RESUMO
Autophagy induction by starvation has been shown to enhance lysosomal delivery to mycobacterial phagosomes, resulting in the restriction of the Mycobacterium tuberculosis reference strain H37Rv. In contrast to H37Rv, our previous study showed that strains belonging to the notorious M. tuberculosis Beijing genotype could evade autophagic elimination. Our recent RNA-Seq analysis also discovered that the autophagy-resistant M. tuberculosis Beijing strain (BJN) evaded autophagic control by upregulating the expression of Kxd1, a BORC complex component, and Plekhm2, both of which function in lysosome positioning towards the cell periphery in host macrophages, thereby suppressing enhanced lysosomal delivery to its phagosome and sparing the BJN from elimination as a result. In this work, we further characterised the other specific components of the BORC complex, BORC5-8, and Kinesin proteins in autophagy resistance by the BJN. Depletion of BORCS5-8 and Kinesin-1, but not Kinesin-3, reverted autophagy avoidance by the BJN, resulting in increased lysosomal delivery to the BJN phagosomes. In addition, the augmented lysosome relocation towards the perinuclear region could now be observed in the BJN-infected host cells depleted in BORCS5-8 and Kinesin-1 expressions. Taken together, the data uncovered new roles for BORCS5-8 and Kinesin-1 in autophagy evasion by the BJN.
Assuntos
Autofagia , Cinesinas , Mycobacterium tuberculosis , Tuberculose , Humanos , Autofagia/genética , Autofagia/imunologia , Pequim , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Cinesinas/genética , Cinesinas/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Tuberculose/genética , Tuberculose/imunologia , Macrófagos/imunologiaRESUMO
Mycobacterium tuberculosis (M. tuberculosis) is the causative agent of tuberculosis (TB). And the PE_PGRS family members of M. tuberculosis are closely associated with virulence and antigen presentation but with function largely elusive. PE_PGRS1(Rv0109) contained 7 Ca2+ binding domains of GGXGXD/NXUX (X is any amino acid), which can reduce intracellular Ca2+ surge. In addition, PE_PGRS1 can mitigate the activation of PERK branch in endoplasmic reticulum (ER) stress by down-regulating the expression of CHOP, Bip, p-PERK, p-eIF2α, and ATF4. Interestingly, we found that two splicing variations of Bax/Bcl-2, Baxß, and Bcl-2α, were differentially expressed after infection with Ms_PE_PGRS1, and may be involved in the regulation of apoptosis. Hence, this study identified that PE_PGRS1 is a novel calcium-associated protein that can decrease intracellular Ca2+ levels and the PERK axis. And the weakening of the PERK-eIF2α-ATF4 axis reduces THP-1 macrophages apoptosis, promotes the survival of mycobacteria in macrophages.
Assuntos
Estresse do Retículo Endoplasmático , Macrófagos , Mycobacterium tuberculosis , Tuberculose , Humanos , Apoptose , eIF-2 Quinase/metabolismo , Estresse do Retículo Endoplasmático/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/metabolismo , Tuberculose/imunologia , Tuberculose/microbiologiaRESUMO
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) poses a major threat to the global public health. Importantly, latent tuberculosis infection (LTBI) still impedes the elimination of TB incidence since it has a substantial risk to develop active disease. A multi-stage subunit vaccine comprising active and latency antigens of Mtb has been raised as the promising vaccine to trigger immune protection against all stages of TB. Therefore, the discovery of new antigens that could trigger broad immune response is essential. While current development of TB vaccine mainly focuses on protective immunity mediated by adaptive immune response, the knowledge on triggering the innate immune response by antigens is still limited. We showed that recombinant dormancy-associated Mtb proteins Rv2659c and Rv1738 were recognized by human innate immune recognition molecules, Toll-like receptors (TLRs) 2 and 4 by using HEK-Blue™ hTLR2/hTLR4 systems. We further demonstrated that these two proteins activated phosphorylated NF-κB p65 (Ser536) in the human CD14+ blood cells. We also investigated that these two proteins significantly induced level of pro- and anti-inflammatory cytokines (IL-1ß, IL-6, IL-8, IL-10 and TNF-α) which were mediated through TLR2 and TLR4 pathways in human peripheral blood mononuclear cells (hPBMCs). These findings suggest that proteins Rv2659c and Rv1738 stimulated innate immune response targeting TLR2 and TLR4 to produce inflammatory cytokines, and their benefits would be valuable for the development of an effective prophylactic tuberculosis vaccine.
Assuntos
Proteínas de Bactérias , Imunidade Inata , Mycobacterium tuberculosis , Receptores Toll-Like , Tuberculose , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Citocinas/metabolismo , Humanos , Imunidade Inata/genética , Leucócitos Mononucleares/metabolismo , Mycobacterium tuberculosis/imunologia , Proteínas Recombinantes/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptores Toll-Like/genética , Tuberculose/genética , Vacinas contra a TuberculoseRESUMO
BACKGROUND: Bacillus Calmette-Guérin (BCG) refers to a group of vaccine strains with unique genetic characteristics. BCG is the only available vaccine for preventing tuberculosis (TB). Genetic and biochemical variations among the BCG vaccine strains have been considered as one of the significant parameters affecting the variable protective efficacy of the vaccine against pulmonary tuberculosis. To track genetic variations, here two vaccine strains (Danish 1331 and Pasteur 1173P2) popularly used according to the BCG World Atlas were subjected to a comparative analysis against the Mycobacterium tuberculosis H37Rv, Mycobacterium bovis AF2122/97, and Mycobacterium tuberculosis variant bovis BCG str. Pasteur 1173P2 reference genomes. Besides, the presence or absence of the experimentally verified human T cell epitopes was examined. RESULTS: Only two variants were identified in BCG Danish 1331 that have not been reported previously in any BCG strains with the complete submitted genome yet. Furthermore, we identified a DU1-like 14,577 bp region in BCG Danish 1331; The duplication which was previously seemed to be exclusive to the BCG Pasteur. We also found that 35% of the T cell epitopes are absent from both strains, and epitope sequences are more conserved than the rest of the genome. CONCLUSIONS: We provided a comprehensive catalog of single nucleotide polymorphisms (SNPs) and short insertions and deletions (indels) in BCG Danish 1331 and BCG Pasteur 1173P2. These findings may help determine the effect of genetic variations on the variable protective efficacy of BCG vaccine strains.
Assuntos
Vacina BCG , Mycobacterium bovis , Mycobacterium tuberculosis , Vacina BCG/genética , Epitopos de Linfócito T/genética , Genômica , Humanos , Mycobacterium bovis/genética , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Tuberculose/microbiologia , Tuberculose/prevenção & controle , Vacinas contra a Tuberculose/genéticaRESUMO
BACKGROUND: Mycobacterium tuberculosis (TB) remains a disease of global health concern and a leading cause of mortality arising from an infectious agent. Protective immunity to TB remains unclear. Suppressor of cytokine signaling-3 (SOCS3) and signal transduction and activator of transcription-3 (STAT3) genes have shown potential to influence innate immunity. We, therefore, explored the expression of SOCS3 and STAT3 and their implications on the innate immunity in TB patients and their healthy close contacts. METHODS: We recruited 72 TB patients and 62 healthy contacts from a high TB and HIV endemic setting (Lusaka, Zambia). We used RT-PCRT and flow cytometry to quantify the expression of SOCS, STAT3 and cytokines respectively. Data was analysed Stata version 14.0 and figures were developed in GraphPad prism version 9.1.0 (221). Assessment for associations for categorical and continuous variables was analysed using the Chi-square test and Mann-Whitney test respectively. Spearman's rank correlation was used to evaluate the relationship between SOCS3 and IL-6. A p-value < 0.05 was considered statistically significant. RESULTS: Healthy contacts markedly expressed SOCS3 in both unstimulated and stimulated whole blood in comparison to TB patients (p <0.0001). STAT3 was elevated in TB patients in TB patients in stimulated blood only. IL-6 (P = < 0.0001) and IL-10 (P = <0.0001), were significantly expressed in Healthy contacts in comparison to TB patients. TNF-α (p = 0.044) were markedly elevated in TB patients in comparison to healthy contacts. IL-6 and SOCS3 correlated significantly in healthy contacts only (r = 0.429, p = 0.02). CONCLUSIONS: Both SOCS3 and STAT3 are genes of importance in mounting protective innate immunity against TB. We propose that SOCS3 stimulation and inhibition of STAT3 as possible approaches in gene therapy and vaccine development for TB.
Assuntos
Infecções por HIV , Imunidade Inata , Fator de Transcrição STAT3 , Proteína 3 Supressora da Sinalização de Citocinas , Tuberculose , Estudos Transversais , Infecções por HIV/complicações , Humanos , Imunidade Inata/genética , Interleucina-6/metabolismo , Mycobacterium tuberculosis/imunologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Tuberculose/genética , Tuberculose/imunologia , Zâmbia/epidemiologiaRESUMO
Tuberculosis is a leading cause of death in mankind due to infectious agents, and Mycobacterium tuberculosis (Mtb) infects and survives in macrophages (MФs). Although MФs are a major niche, myeloid-derived suppressor cells (MDSCs) are an alternative site for pathogen persistence. Both MФs and MDSCs express varying levels of leukocyte immunoglobulin-like receptor B (LILRB), which regulate the myeloid cell suppressive function. Herein, we demonstrate that antagonism of LILRB2 by a monoclonal antibody (mab) induced a switch of human MDSCs towards an M1-macrophage phenotype, increasing the killing of intracellular Mtb. Mab-mediated antagonism of LILRB2 alone and its combination with a pharmacological blockade of SHP1/2 phosphatase increased proinflammatory cytokine responses and phosphorylation of ERK1/2, p38 MAPK, and NF-kB in Mtb-infected MDSCs. LILRB2 antagonism also upregulated anti-mycobacterial iNOS gene expression and an increase in both nitric oxide and reactive oxygen species synthesis. Because genes associated with the anti-mycobacterial function of M1-MФs were enhanced in MDSCs following mab treatment, we propose that LILRB2 antagonism reprograms MDSCs from an immunosuppressive state towards a pro-inflammatory phenotype that kills Mtb. LILRB2 is therefore a novel therapeutic target for eradicating Mtb in MDSCs.
Assuntos
Glicoproteínas de Membrana , Mycobacterium tuberculosis , Células Supressoras Mieloides , Receptores Imunológicos , Tuberculose dos Linfonodos , Citocinas/imunologia , Humanos , Macrófagos/imunologia , Glicoproteínas de Membrana/imunologia , Mycobacterium tuberculosis/imunologia , Células Supressoras Mieloides/imunologia , Receptores Imunológicos/imunologiaRESUMO
The role of B cells migrating to the lung and forming follicles during tuberculosis (TB) inflammation is still the subject of debate. In addition to their antibody production and antigen-presenting functions, B cells secrete different cytokines and chemokines, thus participating in complex networks of innate and adaptive immunity. Importantly, lung B-cells produce high amounts of the pleiotropic gp130 cytokine IL-6. Its role during TB infection remains controversial, partly due to the fact that IL-6 is produced by different cell types. To investigate the impact of IL-6 produced by B cells on TB susceptibility and immune responses, we established a mouse strain with specific IL-6 deficiency in B cells (CD19cre-IL-6fl/fl, B-IL-6KO) on the B6 genetic background. Selective abrogation of IL-6 in B cells resulted in shortening the lifespan of TB-infected B-IL-6KO mice compare to the wild-type controls. We provide evidence that at the initial TB stages B cells serve as a critical source of IL-6. In the lung, the effect of IL-6 deficiency in B cells is associated rather with B and T cell functioning, than with macrophage polarization. TB-infected B-IL-6KO mice displayed diminished sizes of B cells themselves, CD4+IFN-γ+, Th17+, and CD4+CXCR5+ follicular T cell populations. The pleiotropic effect of B-cell-derived IL-6 on T-cells demonstrated in our study bridges two major lymphocyte populations and sheds some light on B- and T-cells interactions during the stage of anti-TB response when the host switches on a plethora of acquired immune reactions.
Assuntos
Imunidade Adaptativa , Linfócitos B/imunologia , Interleucina-6/imunologia , Mycobacterium tuberculosis/imunologia , Técnicas de Ablação , Animais , Feminino , Interleucina-6/análise , Interleucina-6/genética , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/patogenicidade , Tuberculose Pulmonar/imunologiaRESUMO
Mechanisms underlying variability in transmission of Mycobacterium tuberculosis strains remain undefined. By characterizing high and low transmission strains of M.tuberculosis in mice, we show here that high transmission M.tuberculosis strain induce rapid IL-1R-dependent alveolar macrophage migration from the alveolar space into the interstitium and that this action is key to subsequent temporal events of early dissemination of bacteria to the lymph nodes, Th1 priming, granulomatous response and bacterial control. In contrast, IL-1R-dependent alveolar macrophage migration and early dissemination of bacteria to lymph nodes is significantly impeded in infection with low transmission M.tuberculosis strain; these events promote the development of Th17 immunity, fostering neutrophilic inflammation and increased bacterial replication. Our results suggest that by inducing granulomas with the potential to develop into cavitary lesions that aids bacterial escape into the airways, high transmission M.tuberculosis strain is poised for greater transmissibility. These findings implicate bacterial heterogeneity as an important modifier of TB disease manifestations and transmission.
Assuntos
Macrófagos Alveolares/imunologia , Mycobacterium tuberculosis/imunologia , Receptores Tipo I de Interleucina-1/metabolismo , Células Th17/imunologia , Tuberculose Pulmonar/transmissão , Animais , Movimento Celular/imunologia , Células Dendríticas/imunologia , Feminino , Linfonodos/imunologia , Linfonodos/microbiologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C3H , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/microbiologia , Transdução de Sinais/imunologia , Células Th1/imunologia , Tuberculose Pulmonar/imunologiaRESUMO
Mucosal-associated invariant T (MAIT) cells are innate-like lymphocytes that recognize microbial vitamin B metabolites and have emerging roles in infectious disease, autoimmunity, and cancer. Although MAIT cells are identified by a semi-invariant TCR, their phenotypic and functional heterogeneity is not well understood. Here we present an integrated single cell transcriptomic analysis of over 76,000 human MAIT cells during early and prolonged Ag-specific activation with the MR1 ligand 5-OP-RU and nonspecific TCR stimulation. We show that MAIT cells span a broad range of homeostatic, effector, helper, tissue-infiltrating, regulatory, and exhausted phenotypes, with distinct gene expression programs associated with CD4+ or CD8+ coexpression. During early activation, MAIT cells rapidly adopt a cytotoxic phenotype characterized by high expression of GZMB, IFNG and TNF In contrast, prolonged stimulation induces heterogeneous states defined by proliferation, cytotoxicity, immune modulation, and exhaustion. We further demonstrate a FOXP3 expressing MAIT cell subset that phenotypically resembles conventional regulatory T cells. Moreover, scRNAseq-defined MAIT cell subpopulations were also detected in individuals recently exposed to Mycobacterium tuberculosis, confirming their presence during human infection. To our knowledge, our study provides the first comprehensive atlas of human MAIT cells in activation conditions and defines substantial functional heterogeneity, suggesting complex roles in health and disease.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Ativação Linfocitária/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Mycobacterium tuberculosis/imunologia , Proliferação de Células , Células Cultivadas , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Granzimas/metabolismo , Homeostase/imunologia , Humanos , Interferon gama/metabolismo , Células T Invariantes Associadas à Mucosa/citologia , Receptores de Antígenos de Linfócitos T/imunologia , Ribitol/análogos & derivados , Ribitol/imunologia , Análise de Célula Única , Transcriptoma/genética , Fator de Necrose Tumoral alfa/metabolismo , Uracila/análogos & derivados , Uracila/imunologiaRESUMO
The two human pathogens Helicobacter pylori and Mycobacterium tuberculosis (Mtb) co-exist in many geographical areas of the world. Here, using a co-infection model of H. pylori and the Mtb relative M. bovis bacillus Calmette-Guérin (BCG), we show that both bacteria affect the colonization and immune control of the respective other pathogen. Co-occurring M. bovis boosts gastric Th1 responses and H. pylori control and aggravates gastric immunopathology. H. pylori in the stomach compromises immune control of M. bovis in the liver and spleen. Prior antibiotic H. pylori eradication or M. bovis-specific immunization reverses the effects of H. pylori. Mechanistically, the mutual effects can be attributed to the redirection of regulatory T cells (Treg cells) to sites of M. bovis infection. Reversal of Treg cell redirection by CXCR3 blockade restores M. bovis control. In conclusion, the simultaneous presence of both pathogens exacerbates the problems associated with each individual infection alone and should possibly be factored into treatment decisions.
Assuntos
Helicobacter pylori/patogenicidade , Infecções por Mycobacterium/microbiologia , Mycobacterium tuberculosis/patogenicidade , Linfócitos T Reguladores/microbiologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/microbiologia , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Camundongos Endogâmicos C57BL , Mycobacterium bovis/patogenicidade , Mycobacterium tuberculosis/imunologiaRESUMO
BACKGROUND: Ethiopia is one of the high burden countries for extrapulmonary tuberculosis (EPTB); however, the prompt diagnosis of EPTB remains challenging. This study is aimed to evaluate the diagnostic performance of Xpert MTB/RIF and DetermineTM TB-LAM Ag (TB-LAM) for the prompt diagnosis of EPTB in Ethiopia. METHODS: A total of 147 presumptive EPTB patients, including 23 HIV- positive participants were enrolled. Extra-pulmonary samples were collected from all presumptive EPTB cases and tested for Mycobacterium tuberculosis complex (MTBC) using fluorescent microscopy, Xpert MTB/RIF, and culture. Additionally, urine samples were also collected from 126 participants and were tested by DetermineTM TB-LAM Ag (Alere Inc, Waltham, USA). The Sensitivity and specificity of Xpert and TB- LAM tests were calculated by comparing with a composite reference standard (CRS), which comprises smear microscopy, culture and response to empirical anti-TB treatment. RESULTS: Of 147 patients, 23 (15.6%) were confirmed EPTB cases (culture-positive), 14 (9.5%) were probable EPTB (clinically, radiologically or cytologically positive and received anti-TB treatment with good response), and 110 (74.8%) were classified as "non- TB" cases. Compared to the composite reference standard (CRS), the overall sensitivity and specificity of Xpert MTB/RIF were 43.2% and 100%, respectively with the highest sensitivity for Lymph node aspirate (85.7%) and lower sensitivity for pleural fluid (14.3%) and 100% specificity for all specimen types. The sensitivity and specificity of TB-LAM were 33.3% and 94.4% respectively with the highest sensitivity for HIV co-infected participants (83.3%). The sensitivity of the combination of Xpert MTB/RIF and TB-LAM tests regardless of HIV status was 61.1% whereas the sensitivity was improved to 83.3% for HIV-positive cases. CONCLUSION: TB-LAM alone has low sensitivity for EPTB diagnosis; however, the combination of TB-LAM and Xpert MTB/RIF improves the diagnosis of EPTB particularly for countries with high EPTB and HIV cases.
Assuntos
Coinfecção/diagnóstico , Infecções por HIV/complicações , Lipopolissacarídeos/imunologia , Mycobacterium tuberculosis/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Tuberculose Pulmonar/diagnóstico , Urinálise/métodos , Adulto , Coinfecção/epidemiologia , Coinfecção/etiologia , Feminino , HIV/isolamento & purificação , Infecções por HIV/virologia , Humanos , Lipopolissacarídeos/urina , Masculino , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Análise de Sequência de DNA , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/etiologia , Adulto JovemRESUMO
The M72/AS01E tuberculosis vaccine showed 50% (95%CI: 2-74%) efficacy in a phase 2B trial in preventing active pulmonary tuberculosis disease, but potential cost-effectiveness of adolescent immunisation is unknown. We estimated the impact and cost-effectiveness of six scenarios of routine adolescent M72/AS01E-like vaccination in South Africa and India. All scenarios suggested an M72/AS01E-like vaccine would be highly (94-100%) cost-effective in South Africa compared to a cost-effectiveness threshold of $2480/disability-adjusted life-year (DALY) averted. For India, a prevention of disease vaccine, effective irrespective of recipient's M. tuberculosis infection status at time of administration, was also highly likely (92-100%) cost-effective at a threshold of $264/DALY averted; however, a prevention of disease vaccine, effective only if the recipient was already infected, had 0-6% probability of cost-effectiveness. In both settings, vaccinating 50% of 18 year-olds was similarly cost-effective to vaccinating 80% of 15 year-olds, and more cost-effective than vaccinating 80% of 10 year-olds. Vaccine trials should include adolescents to ensure vaccines can be delivered to this efficient-to-target population.
Assuntos
Análise Custo-Benefício , Vacinas contra a Tuberculose/imunologia , Vacinação/economia , Adolescente , Custos e Análise de Custo , Humanos , Índia , Mycobacterium tuberculosis/imunologia , África do Sul , Tuberculose/epidemiologia , Tuberculose/prevenção & controleRESUMO
Host cell chromatin changes are thought to play an important role in the pathogenesis of infectious diseases. Here we describe a histone acetylome-wide association study (HAWAS) of an infectious disease, on the basis of genome-wide H3K27 acetylation profiling of peripheral blood granulocytes and monocytes from persons with active Mycobacterium tuberculosis (Mtb) infection and healthy controls. We detected >2,000 differentially acetylated loci in either cell type in a Singapore Chinese discovery cohort (n = 46), which were validated in a subsequent multi-ethnic Singapore cohort (n = 29), as well as a longitudinal cohort from South Africa (n = 26), thus demonstrating that HAWAS can be independently corroborated. Acetylation changes were correlated with differential gene expression. Differential acetylation was enriched near potassium channel genes, including KCNJ15, which modulates apoptosis and promotes Mtb clearance in vitro. We performed histone acetylation quantitative trait locus (haQTL) analysis on the dataset and identified 69 candidate causal variants for immune phenotypes among granulocyte haQTLs and 83 among monocyte haQTLs. Our study provides proof-of-principle for HAWAS to infer mechanisms of host response to pathogens.
Assuntos
Estudos de Associação Genética , Histonas/genética , Mycobacterium tuberculosis/imunologia , Tuberculose/genética , Tuberculose/imunologia , Acetilação , Adulto , Cromatina , Estudos de Coortes , Feminino , Granulócitos/imunologia , Histonas/imunologia , Humanos , Estudos Longitudinais , Masculino , Monócitos/imunologia , Monócitos/microbiologia , Estudo de Prova de Conceito , Locos de Características Quantitativas , Singapura , África do Sul , Células THP-1 , Tuberculose/microbiologia , Adulto JovemRESUMO
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. As a result of the coronavirus disease 2019 (COVID-19) pandemic, the global TB mortality rate in 2020 is rising, making TB prevention and control more challenging. Vaccination has been considered the best approach to reduce the TB burden. Unfortunately, BCG, the only TB vaccine currently approved for use, offers some protection against childhood TB but is less effective in adults. Therefore, it is urgent to develop new TB vaccines that are more effective than BCG. Accumulating data indicated that peptides or epitopes play essential roles in bridging innate and adaptive immunity and triggering adaptive immunity. Furthermore, innovations in bioinformatics, immunoinformatics, synthetic technologies, new materials, and transgenic animal models have put wings on the research of peptide-based vaccines for TB. Hence, this review seeks to give an overview of current tools that can be used to design a peptide-based vaccine, the research status of peptide-based vaccines for TB, protein-based bacterial vaccine delivery systems, and animal models for the peptide-based vaccines. These explorations will provide approaches and strategies for developing safer and more effective peptide-based vaccines and contribute to achieving the WHO's End TB Strategy.
Assuntos
Vacina BCG/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/prevenção & controle , Desenvolvimento de Vacinas/métodos , Vacinas de Subunidades/imunologia , Animais , Proteínas de Bactérias/imunologia , Modelos Animais de Doenças , Humanos , Camundongos , Peptídeos/imunologia , Tuberculose/imunologia , Tuberculose/mortalidade , Vacinação , Eficácia de VacinasRESUMO
Tuberculosis (TB) in humans is characterized by formation of immune-rich granulomas in infected tissues, the architecture and composition of which are thought to affect disease outcome. However, our understanding of the spatial relationships that control human granulomas is limited. Here, we used multiplexed ion beam imaging by time of flight (MIBI-TOF) to image 37 proteins in tissues from patients with active TB. We constructed a comprehensive atlas that maps 19 cell subsets across 8 spatial microenvironments. This atlas shows an IFN-γ-depleted microenvironment enriched for TGF-ß, regulatory T cells and IDO1+ PD-L1+ myeloid cells. In a further transcriptomic meta-analysis of peripheral blood from patients with TB, immunoregulatory trends mirror those identified by granuloma imaging. Notably, PD-L1 expression is associated with progression to active TB and treatment response. These data indicate that in TB granulomas, there are local spatially coordinated immunoregulatory programs with systemic manifestations that define active TB.
Assuntos
Granuloma/imunologia , Tuberculose/imunologia , Antígeno B7-H1/imunologia , Células Cultivadas , Citocinas/imunologia , Perfilação da Expressão Gênica/métodos , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Pulmão/imunologia , Mycobacterium tuberculosis/imunologia , Células Mieloides/imunologiaRESUMO
Orchestration of an effective T lymphocyte response at infection sites is critical for protection against Mycobacterium tuberculosis (Mtb) infection. However, the local T cell immunity landscape in human tuberculosis is poorly defined. Tuberculous pleural effusion (TPE), caused by Mtb, is characterized by an influx of leukocytes to the pleural space, providing a platform suitable for delineating complex tissue responses to Mtb infection. Using single-cell transcriptomics and T cell receptor sequencing, we analyzed mononuclear cell populations in paired pleural fluid and peripheral blood of TPE patients. While all major cell clusters were present in both tissues, their relative proportions varied significantly by anatomic location. Lineage tracking analysis revealed subsets of CD8 and CD4 T cell populations with distinct effector functions specifically expanded at pleural sites. Granzyme K-expressing CD8 T cells were preferentially enriched and clonally expanded in pleural fluid from TPE, suggesting that they are involved in the pathogenesis of the disease. The findings collectively reveal the landscape of local T cell immunity in tuberculosis.
Assuntos
Mycobacterium tuberculosis/imunologia , Derrame Pleural/etiologia , Derrame Pleural/metabolismo , Derrame Pleural/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Tuberculose/complicações , Tuberculose/imunologia , Biomarcadores , Diferenciação Celular , Suscetibilidade a Doenças , Perfilação da Expressão Gênica/métodos , Interações Hospedeiro-Patógeno , Humanos , Imunofenotipagem , Ativação Linfocitária , Contagem de Linfócitos , Receptores de Antígenos de Linfócitos T/metabolismo , Análise de Célula Única/métodos , Tuberculose/microbiologia , Tuberculose/patologiaRESUMO
BACKGROUND: Intestinal parasites and Tuberculosis (TB) co-infection is a major public health problem. The parasitic infection suppresses the cell mediated immunity that protects tuberculosis. Helminthes-induced immune modulation promotes progression to active tuberculosis. However, there is paucity of evidences on the intestinal parasites-tuberculosis co-infection in Ethiopia. This study explores the magnitude and associated factors of intestinal parasitic infection and TB among suspected pulmonary Tuberculosis (PTB) patients. METHODOLOGY: A cross-sectional study design was conducted in Kuyu General Hospital from December 2019-March 2020. The socio-demographic data and associated factors were collected by structured questionnaire and then spot-spot sputum and fresh stool samples were collected following standard guidelines and were processed. Descriptive analysis was conducted and reported in frequency and percentage. Bivariate analysis was computed and a multivariable analysis was conducted to provide an adjusted odds ratio (AOR). P-value <0.05 at 95% confidence interval was considered as statistically significant. RESULTS: The burden of intestinal parasites was 20.2% (49/ 242) and 6.1% (20/ 242) of them were helminths infections and 14.1% (29/ 242) were protozoa infections. Of 242 patients, 14.9% (36/242) were sputum smear-positive for acid fast-bacilli. Of 36 smear positive patients, 9(25%) had TB-intestinal parasites co-infection. Dwelling in rural areas and having untrimmed fingernails were statistically significantly associated with intestinal parasites. Having a contact history of Tb patients was significantly associated with pulmonary tuberculosis. CONCLUSIONS: The magnitude of intestinal parasites and TB among PTB suspected patients were high. Hookworm infection was the predominant helmenthic infection. It is important to consider screening TB patients for intestinal parasites and treat co-infection properly.
Assuntos
Coinfecção/epidemiologia , Enteropatias Parasitárias/epidemiologia , Tuberculose Pulmonar/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Ancylostomatoidea/isolamento & purificação , Animais , Criança , Pré-Escolar , Coinfecção/microbiologia , Coinfecção/parasitologia , Estudos Transversais , Etiópia/epidemiologia , Fezes/parasitologia , Feminino , Infecções por Uncinaria/epidemiologia , Infecções por Uncinaria/patologia , Humanos , Lactente , Enteropatias Parasitárias/imunologia , Enteropatias Parasitárias/patologia , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/isolamento & purificação , Carga Parasitária , Escarro/microbiologia , Inquéritos e Questionários , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/patologia , Adulto JovemRESUMO
BACKGROUND: People living with HIV (PLHIV) co-infected with tuberculosis (TB) have a distinct clinical presentation and poorer treatment outcomes compared to HIV-seronegative TB patients. Excluding low CD4 count, innate immune factors associated with TB are not fully elucidated. We, therefore, characterised and compared the expression of IL-6, TNF-α, IFN-γ, and IL-10 in whole blood of treatment naïve TB patients stimulated with heat-killed Mycobacterium tuberculosis stratified by HIV status and the level of CD4 count. RESULTS: We recruited 39 HIV seropositive and 31 HIV seronegative TB patients. Median (IQR) age was 35(28-42) years and 31(25-36) years respectively, and a majority had pulmonary tuberculosis i.e. 38(95%) and 30(97%), respectively. The two groups were significantly different in the distribution of CD4 count, 563 [465-702.5 cells/mm3] vs 345 [157-483 cell/mm3] in HIV negative vs HIV positive respectively p = <0.001. Post stimulation, the expression of IL-6 in HIV negative TB patients was significantly higher than in the HIV positive 16,757366 [8,827-23,686 pg/ml] vs. 9,508 [5,514-15,008 pg/ml], respectively; p = 0.0360. TNF-α and IFN-γ were highly expressed in HIV negative TB patients compared to the HIV positive though not statistically significant. We only observed higher expression of IL-6 in HIV negative patients in comparison to the HIV positive when stratified by level of CD4 counts as < 500 and ≥ 500 cell/mm3 for both cohorts. 21,953 [8,990-24,206 pg/ml] vs 9,505 [5,400-15,313 pg/ml], p value = 0.0585 in patients with CD4 count < 500 cell/mm3 and 13,168 [7,087-22,584 pg/ml] vs 10,413 [7,397-14,806 pg/ml], p value = 0.3744 for patients with CD4 count of ≥ 500 cell/mm3 respectively. We found a positive pairwise correlation between TNF-α -alpha and IL-6 in both HIV positive and HIV negative patients, r = 0.61 (95% CI 0.36-0.72; p < 0.0001) and r = 0.48 (95% CI 0.15-0.68; p = 0.005) respectively. The IFNγ/IL-10 ratio was higher in HIV negative when compared to HIV positive individuals, 0.052 [0.0-0.28] vs 0.007 [0-0.32] respectively; p = 0.05759. IL-6 independently reduced the probability of TB/HIV, Adjusted odds ratio 0.99, p value 0.007. CONCLUSIONS: This study suggests that HIV seronegative TB patients have a higher pro-inflammatory response to MTB than HIV seropositive TB patients. Further, it also shows that the level of CD4 influences immunomodulation. The findings suggest that the difference in cytokine expression may be responsible for the distinct patterns of TB presentation between HIV positive and HIV negative patient.
Assuntos
Infecções por HIV/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Adulto , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/metabolismo , Coinfecção/complicações , Estudos Transversais , Feminino , Infecções por HIV/complicações , HIV-1/imunologia , HIV-1/patogenicidade , Humanos , Interferon gama/sangue , Interferon gama/metabolismo , Interleucina-10/sangue , Interleucina-10/metabolismo , Interleucina-6/sangue , Interleucina-6/metabolismo , Masculino , Mycobacterium tuberculosis/patogenicidade , Tuberculose/complicações , Tuberculose Pulmonar/complicações , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismo , Zâmbia/epidemiologiaRESUMO
Background. Host genetic factors influence both susceptibility to Mycobacterium tuberculosis infection and immune responses generated by vaccination. Genetically susceptible mice help to study mechanisms of immune protection which may differ from those operating in more resistant models.Methods. In this work, we compared the efficacy of protection conferred by subcutaneous vaccination of hypersusceptible I/St mice with BCG and the first-generation, hygromycin resistant version of the vaccine candidate BCGΔBCG1419c, against tuberculosis (TB), measured as survival, weight loss and replication in lungs. We further characterized the relative presence of immune cells in lungs.Results. We found that in I/St mice, vaccination with BCG or BCGΔBCG1419c provided similar level of protection against TB-driven weight loss and M. tuberculosis replication in lungs, while prolonging median survival time compared with unvaccinated controls. Despite affording similar protection to parental BCG, BCGΔBCG1419c led to a reduced presence of macrophages in lungs during early TB and to an increased neutrophil recruitment to the lungs during chronic TB.Conclusions. BCGΔBCG1419c protects I/St mice in a different manner than wild-type BCG against pulmonary TB by promoting different influx of macrophages and neutrophils at distinct times post-infection. These findings prompt us to suggest that preclinical evaluation of novel TB vaccine candidates should include evaluation of efficacy not only in commonly used resistant inbred mice, but also in susceptible hosts, to further determine their potential application to populations varying in their genetic. This would likely impact their intended use depending on host resistance or susceptibility to TB.
Assuntos
Vacina BCG , Macrófagos/imunologia , Neutrófilos/imunologia , Tuberculose Pulmonar , Animais , Vacina BCG/uso terapêutico , Camundongos , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/prevenção & controle , Redução de PesoRESUMO
Tuberculosis (TB), induced by Mycobacterium tuberculosis (Mtb) infection, remains a top killer among infectious diseases. While Bacillus Calmette-Guerin (BCG) is the sole TB vaccine, the clumped-clustered features of BCG in intradermal immunization appear to limit both the BCG protection efficacy and the BCG vaccination safety. We hypothesize that engineering of clumped-clustered BCG into nanoscale particles would improve safety and also facilitate the antigen-presenting-cell (APC)'s uptake and the following processing/presentation for better anti-TB protective immunity. Here, we engineered BCG protoplasts into nanoscale membraned BCG particles, termed as "BCG-Nanocage" to enhance the anti-TB vaccination efficiency and safety. BCG-Nanocage could readily be ingested/taken by APC macrophages selectively; BCG-Nanocage-ingested macrophages exhibited better viability and developed similar antimicrobial responses with BCG-infected macrophages. BCG-Nanocage, like live BCG bacilli, exhibited the robust capability to activate and expand innate-like T effector cell populations of Vγ2+ T, CD4+ T and CD8+ T cells of rhesus macaques in the ex vivo PBMC culture. BCG-Nanocage immunization of rhesus macaques elicited similar or stronger memory-like immune responses of Vγ2Vδ2 T cells, as well as Vγ2Vδ2 T and CD4+/CD8+ T effectors compared to live BCG vaccination. BCG-Nanocage- immunized macaques developed rapidly-sustained pulmonary responses of Vγ2Vδ2 T cells upon Mtb challenge. Furthermore, BCG- and BCG-Nanocage- immunized macaques, but not saline controls, exhibited undetectable Mtb infection loads or TB lesions in the Mtb-challenged lung lobe and hilar lymph node at endpoint after challenge. Thus, the current study well justifies a large pre-clinical investigation to assess BCG-Nanocage for safe and efficacious anti-TB vaccination, which is expected to further develop novel vaccines or adjuvants.