Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.073
Filtrar
1.
J Agric Food Chem ; 67(31): 8668-8676, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31271028

RESUMO

This study investigated the effect of Chlorella vulgaris (C. vulgaris) on genotoxicity, cytotoxicity, and apoptosis in Caco-2 and HT-29 cells. C. vulgaris significantly induced DNA damage in both cell lines at a concentration of 200 µg dry matter/mL (comet tail intensity CTI: 24.6 ± 4.7% for Caco-2, 16.6 ± 0.9% for HT-29). The application of processing (sonication, ball-milling) did not affect the genotoxicity negatively and lowered the lipid peroxidation in C. vulgaris preparations. C. vulgaris-induced intracellular formation of reactive oxygen species in human cell lines and might be responsible for the genotoxic effect. A solid fraction mainly triggered the observed DNA damage (CTI: 41.5 ± 1.9%), whereas a hydrophilic (CTI: 7.9 ± 1.7%) and lipophilic (CTI: 10.2 ± 2.1%) fraction revealed a significantly lower tail intensity. C. vulgaris significantly induced DNA damage in both cell lines possibly through intracellular formation of reactive oxygen species; however, it was repaired after a 2 h recovery time or was even avoided at lower concentrations. In addition, none of the preparations indicated an adverse effect on cell proliferation or revealed apoptotic activity.


Assuntos
Chlorella vulgaris/química , Dano ao DNA/efeitos dos fármacos , Células Epiteliais/citologia , Mutagênicos/toxicidade , Extratos Vegetais/toxicidade , Apoptose/efeitos dos fármacos , Processos Autotróficos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Chlorella vulgaris/crescimento & desenvolvimento , Chlorella vulgaris/efeitos da radiação , Ensaio Cometa , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Luz , Peroxidação de Lipídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
2.
Environ Monit Assess ; 191(8): 513, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31346830

RESUMO

In this study, a method was developed to evaluate the degradation of haloacetic acids (HAAs) in water by a heterogenous Fenton-like process catalyzed by cobalt-doped magnetite nanoparticles (Fe3 - xCoxO4), extraction of the contaminants by liquid-liquid extraction (LLE), and analysis by gas chromatography-mass spectrometry (GC-MS). The developed method was efficient in the degradation of HAAs, with the following degradation values: 63%, 62%, 30%, 39%, 37%, 50%, 84%, 41%, and 79% for monochloroacetic acid, monobromoacetic acid, dichloroacetic acid, trichloroacetic acid, bromochloroacetic acid, dibromoacetic acid, bromodichloroacetic acid, dibromochloroacetic acid, and tribromoacetic acid compounds, respectively. Through the application of the Allium cepa test, the cytotoxicity, genotoxicity, and mutagenicity of HAAs were evaluated. The results confirm its genotoxic and mutagenic effects on Allium cepa meristematic cells. Through this study, it was possible to verify the effectiveness of the developed method and its potential as a proposal for environmental remediation.


Assuntos
Bioensaio , Cloroacetatos/toxicidade , Mutagênicos/toxicidade , Testes de Toxicidade , Acetatos/toxicidade , Ácido Acético , Dano ao DNA , Ácido Dicloroacético/toxicidade , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Bromados/toxicidade , Ácido Tricloroacético/toxicidade , Água/análise , Abastecimento de Água
3.
Sci Total Environ ; 685: 911-922, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31247438

RESUMO

The present work investigated the autoxidation reaction of p-toluenediamine (PTD) - a precursor - widely used in permanent hair dyeing formulation, under experimental conditions close to the hair dyeing process (oxygen and/or peroxide in ammoniacal medium), by chromatographic and spectroscopic techniques. In additional, evaluated the mutagenicity of the PTD oxidation products and the presence of PTD and this products in wastewater from beauty salon, as well as in surface water and drinking water using HPLC coupled to a diode array detector and linear scan voltammetry. Through this study, it was possible the identification of semi-quinonediimine, quinonediimine, dimers (derived from toluenediamine), and trimer radical identified as Bandrowski's Base derivative (BBD) formed during autoxidation of PTD. Salmonella Typhimurium YG1041 assay with and without metabolic activation induced rat-liver (S9) indicated mutagenic activity for BBD. Levels of PTD were determined by the standard addition method in samples collected from the wastewater of a beauty salon, as well as from the water before and after treatment in a drinking water treatment plant (DWTP) reached concentrations of 2.08 ±â€¯0.21, 2.36 ±â€¯0.10 × 10-3, and 1.77 ±â€¯0.13 × 10-3 mg L-1, respectively. In addition, linear sweep voltammetry was used to monitor the BBD found at the concentration of 1.59 ±â€¯0.35 mg L-1 in wastewater collected from the beauty salon.


Assuntos
Mutagênicos/toxicidade , Fenilenodiaminas/química , Poluentes Químicos da Água/química , Barbearia , Peróxido de Hidrogênio , Testes de Mutagenicidade , Mutagênicos/análise , Mutagênicos/química , Oxirredução , Fenilenodiaminas/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Food Chem Toxicol ; 131: 110532, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31154085

RESUMO

Pyrrolizidine alkaloids (PAs) are secondary metabolites from plants that have been found in substantial amounts in herbal supplements, infusions and teas. Several PAs cause cancer in animal bioassays, mediated via a genotoxic mode of action, but for the majority of the PAs, carcinogenicity data are lacking. It is assumed in the risk assessment that all PAs have the same potency as riddelliine, which is considered to be one of the most potent carcinogenic PAs in rats. This may overestimate the risks, since many PAs are expected to have lower potencies. In this study we determined the concentration-dependent genotoxicity of 37 PAs representing different chemical classes using the γH2AX in cell western assay in HepaRG human liver cells. Based on these in vitro data, PAs were grouped into different potency classes. The group with the highest potency consists particularly of open diester PAs and cyclic diester PAs (including riddelliine). The group of the least potent or non-active PAs includes the monoester PAs, non-esterified necine bases, PA N-oxides, and the unsaturated PA trachelanthamine. This study reveals differences in in vitro genotoxic potencies of PAs, supporting that the assumption that all PAs have a similar potency as riddelliine is rather conservative.


Assuntos
Histonas/metabolismo , Mutagênicos/toxicidade , Alcaloides de Pirrolizidina/toxicidade , Bioensaio , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Histonas/genética , Humanos , Internet , Modelos Biológicos , Alcaloides de Pirrolizidina/classificação , Ativação Transcricional/efeitos dos fármacos
5.
Food Chem Toxicol ; 131: 110557, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31176925

RESUMO

The aim of the present study was to appraise the mutagenic and recombinogenic potential of bupropion hydrochloride (BHc) and trazodone hydrochloride (THc). We used standard (ST) and the high bioactivation (HB) crossings from Drosophila melanogaster in the Somatic Mutation and Recombination Test. We treated third-instar larvae from both crossings with different concentrations of BHc and THc (0.9375 to 7.5 mg/mL). BHc significantly increased the frequency of mutant spots in both crossings, except for the lowest concentration in the ST crossing. ST had also the mostly recombinogenic result, and in the HB, BHc was highly mutagenic. On the other hand, THc significantly increased the frequency of mutant spots in both the ST and HB crossings at all concentrations. The three initial concentrations were recombinogenic and the highest concentration was mutagenic for the THc. BHc and THc at high concentrations were toxic, even though their mutagenicity was not dose-related. THc significantly increased the frequency of mutant spots when metabolized, probably as a result of the production of 1-(3'-chlorophenyl) piperazine. BHc was essentially recombinogenic and when metabolized, it became mutagenic. THc was recombinogenic in both crossings. Further studies are needed to clarify the action mechanisms from BHc and THc.


Assuntos
Antidepressivos/toxicidade , Bupropiona/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Mutagênicos/toxicidade , Recombinação Genética/efeitos dos fármacos , Trazodona/toxicidade , Animais , Drosophila melanogaster/genética , Feminino , Masculino , Testes de Mutagenicidade , Mutação , Asas de Animais/efeitos dos fármacos
6.
Food Chem Toxicol ; 131: 110580, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31202938

RESUMO

In present study, the acute, genetic, and sub-chronic toxicities of flaxseed derived Maillard reaction products (MRPs) were investigated. Acute toxicity results showed that the 50% lethal dose (LD50) of MRPs in rats was >15.0 g/kg body weight (BW); whereas, the 50% effective dose (ED50) of MRPs was 12.3 g/kg BW. Ames test demonstrated that the back-mutation colonies for MRPs addition of 5,000 µg/dish was positive, which displayed certain mutagenicity. There were no significant differences in micronucleus rate and sperm deformity rate among different dose groups. The sub-chronic toxicity confirmed that less than 0.75 gMRPs/kg BW intake did not affect weight, food intake, mortality, gross pathology, histology, hematology, and serum biochemistry. The obtained results can provide an imperative reference on the safety of a meat flavoring agents.


Assuntos
Linho/química , Produtos Finais de Glicação Avançada/toxicidade , Sementes/química , Alanina Transaminase/metabolismo , Animais , Medula Óssea/patologia , Feminino , Rim/patologia , Fígado/patologia , Masculino , Camundongos , Testes de Mutagenicidade , Mutagênicos/toxicidade , Ratos Sprague-Dawley , Testes de Toxicidade Aguda , Testes de Toxicidade Subcrônica
7.
Chemosphere ; 232: 337-344, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31154195

RESUMO

In this study, we investigated the effects of three binary mixtures of pesticide formulations commonly used in soybean crop: Cypermethrin Atanor® (25% -CYP), Chlorpyrifos Lorsban 48E® (48% -CPF) and Glyphosate Roundup® Full II (66.2% -GLY) on broad-snouted caiman (Caiman latirostris) hatchlings exposed by voluntary immersion under controlled condition. Genotoxicity was evaluated in peripheral blood erythrocytes through the micronucleus (MN) test and other nuclear abnormalities (NAs) and besides, growth of caiman was analyzed in each experimental group. The results showed that pesticide formulations tested, at concentrations similar to those recommended for application in the field, induced an increase in the frequency of micronucleus (FMN; p = 0.001) and Notched nuclei (NN; p = 0.010) in the mixture CYP + CPF, while an increase in the frequency of buds and NN was observed in the mixture of GLY + CYP (pbuds = 0.016 and pNN = 0.021), compared to the vehicle control (VC). On the contrary, a possible antagonistic action was observed between the components in the mixture GLY + CPF. Growth was not affected in any exposed groups (p > 0.05). There was a clutch effect in the frequency of binucleated erythrocytes (BiN; p = 0.011), total length (TL; p = 0.001) and snout-vent length (SVL; p = 0.031). Biomarkers used in this study are considered important predictive tools for the evaluation of xenobiotics. In this study, we demonstrated genotoxicity of pesticide mixtures under conditions that simulate the real situation of exposure suffered by caiman and other wild species in Argentina.


Assuntos
Jacarés e Crocodilos/fisiologia , Testes para Micronúcleos , Mutagênicos/toxicidade , Praguicidas/toxicidade , Animais , Argentina , Clorpirifos/toxicidade , Dano ao DNA , Eritrócitos/efeitos dos fármacos , Glicina/análogos & derivados , Piretrinas/toxicidade
8.
Chemosphere ; 231: 518-527, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31151012

RESUMO

Retene (RET) is the most abundant polycyclic aromatic hydrocarbon (PAH) released upon burning of cellulose, although it is not considered as one of the priority PAHs and is not included for risk assessments by the US Environmental Protection Agency (US-EPA). There are only a few studies concerning the toxic effects of RET. To the best of our knowledge, this study is the first one to examine whether RET, in an environmental concentration, plays a crucial role in the induction of oxidative stress in A549 lung cell line, and its consequence as such as mutagenicity and cell death. Our results revealed that RET was able to significantly decrease cell viability only at 72 h of exposure, increase oxidative stress, mitochondrial membrane potential and mitochondrial contents, leading an increased reactive oxygen species (ROS) production. Mutagenic activity was not detected in Salmonella strains, suggesting that RET does not induce base-pair substitution (TA100), frameshift (TA98 and TA97a) and transition/transversion (TA102) mutations. However, exposure to RET led to a significant increase in micronuclei (MN), nucleoplasmic bridges (NPBs), and nuclear buds (NBUDs) frequency, as well as cell death, mainly due to necrosis. Taken together, the results of our study provide new evidence suggesting that RET promotes oxidative stress, contributes to the processes of genomic instability, and favors necrosis. Thus, we highlight the importance of including RET in routine environmental analyses in the future as a potential risk factor involved in complex diseases and carcinogenesis.


Assuntos
Mutagênicos/toxicidade , Estresse Oxidativo , Fenantrenos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Células A549 , Morte Celular , Humanos , Potencial da Membrana Mitocondrial , Mutagênese , Testes de Mutagenicidade/métodos , Mutação , Hidrocarbonetos Policíclicos Aromáticos/análise , Salmonella/efeitos dos fármacos
9.
Nat Commun ; 10(1): 2820, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31249297

RESUMO

Bats are unusual mammals, with the ability to fly, and long lifespans. In addition, bats have a low incidence of cancer, but the mechanisms underlying this phenomenon remain elusive. Here we discovered that bat cells are more resistant than human and mouse cells to DNA damage induced by genotoxic drugs. We found that bat cells accumulate less chemical than human and mouse cells, and efficient drug efflux mediated by the ABC transporter ABCB1 underlies this improved response to genotoxic reagents. Inhibition of ABCB1 triggers an accumulation of doxorubicin, DNA damage, and cell death. ABCB1 is expressed at higher levels in several cell lines and tissues derived from bats compared to humans. Furthermore, increased drug efflux and high expression of ABCB1 are conserved across multiple bat species. Our findings suggest that enhanced efflux protects bat cells from DNA damage induced by genotoxic compounds, which may contribute to their low cancer incidence.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Quirópteros/genética , Quirópteros/metabolismo , Dano ao DNA/efeitos dos fármacos , Mutagênicos/toxicidade , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Doxorrubicina/toxicidade , Humanos , Camundongos
10.
Ecotoxicol Environ Saf ; 180: 756-761, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31154200

RESUMO

Nitrated polycyclic aromatic hydrocarbons (Nitro-PAHs) as important organic pollutants are ubiquitous in the atmospheric environment, agricultural soils and aquatic environments to pose a severe polluting risk. However, little is known about the mechanism of Nitro-PAHs genotoxicity in plants. We analyzed seeds germination, seedlings growth, and toxicity mechanism following 1-Nitropyrene treatment in Hordeum vulgare. Our results reveal that 1-NP treatment could be an inhibited agent on seeds germination and growth of roots and shoots. Additionally, the reduction of mitotic index and the increasing frequency of micronucleus suggest that 1-NP may pose a potential risk of genotoxicity in the plant. We further clarify that O2- and H2O2 radicals contribute to 1-NP stimulation induced oxidative damage. Our study provides insights into the role of Nitro-PAHs exposure on growth processing toxicity and genotoxicity in plant and provided a useful reference for the surveillance and risk management of Nitro-PAHs in environments.


Assuntos
Hordeum/efeitos dos fármacos , Mutagênicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes do Solo/toxicidade , Radicais Livres/metabolismo , Germinação/efeitos dos fármacos , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Óxidos de Nitrogênio/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Pirenos/toxicidade
11.
Environ Sci Pollut Res Int ; 26(20): 21013-21021, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31119539

RESUMO

In this study the phytotoxic, cytotoxic, genotoxic and mutagenic effects of two commercial fungicide-active compounds, procymidone (PR) and iprodione (IP), were determined. The parameters evaluated were germination and root growth, mitotic index, chromosomal and nuclear aberrations, and molecular analyses were also performed in the model plant Allium cepa L. The results demonstrated that the active compounds PR and IP were phytotoxic, delaying germination and slowing the development of A. cepa seedlings. Moreover, PR and IP showed cytogenotoxicity towards A. cepa meristematic cells, inducing chromosomal changes and cell death. The mutagenic activity of the active compounds was demonstrated by the detection of DNA changes in simple sequence repeat (SSR) and inter-simple sequence repeat (ISSR) markers in the treated cells compared to the negative control. Together, these results contribute to a better understanding of the damage caused by these substances in living organisms and reveal a promising strategy for prospective studies of the toxic effects of environmental pollutants.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Compostos Bicíclicos com Pontes/toxicidade , Fungicidas Industriais/toxicidade , Hidantoínas/toxicidade , Mutagênicos/toxicidade , Cebolas/efeitos dos fármacos , Aminoimidazol Carboxamida/toxicidade , Dano ao DNA/efeitos dos fármacos , Germinação/efeitos dos fármacos , Meristema/efeitos dos fármacos , Meristema/genética , Meristema/crescimento & desenvolvimento , Cebolas/genética , Cebolas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento
12.
Environ Sci Pollut Res Int ; 26(18): 18403-18410, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31049867

RESUMO

Nanoparticles are very effective compounds to transform and detoxicate common environmental contaminants. For this reason, crude urban liquid wastewater sludges were treated by silver nanoparticles (Ag-NPs, 100 nm) for 24 h. Both Ag-NPs' treated and untreated sludges were examined for the evaluation if there are possible mutagenic/anti-mutagenic, cytotoxic, and genotoxic/anti-genotoxic effects by Ames and Allium cepa tests. The results were then subjected to statistical analyses by using SPSS software and p < 0.05 was accepted as a significant value. The data obtained from the Ames test showed that while untreated crude liquid sludge had a significant mutagenic effect, Ag-NP-treated one decreased its mutagenicity. Similar effects were also observed in the chromosome aberration-Allium cepa tests. Significant chromosome aberrations observed were C-metaphase, sticky metaphase, sticky anaphase, anaphase bridge, vagrant chromosome, and multipolar anaphases. Both tests demonstrated that silver nanoparticle treatment decreased the major mutagenicity and genotoxicity detected in the liquid wastewater sludges.


Assuntos
Nanopartículas Metálicas/química , Mutagênicos/toxicidade , Esgotos/química , Prata/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/toxicidade , Aberrações Cromossômicas/induzido quimicamente , Dano ao DNA , Testes de Mutagenicidade , Cebolas/efeitos dos fármacos , Cebolas/genética , Águas Residuárias/química
13.
Environ Sci Pollut Res Int ; 26(21): 21475-21483, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31127510

RESUMO

A problem that has been dragging in recent decades is the final disposal of the waste produced in the wastewater treatment process. In addition to its high amount of organic matter and nutrients, this waste, known as sewage sludge (SS), may also contain toxic compounds that, when in the environment, can cause deleterious effects to organisms and lead to severe and irreversible consequences to human health. In order to understand the potential of inducing cellular and chromosomal instabilities, the species Allium cepa was employed to assess the presence of toxic agents in SS samples. Seeds of A. cepa were exposed to several dilutions of aqueous extract of SSs from 5 wastewater treatment plants (WWTPs), whose characteristics of treated sewage and the technologies employed differ among them. The results obtained showed that all the studied SSs induced significant genotoxic and mutagenic alterations, even in smaller dilutions tested. With these results, it was also possible to observe that SSs from WWTPs that present system of activated sludge and receive sewage of industrial origin induced a greater number of toxicogenetic alterations in the test organism. The high frequencies of chromosomal and nuclear aberrations observed, induced by contaminants present in the SS, represent worrying results because it proves a direct action of this agent on the genetic material of the exposed organism. Therefore, the agronomic application of SS in agriculture requires additional and more effective technologies in order to promote its complete decontamination and its safe disposal in the environment.


Assuntos
Agricultura/métodos , Esgotos/química , Toxicogenética , Eliminação de Resíduos Líquidos/métodos , Poluentes da Água/toxicidade , Humanos , Mutagênicos/toxicidade , Cebolas/efeitos dos fármacos , Águas Residuárias , Poluentes da Água/análise
14.
Environ Sci Pollut Res Int ; 26(18): 18208-18229, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31041706

RESUMO

Severity of clinical expression and high mortality could not facilitate establishing exposure index/association following MIC disaster in Bhopal. Mortality-based exposure stratification was critiqued by the International Medical Commission on Bhopal (IMCB). IMCB stratified exposure considering distance as surrogate at 2 km intervals after 10 years. The first follow-up cytogenetic screening of the pre-screened survivors after 30 years has demonstrated chromosome abnormalities (CA). Exposure stratification was attempted considering cytogenetic screening conducted during 1986-1988. Elevation of CA appeared proportional to exposure status and authenticated the initial mortality-based stratification. The one-on-one comparison of the previous and present cytogenetics has described the individual response to MIC exposure over 30 years. Chi-square test has been carried out for checking the cytogenetic changes at the individual level statistically, which revealed that differences of chromosomal aberrations collected immediately post-disaster and 30 years later are nonsignificant. The prominence of interindividual variation was noticed in general. The impact of overall exposure was higher in males. Constitutional abnormalities in 8.5% of the study population, including translocation, inversion, deletion, fragile sites, etc., necessitate screening of blood-linked members. The incidence of acrocentric association was prominent in the study population. Normal karyotype in children born to severely exposed parents with congenital anomalies indicates necessity of molecular karyotyping and/or screening of mutations. The study highlights follow-up of the health of the index cases at shorter (3-6 months) intervals. This comprehensive spectrum of cytogenetic report highlights immediate post-disaster chromosomal aberrations, the changes that occurred over 30 years in conjunction with other environmental factors at the individual level, constitutive genomic aberrations, polymorphic variations, and chromosomal patterns in congenitally malformed children of the survivors, which collectively indicate the possibility of acquisition/persistence of stable aberrations in MIC-exposed lymphocytes through interaction with environmental/biological confounders.


Assuntos
Aberrações Cromossômicas/induzido quimicamente , Análise Citogenética , Desastres , Exposição Ambiental , Isocianatos/toxicidade , Mutagênicos/toxicidade , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Exposição Ambiental/normas , Feminino , Seguimentos , Humanos , Índia , Linfócitos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Fatores Sexuais
15.
Chemosphere ; 231: 10-19, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31128343

RESUMO

Although the toxicity of zinc oxide (ZnO) nanoparticles (NPs) is known in several experimental models, little is known about their effects on bird representatives. Therefore, the aim of the current study is to evaluate the mutagenic and cytotoxic potential of ZnO NPs in chicks belonging to species Gallus gallus domesticus, as well as to analyze the role played by nuclear and erythrocyte morphological changes as biomarkers of the toxicity of these nanopollutants. Two doses of ZnO NPs (0.245 mg k-1 and 245.26 mg kg-1) were herein tested; they were determined based on the predictive environmental concentration of these NPs (760 µg L-1), on the body biomass of the analyzed animals and on the mean daily water intake/bird. Birds were subjected to two intraperitoneal applications (one per day) of solution containing ZnO NPs; they were euthanized 48 h after the first application. The herein collected data have shown that NPs were capable of inducing the formation of different types of erythrocyte nuclear abnormalities, such as micronucleus, binucleate erythrocytes, blebbed, reniform and multilobulated nuclei, as well as symmetric and asymmetric constriction. In addition, changes in the size and shape of erythrocytes were observed in birds exposed to ZnO NPs. Zn bioaccumulation analysis conducted in brain tissues confirmed the association between these changes and animal exposure to ZnO NPs. Thus, besides confirming the toxicological potential of ZnO NPs, to the best of our knowledge, the current study is the first report on the mutagenic and cytotoxic effects of these NPs on bird representatives.


Assuntos
Núcleo Celular/patologia , Eritrócitos/patologia , Nanopartículas Metálicas/toxicidade , Mutagênicos/toxicidade , Poluentes Químicos da Água/toxicidade , Óxido de Zinco/toxicidade , Animais , Galinhas , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Codorniz , Poluição da Água/efeitos adversos
16.
J Agric Food Chem ; 67(20): 5736-5745, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31042035

RESUMO

As a potent herbicide capable of contaminating water and soil environments, paraquat, which is still widely used worldwide, is toxic to mammals, algae, aquatic animals, etc. Paraquat was loaded on novel nanoparticles composed of pectin, chitosan, and sodium tripolyphosphate (PEC/CS/TPP). The size, polydispersity index, and ζ potential of nanoparticles were characterized. Further assessments were carried out by SEM, AFM, FT-IR, and DSC. The encapsulation was highly efficient, and there was a delayed release pattern of paraquat. The encapsulated herbicide was less toxic to alveolar and mouth cell lines. Moreover, the mutagenicity of the formulation was significantly lower than those of pure or commercial forms of paraquat in a Salmonella typhimurium strain model. The soil sorption of paraquat and the deep soil penetration of the nanoparticle-associated herbicide were also decreased. The herbicidal activity of paraquat for maize or mustard was not only preserved but also enhanced after encapsulation. It was concluded that paraquat encapsulation with PEC/CS/TPP nanoparticles is highly efficient and the formulation has significant herbicide activity. It is less toxic to human environment and cells, as was evidenced by less soil sorption, cytotoxicity, and mutagenicity. Hence, paraquat-loaded PEC/CS/TPP nanoparticles have potential advantages for future use in agriculture.


Assuntos
Quitosana/química , Composição de Medicamentos/métodos , Herbicidas/química , Mutagênicos/química , Nanopartículas/química , Paraquat/química , Pectinas/química , Polifosfatos/química , Adsorção , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Herbicidas/farmacologia , Herbicidas/toxicidade , Humanos , Cinética , Mostardeira/efeitos dos fármacos , Mostardeira/crescimento & desenvolvimento , Mutagênicos/farmacologia , Mutagênicos/toxicidade , Paraquat/farmacologia , Paraquat/toxicidade , Tamanho da Partícula , Solo/química , Poluentes do Solo/química , Poluentes do Solo/farmacologia , Poluentes do Solo/toxicidade , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento
17.
Ecotoxicol Environ Saf ; 180: 123-129, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31082575

RESUMO

1-Nitropyrene (1-NP), a typical nitrated polycyclic aromatic hydrocarbon, is widely distributed in the environment and is well known for its mutagenic effects. Recently, we found that gestational 1-NP exposure induced fetal growth restriction. In this study, we further evaluated the effect of in utero 1-NP exposure on postnatal growth and neurobehavioral development in the offspring. Pregnant mice were administered with 1-NP (10 µg/kg) by gavage daily in late pregnancy (GD13-GD17). The body weight of each offspring was measured from PND1 to 12 weeks postpartum. Exploration and anxiety related activities were detected by open-field test at 6 weeks postpartum. Learning and memory were assessed by Morris Water Maze at 7 weeks postpartum. And depressive-like behaviors were estimated by sucrose preference test at 10 weeks postpartum. Significant body weight reduction was observed in 1-NP-exposed female offspring at PND1, PND14 and PND21 while the lower body weight was only found at PND1 for 1-NP-exposed male offspring. Exploration and anxiety activities at puberty, and depressive-like behavior in adulthood were not disturbed in offspring prenatally exposed to 1-NP. Interestingly, spatial learning and memory ability at puberty was impaired in females but not in males prenatally exposed to 1-NP. These findings suggest that gestational 1-NP exposure delays postnatal growth and impaired neurobehavioral development in a gender-dependent manner.


Assuntos
Poluentes Ambientais/toxicidade , Exposição Materna/efeitos adversos , Mutagênicos/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Pirenos/toxicidade , Animais , Feminino , Masculino , Memória/efeitos dos fármacos , Camundongos Endogâmicos ICR , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Fatores Sexuais , Aprendizagem Espacial/efeitos dos fármacos , Perda de Peso/efeitos dos fármacos
18.
Environ Sci Pollut Res Int ; 26(19): 19445-19452, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31077041

RESUMO

Genotoxicity of three toxic elements (chromium, cadmium, nickel) and a metalloid (arsenic) has been studied in a freshwater fish, Channa punctatus using micronuclei (MN) test, comet assay, and erythrocyte nuclear alterations (ENAs) as fingerprints of genotoxicity. These tests yielded different results suggesting involvement of different mechanisms for their genotoxicity. While highest frequency of blebbed nuclei was observed in chromium-treated fish (6.5 ± 0.76), lowest was observed in cadmium-treated fish (4.0 ± 1.0). Maximum number of notched nuclei was recorded in arsenic-treated fish (5.5 ± 1.15) whereas highest numbers of lobed nuclei were found in cadmium-treated fish (4.5 ± 0.13). These differences might be attributed to selective bioaccumulation and chemodynamics of each element. Other parameters used to determine genotoxicity viz.: lipid peroxidation and DNA damage also suggested different mechanisms of their genotoxicity. It is suggested that an integrative approach, using a battery of tests for determining genotoxicity, should be made while making environmental health risk assessment and ecotoxicological studies of these toxic elements.


Assuntos
Dano ao DNA , Peixes/genética , Água Doce/química , Metais Pesados/toxicidade , Mutagênicos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Ensaio Cometa , Eritrócitos/efeitos dos fármacos , Eritrócitos/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Metais Pesados/análise , Testes para Micronúcleos , Mutagênicos/análise , Poluentes Químicos da Água/análise
19.
Environ Sci Pollut Res Int ; 26(19): 19560-19574, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31079296

RESUMO

The current study checks the effect of various concentrations of dietary graphene oxide (GO) nano-sheets on the development of Drosophila melanogaster. GO was synthesized and characterized by XRD, FTIR, FESEM, and TEM analytical techniques. Various concentrations of GO were mixed with the fly food and flies were transferred to the vial. Various behavioral and morphological as well as genetic defects were checked on the different developmental stages of the offspring. In the larval stage of development, the crawling speed and trailing path change significantly than the control. GO induces the generation of oxygen radicals within the larval hemolymph as evidenced by nitroblue tetrazolium assay. GO induces DNA damage within the gut cell, which was detected by Hoechst staining and within hemolymph by comet assay. Adult flies hatched after GO treatment show defective phototaxis and geotaxis behavior. Besides behavior, phenotypic defects were observed in the wing, eye, thorax bristles, and mouth parts. At 300 mg/L concentration, wing spots were observed. Altogether, the current study finds oral administration of GO which acts as a mutagen and causes various behavioral and developmental defects in the offspring. Here for the first time, we are reporting GO, which acts as a teratogen in Drosophila, besides its extensive medical applications.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Grafite/toxicidade , Mutagênicos/toxicidade , Nanoestruturas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Teratogênios/toxicidade , Administração Oral , Animais , Comportamento Animal/efeitos dos fármacos , Dano ao DNA , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento
20.
Sci Total Environ ; 679: 221-228, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31082595

RESUMO

As a widely used antiepileptic drug, carbamazepine (CBZ) has been frequently detected in aquatic environments, even in drinking water. Chloramine is a widely used alternative disinfectant due to its low-level formation of regulated disinfection byproducts (DBPs). However, there is previous evidence linking product mixtures of chloraminated CBZ to stronger DNA damage effects than those caused by CBZ itself. The present study further investigated the reaction rate, transformation mechanism and multi-endpoint toxicity of transformation products (TPs) of CBZ treated with NH2Cl under different pH conditions. The results showed that the reaction between CBZ and NH2Cl at pH 8.5, where NH2Cl is stable, is a second-order reaction with a rate of 4.2 M-1 h-1. Compared to both alkaline and acidic conditions, CBZ was quickly degraded at pH 7. This indicated that HOCl produced from NH2Cl hydrolysis is more effective in degrading CBZ than NH2Cl and NHCl2. Furthermore, the concentration variation of four TPs formed during the chloramination of CBZ under different pH conditions was investigate by quantitative analysis, and the transformation pathway from CBZ to 9(10H)-acridone was confirmed. Three of the detected TPs showed cytotoxicity, DNA damage effects or chromosome damage effects. Acridine and 9(10H)-acridone, which accumulated with increasing time, showed higher cytotoxic or genotoxic effects than CBZ itself. In addition, a similar transformation mechanism was observed in real ambient water during simulated chloramination with a low level of CBZ. These results suggested that despite the chloramination of CBZ being slower than chlorination, TPs with higher cytotoxicity or genotoxicity may lead to greater toxic risks.


Assuntos
Carbamazepina/toxicidade , Cloraminas/química , Poluentes Químicos da Água/toxicidade , Aminação , Anticonvulsivantes/química , Anticonvulsivantes/toxicidade , Carbamazepina/química , Citotoxinas/química , Citotoxinas/toxicidade , Desinfecção , Concentração de Íons de Hidrogênio , Cinética , Mutagênicos/química , Mutagênicos/toxicidade , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA