

BACKGROUND AND AIMS: This is the first time that obesity and diabetes mellitus (DM) as protein conformational diseases (PCD) are reported in children and they are typically diagnosed too late, when ß-cell damage is evident. Here we wanted to investigate the level of naturally-ocurring or real (not synthetic) oligomeric aggregates of the human islet amyloid polypeptide (hIAPP) that we called RIAO in sera of pediatric patients with obesity and diabetes. We aimed to reduce the gap between basic biomedical research, clinical practice-health decision making and to explore whether RIAO work as a potential biomarker of early ß-cell damage. MATERIALS AND METHODS: We performed a multicentric collaborative, cross-sectional, analytical, ambispective and blinded study; the RIAO from pretreated samples (PTS) of sera of 146 pediatric patients with obesity or DM and 16 healthy children, were isolated, measured by sound indirect ELISA with novel anti-hIAPP cytotoxic oligomers polyclonal antibody (MEX1). We carried out morphological and functional studied and cluster-clinical data driven analysis. RESULTS: We demonstrated by western blot, Transmission Electron Microscopy and cell viability experiments that RIAO circulate in the blood and can be measured by ELISA; are elevated in serum of childhood obesity and diabetes; are neurotoxics and works as biomarkers of early ß-cell failure. We explored the range of evidence-based medicine clusters that included the RIAO level, which allowed us to classify and stratify the obesity patients with high cardiometabolic risk. CONCLUSIONS: RIAO level increases as the number of complications rises; RIAOs > 3.35 µg/ml is a predictor of changes in the current indicators of ß-cell damage. We proposed a novel physio-pathological pathway and shows that PCD affect not only elderly patients but also children. Here we reduced the gap between basic biomedical research, clinical practice and health decision making.


Assuntos
Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/patologia , Células Secretoras de Insulina/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Obesidade/patologia , Estrutura Quaternária de Proteína , Adolescente , Animais , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Criança , Pré-Escolar , Estudos Transversais , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/sangue , Polipeptídeo Amiloide das Ilhotas Pancreáticas/toxicidade , Polipeptídeo Amiloide das Ilhotas Pancreáticas/ultraestrutura , Microscopia Eletrônica de Transmissão , Neurônios/efeitos dos fármacos , Obesidade/sangue , Obesidade/complicações , Projetos Piloto , Cultura Primária de Células , Multimerização Proteica , Ratos , Testes de Toxicidade Aguda
14.
PLoS One ; 15(8): e0237884, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32841243

RESUMO

The Solanum tuberosum plant specific insert (StPSI) has a defensive role in potato plants, with the requirements of acidic pH and anionic lipids. The StPSI contains a set of three highly conserved disulfide bonds that bridge the protein's helical domains. Removal of these bonds leads to enhanced membrane interactions. This work examined the effects of their sequential removal, both individually and in combination, using all-atom molecular dynamics to elucidate the role of disulfide linkages in maintaining overall protein tertiary structure. The tertiary structure was found to remain stable at both acidic (active) and neutral (inactive) pH despite the removal of disulfide linkages. The findings include how the dimer structure is stabilized and the impact on secondary structure on a residue-basis as a function of disulfide bond removal. The StPSI possesses an extensive network of inter-monomer hydrophobic interactions and intra-monomer hydrogen bonds, which is likely the key to the stability of the StPSI by stabilizing local secondary structure and the tertiary saposin-fold, leading to a robust association between monomers, regardless of the disulfide bond state. Removal of disulfide bonds did not significantly impact secondary structure, nor lead to quaternary structural changes. Instead, disulfide bond removal induces regions of amino acids with relatively higher or lower variation in secondary structure, relative to when all the disulfide bonds are intact. Although disulfide bonds are not required to preserve overall secondary structure, they may have an important role in maintaining a less plastic structure within plant cells in order to regulate membrane affinity or targeting.


Assuntos
Dissulfetos/metabolismo , Simulação de Dinâmica Molecular , Proteínas de Plantas/metabolismo , Saposinas/metabolismo , Solanum tuberosum/metabolismo , Cisteína/metabolismo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Plantas/química , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Sais/química , Enxofre/metabolismo
15.
Science ; 370(6513): 203-208, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32817270

RESUMO

The spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is required for cell entry and is the primary focus for vaccine development. In this study, we combined cryo-electron tomography, subtomogram averaging, and molecular dynamics simulations to structurally analyze S in situ. Compared with the recombinant S, the viral S was more heavily glycosylated and occurred mostly in the closed prefusion conformation. We show that the stalk domain of S contains three hinges, giving the head unexpected orientational freedom. We propose that the hinges allow S to scan the host cell surface, shielded from antibodies by an extensive glycan coat. The structure of native S contributes to our understanding of SARS-CoV-2 infection and potentially to the development of safe vaccines.


Assuntos
Betacoronavirus/química , Simulação de Dinâmica Molecular , Glicoproteína da Espícula de Coronavírus/química , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Glicosilação , Humanos , Domínios Proteicos , Multimerização Proteica
16.
Proc Natl Acad Sci U S A ; 117(34): 20566-20575, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32788347

RESUMO

The complexity of the cellular medium can affect proteins' properties, and, therefore, in-cell characterization of proteins is essential. We explored the stability and conformation of the first baculoviral IAP repeat (BIR) domain of X chromosome-linked inhibitor of apoptosis (XIAP), BIR1, as a model for a homodimer protein in human HeLa cells. We employed double electron-electron resonance (DEER) spectroscopy and labeling with redox stable and rigid Gd3+ spin labels at three representative protein residues, C12 (flexible region), E22C, and N28C (part of helical residues 26 to 31) in the N-terminal region. In contrast to predictions by excluded-volume crowding theory, the dimer-monomer dissociation constant K D was markedly higher in cells than in solution and dilute cell lysate. As expected, this increase was partially recapitulated under conditions of high salt concentrations, given that conserved salt bridges at the dimer interface are critically required for association. Unexpectedly, however, also the addition of the crowding agent Ficoll destabilized the dimer while the addition of bovine serum albumin (BSA) and lysozyme, often used to represent interaction with charged macromolecules, had no effect. Our results highlight the potential of DEER for in-cell study of proteins as well as the complexities of the effects of the cellular milieu on protein structures and stability.


Assuntos
Multimerização Proteica , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/química , Dimerização , Espectroscopia de Ressonância de Spin Eletrônica , Células HeLa , Humanos , Conformação Proteica
17.
PLoS Pathog ; 16(8): e1008745, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32841296

RESUMO

Production of an extracellular matrix is essential for biofilm formation, as this matrix both secures and protects the cells it encases. Mechanisms underlying production and assembly of matrices are poorly understood. Vibrio cholerae, relies heavily on biofilm formation for survival, infectivity, and transmission. Biofilm formation requires Vibrio polysaccharide (VPS), which is produced by vps gene-products, yet the function of these products remains unknown. Here, we demonstrate that the vps gene-products vpsO and vpsU encode respectively for a tyrosine kinase and a cognate tyrosine phosphatase. Collectively, VpsO and VpsU act as a tyrosine phosphoregulatory system to modulate VPS production. We present structures of VpsU and the kinase domain of VpsO, and we report observed autocatalytic tyrosine phosphorylation of the VpsO C-terminal tail. The position and amount of tyrosine phosphorylation in the VpsO C-terminal tail represses VPS production and biofilm formation through a mechanism involving the modulation of VpsO oligomerization. We found that tyrosine phosphorylation enhances stability of VpsO. Regulation of VpsO phosphorylation by the phosphatase VpsU is vital for maintaining native VPS levels. This study provides new insights into the mechanism and regulation of VPS production and establishes general principles of biofilm matrix production and its inhibition.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Polissacarídeos Bacterianos/biossíntese , Multimerização Proteica , Proteínas Tirosina Fosfatases/metabolismo , Vibrio cholerae/fisiologia , Proteínas de Bactérias/genética , Fosforilação/fisiologia , Polissacarídeos Bacterianos/genética , Proteínas Tirosina Fosfatases/genética
18.
Mol Cell ; 80(1): 29-42.e10, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32857952

RESUMO

(p)ppGpp is a nucleotide messenger universally produced in bacteria following nutrient starvation. In E. coli, ppGpp inhibits purine nucleotide synthesis by targeting several different enzymes, but the physiological significance of their inhibition is unknown. Here, we report the structural basis of inhibition for one target, Gsk, the inosine-guanosine kinase. Gsk creates an unprecedented, allosteric binding pocket for ppGpp by restructuring terminal sequences, which restrains conformational dynamics necessary for catalysis. Guided by this structure, we generated a chromosomal mutation that abolishes Gsk regulation by ppGpp. This mutant strain accumulates abnormally high levels of purine nucleotides following amino-acid starvation, compromising cellular fitness. We demonstrate that this unrestricted increase in purine nucleotides is detrimental because it severely depletes pRpp and essential, pRpp-derived metabolites, including UTP, histidine, and tryptophan. Thus, our results reveal the significance of ppGpp's regulation of purine nucleotide synthesis and a critical mechanism by which E. coli coordinates biosynthetic processes during starvation.


Assuntos
Aminoácidos/biossíntese , Escherichia coli/metabolismo , Guanosina Tetrafosfato/metabolismo , Nucleotídeos/biossíntese , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Retroalimentação Fisiológica , Guanosina Difosfato/metabolismo , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Purinas/biossíntese , Pirimidinas/biossíntese
19.
Science ; 369(6508): 1261-1265, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753553

RESUMO

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds angiotensin-converting enzyme 2 (ACE2) on host cells to initiate entry, and soluble ACE2 is a therapeutic candidate that neutralizes infection by acting as a decoy. By using deep mutagenesis, mutations in ACE2 that increase S binding are found across the interaction surface, in the asparagine 90-glycosylation motif and at buried sites. The mutational landscape provides a blueprint for understanding the specificity of the interaction between ACE2 and S and for engineering high-affinity decoy receptors. Combining mutations gives ACE2 variants with affinities that rival those of monoclonal antibodies. A stable dimeric variant shows potent SARS-CoV-2 and -1 neutralization in vitro. The engineered receptor is catalytically active, and its close similarity with the native receptor may limit the potential for viral escape.


Assuntos
Betacoronavirus/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Engenharia de Proteínas , Receptores Virais/genética , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Ligação Competitiva , Linhagem Celular , Humanos , Modelos Moleculares , Mutagênese , Mutação , Peptidil Dipeptidase A/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Receptores Virais/química , Glicoproteína da Espícula de Coronavírus/química
20.
PLoS One ; 15(8): e0231560, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32822353

RESUMO

The dehydroshikimate dehydratase (DSD) from Corynebacterium glutamicum encoded by the qsuB gene is related to the previously described QuiC1 protein (39.9% identity) from Pseudomonas putida. Both QuiC1 and QsuB are two-domain bacterial DSDs. The N-terminal domain provides dehydratase activity, while the C-terminal domain has sequence identity with 4-hydroxyphenylpyruvate dioxygenase. Here, the QsuB protein and its N-terminal domain (N-QsuB) were expressed in the T7 system, purified and characterized. QsuB was present mainly in octameric form (60%), while N-QsuB had a predominantly monomeric structure (80%) in aqueous buffer. Both proteins possessed DSD activity with one of the following cofactors (listed in the order of decreasing activity): Co2+, Mg2+, Mn2+. The Km and kcat values for the QsuB enzyme (Km ~ 1 mM, kcat ~ 61 s-1) were two and three times higher than those for N-QsuB. 3,4-DHBA inhibited QsuB (Ki ~ 0.38 mM, Ki' ~ 0.96 mM) and N-QsuB (Ki ~ 0.69 mM) enzymes via mixed and noncompetitive inhibition mechanism, respectively. E. coli MG1655ΔaroEPlac‒qsuB strain produced three times more 3,4-DHBA from glucose in test tube fermentation than the MG1655ΔaroEPlac‒n-qsuB strain. The C-terminal domain activity towards 3,4-DHBA was not established in vitro. This domain was proposed to promote protein oligomerization for maintaining structural stability of the enzyme. The dimer formation of QsuB protein was more predictable (ΔG = ‒15.8 kcal/mol) than the dimerization of its truncated version N-QsuB (ΔG = ‒0.4 kcal/mol).


Assuntos
Biotecnologia , Corynebacterium glutamicum/enzimologia , Hidroliases/metabolismo , Hidroxibenzoatos/metabolismo , Corynebacterium glutamicum/genética , DNA Recombinante/genética , Escherichia coli/metabolismo , Hidroliases/química , Hidroliases/genética , Concentração de Íons de Hidrogênio , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , Estrutura Quaternária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA