Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.579
Filtrar
1.
Bull Environ Contam Toxicol ; 106(2): 310-317, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33433632

RESUMO

This study aims to explore the spatial and temporal patterns in biomarker responses during early spring and late summer in Mytilus galloprovincialis using samples from two Adriatic Sea ecosystems between 2009 and 2012. The condition index was higher in September at all sampling sites and suggests that mussels can store energy during summer for wintertime spawning and survival through the winter. Over the entire study period, higher values of metallothioneins indicated sites with higher levels of heavy metals (Boka Kotorska Bay), while acetylcholine esterase activity was inhibited at the Gulf of Trieste. Genotoxicity was similar among sampling sites. We summarized biomarker responses in a stress index, IBRv2, and found that sampling sites in the Gulf of Trieste had lower stress levels while the highest stress levels were detected in the Boka Kotorska Bay.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Biomarcadores , Ecossistema , Monitoramento Ambiental , Mar Mediterrâneo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
Bull Environ Contam Toxicol ; 106(2): 318-326, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33394065

RESUMO

The occurrence and variability of domoic acid (DA) levels in wild Mytilus galloprovincialis samples, compared with the Pseudo-nitzschia spp. abundance and particulate DA (pDA) concentrations in relation to the environmental changes in the Golden Horn Estuary, Turkey from October 2018 to September 2019. Biotoxin analysis were performed by high-performance liquid chromatography with diode-array detection (HPLC-DAD). DA concentrations in particulate matter (pDA) and mussel samples were found between 0.090-0.685 µg L-1 and 0.905-2.413 µg g-1, respectively. Accumulation of DA in wild mussel samples could be the result of the increasing tendency of P.nitzschia spp. abundances between April and May. Maximum DA levels were detected in particulate matter when the salinity was measured as the lowest in May. Thus, it can be said that the DA production was driven by the significant salinity decrease in the GHE. This is the first attempt regarding the presence of DA in M. galloprovincialis samples collected from Turkish coasts.


Assuntos
Diatomáceas , Mytilus , Animais , Estuários , Ácido Caínico/análogos & derivados , Turquia
3.
Chemosphere ; 262: 128290, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182139

RESUMO

Tumble dryer lint has been employed as a surrogate for synthetic and processed (microplastic) fibres discharged to the environment from laundering activities and exposed to marine mussels (Mytilus galloprovinciallis) in controlled experiments for a period of 7 d. A range of biological responses at different levels of organisation were subsequently determined, with copper employed concurrently as a positive control. Physiological changes were assessed from measurements of clearance rate, histopathological effects were evaluated from abnormalities in (or injuries to) gill and digestive gland tissues, and genetic damage was determined by measuring DNA strand breaks using the comet assay. With increasing lint concentration (over the range 56-180 mg L-1) we observed a reduction in mean clearance rate, increasing extents of abnormality in both gills (e.g. deciliation and hypertrophy) and digestive gland (e.g. atrophy and necrosis), and an increase in damage to DNA. The precise causes of these effects are unclear but likely arise from both the fibrous material itself and from chemicals (e.g. additives and metals) that are mobilised from the polymers into seawater or the digestive tract. The latter assertion is consistent with an observed increase in the release of certain trace elements (e.g. zinc) into the exposure medium with increasing lint concentration. Although microfibre concentrations we employed are significantly greater than those typically encountered in the environment, the results indicate the potential for this type of material to exert a range of adverse effects on exposed marine animals.


Assuntos
Dano ao DNA , Microplásticos/toxicidade , Mytilus/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Ensaio Cometa , Cobre/toxicidade , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Hemolinfa/efeitos dos fármacos , Hemolinfa/metabolismo , Taxa de Depuração Metabólica , Modelos Teóricos , Mytilus/genética , Mytilus/metabolismo , Água do Mar/química
4.
Sci Total Environ ; 758: 144003, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33321361

RESUMO

Bisphenol A-BPA, a widespread plastic additive, is an emerging contaminant of high concern and a potential endocrine disruptor in mammals. BPA also represents a potential threat for aquatic species, especially for larval stages. In the marine bivalve Mytilus galloprovincialis, BPA has been previously shown to affect early larval development and gene transcription. In this work, the effects of BPA (0.05-0.5-5 µM) were further investigated at different times post fertilization (24-28-32-48 hpf). BPA induced concentration-dependent alterations in deposition of the organic matrix and calcified shell at different larval stages, as shown by double calcofluor/calcein staining, resulting in altered phenotypes at 48hpf. Transcription of Tyrosinase-TYR, that plays a key role in remodelling of the shell organic matrix, and of HOX1, a member of homeobox genes involved in larval shell formation and neurogenesis, were evaluated by In Situ Hybrydization-ISH. BPA altered the spatial pattern of expression of both genes, with distinct effects depending on the concentration and developmental stage. Moreover, BPA affected the time course of mRNA levels for TYR from 24 to 48hpf. BPA impaired development of serotonin-5-HT-immunoreactive neurons at different times pf; at 48hpf, the reduction in the number of serotoninergic neurons was associated with developmental delay and downregulation of the 5-HT receptor-5-HTR. All the effects were observed from the lowest concentration tested, corresponding to detectable BPA levels in contaminated coastal waters. These data demonstrate that BPA interferes with key processes occurring during the first developmental stages of mussels, thus representing a potential threat for natural populations.


Assuntos
Mytilus , Animais , Compostos Benzidrílicos/toxicidade , Larva , Fenóis/toxicidade
5.
Sci Total Environ ; 756: 143675, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33310214

RESUMO

The distribution of the Mediterranean mussel Mytilus galloprovincialis extends more and more northwards in the Atlantic. Crossings are frequently observed with the blue mussel Mytilus edulis along the French and English coasts. The aim of this study is firstlyto identify the co-presence of M. galloprovincialis, M. edulis, and their hybrids in different sites of the Mediterranean and Atlantic coasts, and to provide insights for the thermal tolerance and toxicant susceptibility of Mytilus edulis, Mytilus galloprovincialis and their hybrids. Mussels were collected from the shore at 20 sampling sitesin Europe and Tunisia and identified using Me 15/16 primers targeting the adhesive protein gene sequence. Samples were screened for the presence of Mytilus edulis, Mytilus galloprovincialis, and hybrids alleles using PCR. To get more information on hybrids sensitivities to temperature and metals, freshly fertilized eggs of the two species and their hybrids were reared at four temperatures 18, 20, 22, and 24 °C and exposed to concentrations of Cu, Ag, and a mixture of both metals. Arrests of development and malformations were recorded after 48 h of exposure. The genotypic identification of the two species on 20 sites of the Mediterranean and Atlantic coasts carried out during this study confirms the presence of pure and hybrid species of mussel. Our results highlighted that hybrid larvae from a female of M. galloprovincialis are significantly more tolerant to temperature increases than pure larvae of M. galloprovincialis and pure and hybrid larvae of M. edulis. No significant interspecies-differences of sensitivity were noted for metal exposure alone. However, a co-exposure of larvae to both metal and high temperature highlighted the higher tolerance of hybrid larvae from a female of M. galloprovincialis to both stresses. The overall results could allow the prediction of the future evolution of mussel populations facing environmental changes.


Assuntos
Mytilus , Animais , Europa (Continente) , Feminino , Larva , Mytilus/genética , Temperatura , Tunísia
6.
Aquat Toxicol ; 230: 105688, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33316748

RESUMO

Organophosphate flame retardants (OPFRs) are (re-)emergent environmental pollutants increasingly being used because of the restriction of other flame retardants. The chlorinated OPFR, tris(1,3-dichloro-2-propyl) phosphate (TDCPP) is among those of highest environmental concern, but its potential effects in the marine environment have rarely been investigated. We exposed a widely used sentinel marine mussel species, Mytilus galloprovincialis, to 10 µg L-1 of TDCPP during 28 days and studied: (i) the kinetics of bioaccumulation and elimination of the compound, (ii) the effect on two molecular biomarkers, glutathione S-transferase (GST) and acetylcholinesterase (AChE) activities, and (iii) proteomic alterations in the gills, following an isobaric labeling quantitative shotgun proteomic approach, at two exposure times (7 and 28 days). Uptake and elimination of TDCPP by mussels were very fast, and the bioconcentration factor of this compound in mussels was 147 L kgww-1, confirming that this compound is not very bioaccumulative, as predicted by its chemical properties. GST activity was not affected by TDCPP exposure, but AChE activity was inhibited by TDCPP at both 7 and 28 days of exposure. Proteomic analysis revealed subtle effects of TDCPP in mussel gills, since few proteins (less than 2 % of the analysed proteome) were significantly affected by TDCPP, and effect sizes were low. The most relevant effects detected were the up-regulation of epimerase family protein SDR39U1, an enzyme that could be involved in detoxification processes, at both exposure times, and the down-regulation of receptor-type tyrosine-protein phosphatase N2-like (PTPRN2) after 7 days of exposure, which is involved in neurotransmitter secretion and might be related to the neurotoxicity described for this compound. Exposure time rather than TDCPP exposure was the most important driver of protein abundance changes, with 33 % of the proteome being affected by this factor, suggesting that stress caused by laboratory conditions could be an important confounding factor that needs to be controlled in similar ecotoxicology studies. Proteomic data are available via ProteomeXchange with identifier PXD019720.


Assuntos
Bioacumulação/efeitos dos fármacos , Retardadores de Chama/toxicidade , Brânquias/metabolismo , Mytilus/efeitos dos fármacos , Compostos Organofosforados/toxicidade , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/metabolismo , Animais , Biomarcadores/metabolismo , Relação Dose-Resposta a Droga , Retardadores de Chama/metabolismo , Brânquias/efeitos dos fármacos , Glutationa Transferase/metabolismo , Cinética , Modelos Biológicos , Mytilus/metabolismo , Compostos Organofosforados/metabolismo , Proteômica , Poluentes Químicos da Água/metabolismo
7.
Chemosphere ; 263: 127780, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32814131

RESUMO

Input of ZnO nanoparticles (nZnO) from multiple sources have raised concerns about the potential toxic effects on estuarine and coastal organisms. The toxicity of nZnO and its interaction with common abiotic stressors (such as elevated temperature) are not well understood in these organisms. Here, we examined the bioenergetics responses of the blue mussel Mytilus edulis exposed for 21 days to different concentrations of nZnO or dissolved zinc (Zn2+) (0, 10, 100 µg l-1) and two temperatures (ambient and 5 °C warmer) in winter and summer. Exposure to nZnO had little effect on the protein and lipid levels, but led to a significant depletion of carbohydrates and a decrease in the electron transport system (ETS) activity. Qualitatively similar but weaker effects were found for dissolved Zn. In winter mussels, elevated temperature (15 °C) led to elevated protein and lipid levels increasing the total energy content of the tissues. In contrast, elevated temperature (20 °C) resulted in a decrease in the lipid and carbohydrate levels and suppressed ETS in summer mussels. These data indicate that moderate warming in winter (but not in summer) might partially compensate for the bioenergetics stress caused by nZnO toxicity in M. edulis from temperate areas such as the Baltic Sea.


Assuntos
Mytilus edulis , Mytilus , Poluentes Químicos da Água , Óxido de Zinco , Animais , Metabolismo Energético , Estações do Ano , Temperatura , Poluentes Químicos da Água/toxicidade , Óxido de Zinco/toxicidade
8.
Chemosphere ; 263: 128328, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297258

RESUMO

We evaluated Mytilus coruscus shells (MCS) as an adsorbent for fluoride removal. Its removal efficiency was enhanced by thermal treatment and MCS at 800 °C (MCS-800) increased significantly its fluoride adsorption capacity from 0 to 12.28 mg/g. While raw MCS is mainly composed of calcium carbonate (CaCO3), MCS-800 consisted of 56.9% of CaCO3 and 43.1% of calcium hydroxide (Ca(OH)2). The superior adsorption capacity of MCS-800 compared to untreated MCS can be also explained by its larger specific surface area and less negative charge after the thermal treatment. X-ray photoelectron spectroscopy and X-ray diffraction analysis revealed that the fluoride adsorption of MCS-800 occurred via the formation of calcium fluorite (CaF2). Fluoride adsorption of MCS-800 approached equilibrium within 6 h and this kinetic adsorption was well-described by a pseudo-second-order model. The Langmuir model was suitable for describing the fluoride adsorption of MCS-800 under different initial concentrations. The maximum fluoride adsorption amount of MCS-800 was 82.93 mg/g, which was superior to those of other adsorbents derived from industrial byproducts. The enthalpy change of fluoride adsorption was 78.75 kJ/mol and the negative sign of free energy indicated that this phenomenon was spontaneous. The increase of pH from 3.0 to 11.0 slightly decreased the fluoride adsorption capacity of MCS-800. The adsorption was inhibited in the presence of anions and their impact increased with following trend: chloride < sulfate < carbonate < phosphate. The fluoride adsorption capacities of MCS-800 after washing with deionized water and 0.1 M NaOH were reduced by 31.5% and 57.4%, respectively.


Assuntos
Mytilus , Poluentes Químicos da Água , Purificação da Água , Adsorção , Animais , Fluoretos , Concentração de Íons de Hidrogênio , Cinética
9.
Sci Total Environ ; 750: 141303, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871366

RESUMO

Silver nanoparticles (Ag NPs) are present in numerous consumer products due to their antimicrobial and other unique properties, thus concerns about their potential input into aquatic ecosystems are increasing. Toxicity of Ag NPs in waterborne exposed aquatic organisms has been widely investigated, but studies assessing the potential toxic effects caused after ingestion through the food web, especially at low realistic concentrations, remain scarce. Moreover, it is not well known whether season may influence toxic effects of Ag NPs. The main objective of this study was to determine cell and tissue level responses in mussels Mytilus galloprovincialis dietarily exposed to poly-N-vinyl-2-pirrolidone/polyethyleneimine (PVP/PEI) coated 5 nm Ag NPs for 1, 7 and 21 days both in autumn and spring. Mussels were fed every day with microalgae Isochrysis galbana exposed for 24 h to a low dose (1 µg Ag/L Ag NPs) in spring and to a higher dose (10 µg Ag/L Ag NPs) in spring and autumn. Mussels fed with microalgae exposed to the high dose accumulated Ag significantly after 21 days in both seasons, higher levels being measured in autumn compared to spring. Intralysosomal metal accumulation measured in mussel digestive gland and time- and dose-dependent reduction of mussels health status was similar in both seasons. DNA strand breaks increased significantly in hemocytes at both exposure doses along the 21 days in spring and micronuclei frequency showed an increasing trend after 1 and 7 days of exposure to 1 µg Ag/L Ag NPs in spring and to 10 µg Ag/L in both seasons. Values decreased after 21 days of exposure in all the cases. In conclusion, PVP/PEI coated 5 nm Ag NPs ingested through the food web were significantly accumulated in mussel tissues and caused adverse cell and tissue level effects both in autumn and in spring.


Assuntos
Nanopartículas Metálicas , Mytilus , Poluentes Químicos da Água , Animais , Ecossistema , Nanopartículas Metálicas/toxicidade , Estações do Ano , Prata/toxicidade
10.
Sci Total Environ ; 751: 141723, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32892078

RESUMO

Estuarine ecosystems are characterized by a wide physical-chemical variation that in the context of global change scenarios may be exacerbated in the future. The fitness of resident organisms is expected to be influenced by such variation and, hence, its study is a priority. Some of that variation relates to water vertical stratification, which may create "environmental refuges" or distinct layers of water with conditions favoring the fitness of some individuals and species. This study explored the performance of juvenile mussels (M. chilensis) settled in two distinctive water depths (1 m and 4 m) of the Reloncaví fjord (southern Chile) by conducting a reciprocal transplants experiment. Salinity, saturation state and the contents of CO3 in seawater were among the factors that best explained the differences between the two layers. In such environmental conditions, the mussel traits that responded to such variation were growth and calcification rates, with significantly higher values at 4 m deep, whereas the opposite, increased metabolic stress, was higher in mussels raised and transplanted to the surface waters (1 m). Such differences support the notion of an environmental refuge, where species like mussels can find better growth conditions and achieve higher performance levels. These results are relevant considering the importance of M. chilensis as a shellfish resource for aquaculture and a habitat forming species. In addition, these results shed light on the variable responses exhibited by estuarine organisms to small-scale changes in the characteristics of the water column, which in turn will help to better understand the responses of the organisms to the projected scenarios of climate global change.


Assuntos
Mytilus , Animais , Chile , Ecossistema , Humanos , Água do Mar , Plântula
11.
Ecotoxicol Environ Saf ; 209: 111780, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33352432

RESUMO

In the modern society, plastic has achieved a crucial status in a myriad of applications because of its favourable properties. Despite the societal benefits, plastic has become a growing global concern due to it is persistence and bioavailability as microplastics (MPs) to aquatic biota. In order to provide mechanistic insights into the early toxicity effects of MPs on aquatic invertebrates, a short-term (up to 72 h) exposure to 3 µm red polystyrene MPs (50 particles/mL) was conducted on marine mussels Mytilus galloprovincialis, selected as model organism for their ability to ingest MPs and their commercial relevance. The use of protonic Nuclear Magnetic Resonance (1H NMR)-based metabolomics, combined with chemometrics, enabled a comprehensive exploration at fixed exposure time-points (T24, T48, T72) of the impact of MPs accumulated in mussel digestive glands, chosen as the major site for pollutants storage and detoxification processes. In detail, 1H NMR metabolic fingerprints of MP-treated mussels were clearly separated from control and grouped for experimental time-points by a Principal Component Analysis (PCA). Numerous metabolites, including amino acids, osmolytes, metabolites involved in energy metabolism, and antioxidants, participating in various metabolic pathways significantly changed over time in MP-exposed mussel digestive glands related to control, reflecting also the fluctuations in MPs accumulation and pointing out the occurrence of disorders in amino acid metabolism, osmotic equilibrium, antioxidant defense system and energy metabolism. Overall, the present work provides the first insights into the early mechanisms of toxicity of polystyrene MPs in marine invertebrates.


Assuntos
Microplásticos/toxicidade , Mytilus/fisiologia , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/metabolismo , Doenças Metabólicas , Metabolômica , Mytilus/efeitos dos fármacos , Plásticos , Alimentos Marinhos/análise
12.
Chemosphere ; 263: 127957, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32828059

RESUMO

Plastic particles are thought to accumulate in aquatic organisms and cause potential physiological effects. The uneven sizes of plastic particles may affect the ingestion by marine filter feeding bivalves and may lead to differential further physiological effects. To tackle this scientific question, we investigated the size dependent ingestion and dynamic accumulation of nano/micro plastic particles with different diameters (0.07, 0.5, 5, 10 and 100 µm) in the thick shell mussel Mytilus coruscus. The accumulation of particles in gill, digestive tract and mantle of mussels was measured after 3, 15, 87 h exposure and following 87 h depuration. The results showed that particle ingestion was negatively size dependant and positively related to time in digestive tract. In mantle, particles accumulated over the depuration time with a delay, indicating the translocation of particles. Moreover, our results showed that gill was not a target tissue for steady particle accumulation but the digestive tract was. This study showed size dependent and dynamic ingestion of nano/micro particles in mussels which are one of the main marine organisms for accumulating microplastics.


Assuntos
Microplásticos/análise , Mytilus/fisiologia , Poluentes Químicos da Água/análise , Animais , Ingestão de Alimentos , Brânquias/química , Plásticos , Alimentos Marinhos/análise
13.
Mar Pollut Bull ; 160: 111703, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33181966

RESUMO

Effects of microplastics on marine taxa have become a focal point in marine experimental biology. Almost all studies so far, however, assessed the influence of microplastics on animals only in relation to a zero-particle group. Documented microplastic impacts may thus be overestimated, since many marine species also experience natural suspended solids as a stressor. Here, we compared the effects of polyvinyl chloride (PVC) and red clay (mean for both particles: ~12-14 µm) on the Mediterranean mussel Mytilus galloprovincialis across three particle concentrations (1.5, 15, 150 mg l-1). Exposure to PVC for 35 days lowered mussel body condition index by 14% in relation to clay, but no difference in byssus production, respiration and survival rates emerged between the two particle types. This suggests that the effects of synthetic particles on filter feeders may emulate those of natural suspended solids, and highlights the importance of including natural particles in microplastic exposure studies.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos , Cloreto de Polivinila/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
14.
Mar Environ Res ; 162: 105137, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33010617

RESUMO

Despite the increasing interest for pharmaceuticals in the marine environment, their accumulation in wild organisms and consequent environmental hazards are still poorly known. The Mediterranean Sea is highly challenged by the density of coastal populations, large consumption of pharmaceuticals and their often limited removal by Wastewater Treatment Plants (WWTPs). In this respect, the present study aims to provide the first large-scale survey on the distribution of such contaminants of emerging concern in native mussels, Mytilus galloprovincialis from Italian coasts. Organisms were collected from 14 sites representative of relatively unpolluted marine waters along the Adriatic and Tyrrhenian Sea and analysed for 9 common pharmaceuticals including Non-Steroidal Anti-Inflammatory Drugs (NSAIDs: Diclofenac DIC, Ibuprofen IBU, Ketoprofen KET and Nimesulide NIM), the analgesic Acetaminophen AMP, the antiepileptic Carbamazepine CBZ, the antihypertensive Valsartan VAL, the anxiolytic Lormetazepam LOR and the antidepressant Paroxetine PAR. Results indicated the widespread occurrence of the majority of pharmaceuticals in mussel tissues: CBZ was measured in >90% of analysed samples, followed by VAL (>50%), PAR (>40%), and DIC (>30%), while only AMP and KET were never detected. Heterogeneous tissue concentrations ranged from a few units up to hundreds of ng/g (d.w.), while seasonal and interannual variability, investigated over 4 years, did not highlight any clear temporal trend. Limited differences obtained between the Adriatic and Tyrrhenian Sea, as well as coastal versus off-shore sampling sites, suggest that analysed levels of pharmaceuticals in mussels tissues should be considered as baseline concentrations for organisms collected in unpolluted areas of the Mediterranean. This study provided the first unambiguous evidence of the widespread occurrence of pharmaceuticals in marine mussels from Italian coasts, giving novel insights on the potential ecotoxicological hazard from such compounds in marine species.


Assuntos
Mytilus , Preparações Farmacêuticas , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Humanos , Itália , Mar Mediterrâneo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
15.
Ecotoxicol Environ Saf ; 203: 110980, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888623

RESUMO

Pesticides can enter aquatic environments potentially affecting non-target organisms. Unfortunately, the effects of such substances are still poorly understood. This study investigated the effects of the active neonicotinoid substance thiacloprid (TH) and the commercial product Calypso 480 SC (CA) (active compound 40.4% TH) on Mytilus galloprovincialis after short-term exposure to sublethal concentrations. Mussels were tested for seven days to 0, 1, 5 and 10 mg L-1 TH and 0, 10, 50 and 100 mg L-1 CA. For this purpose, several parameters, such as cell viability of haemocytes and digestive cells, biochemical haemolymph features, superoxide dismutase (SOD) and catalase (CAT) enzymatic activity of gills and digestive gland, as well as histology of such tissues were analysed. The sublethal concentrations of both substances lead to abatement or completely stopping the byssal fibres creation. Biochemical analysis of haemolymph showed significant changes (P < 0.01) in electrolytes ions (Cl-, K+, Na+, Ca2+, S-phosphor), lactate dehydrogenase (LDH) enzyme activity and glucose concentration following exposure to both substances. The TH-exposed mussels showed significant imbalance (P < 0.05) in CAT activity in digestive gland and gills. CA caused significant decrease (P < 0.05) in SOD activity in gills and in CAT activity in both tissues. Results of histological analyses showed severe damage in both digestive gland and gills in a time- and concentration-dependent manner. This study provides useful information about the acute toxicity of a neonicotinoid compound and a commercial insecticide on mussels. Nevertheless, considering that neonicotinoids are still widely used and that mussels are very important species for marine environment and human consumption, further researches are needed to better comprehend the potential risk posed by such compounds to aquatic non-target species.


Assuntos
Brânquias/efeitos dos fármacos , Hemolinfa/efeitos dos fármacos , Inseticidas/toxicidade , Mytilus/efeitos dos fármacos , Neonicotinoides/toxicidade , Tiazinas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Catalase/metabolismo , Sobrevivência Celular , Relação Dose-Resposta a Droga , Brânquias/enzimologia , Hemócitos/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Testes de Toxicidade Aguda
16.
Mar Environ Res ; 161: 105148, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32942209

RESUMO

Ocean acidification is expected to affect marine organisms in the near future. Furthermore, abrupt short-term fluctuations in seawater pCO2 characteristic of near-shore coastal regions and high-density aquaculture sites currently have the potential to influence organismal and community functioning by altering animal behaviour. While anti-predator responses in fishes exposed to elevated pCO2 are well documented, such responses in benthic marine invertebrates are poorly studied. We used high frequency, non-invasive biosensors to test whether or not short term (3-week) exposure to elevated pCO2 could impact behavioural responses to the threat of predation in adult Mediterranean mussels from Galicia on the northwestern coast of Spain. Predator alarm cues (crushed conspecifics) resulted in a prolonged (1 h) reduction in the degree of valve opening (-20%) but had no clear effect on overall valve movement activity, while elevated pCO2 did not affect either response. Our results add to the increasing body of evidence suggesting that the effects of end-of-century pCO2 levels on marine animal behaviour are likely weak. Nonetheless, longer-term exposures spanning multiple generations are needed to better understand how ocean acidification might impact behavioural responses to predation in marine bivalves.


Assuntos
Mytilus , Animais , Dióxido de Carbono/análise , Dióxido de Carbono/toxicidade , Concentração de Íons de Hidrogênio , Água do Mar , Espanha
17.
Mar Environ Res ; 160: 104987, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32907725

RESUMO

Ocean acidification alters physiology, acid-base balance and metabolic activity in marine animals. Near future elevated pCO2 conditions could be expected to influence the bioaccumulation of metals, feeding rate and immune parameters in marine mussels. To better understand such impairments, a series of laboratory-controlled experiment was conducted by using a model marine mussel, Mytilus galloprovincialis. The mussels were exposed to three pH conditions according to the projected CO2 emissions in the near future (one ambient: 8.10 and two reduced: 7.80 and 7.50). At first, the bioconcentration of Ag and Cd was studied in both juvenile (2.5 cm) and adult (5.1 cm) mussels by using a highly sensitive radiotracer method (110mAg and 109Cd). The uptake and depuration kinetics were followed 21 and 30 days, respectively. The biokinetic experiments demonstrated that the effect of ocean acidification on bioconcentration was metal-specific and size-specific. The uptake, depuration and tissue distribution of 110mAg were not affected by elevated pCO2 in both juvenile and adult mussels, whereas 109Cd uptake significantly increased with decreasing pH in juveniles but not in adults. Regardless of pH, 110mAg accumulated more efficiently in juvenile mussels than adult mussels. After executing the biokinetic experiment, the perturbation was sustained by using the same mussels and the same experimental set-up, which enabled us to determine filtration rate, haemocyte viability, lysosomal membrane stability, circulating cell-free nucleic acids (ccf-NAs) and protein (ccf-protein) levels. The filtration rate and haemocyte viability gradually decreased by increasing pCO2 level, whereas the lysosomal membrane stability, ccf-NAs, and ccf-protein levels remained unchanged in the mussels exposed to elevated pCO2 for eighty-two days. This study suggests that acidified seawater partially shift metal bioaccumulation, physiological and cellular parameters in the mussel Mytilus galloprovincialis.


Assuntos
Dióxido de Carbono , Metais , Mytilus , Poluentes Químicos da Água , Animais , Bioacumulação , Concentração de Íons de Hidrogênio , Metais/farmacocinética , Mytilus/química , Água do Mar , Poluentes Químicos da Água/farmacocinética
18.
Environ Pollut ; 267: 115537, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32892020

RESUMO

Trichloropropyl phosphate (TCPP) is a halogenated organophosphate ester that is widely used as flame retardants and plasticizers. In this study, gender-specific accumulation and responses in mussel Mytilus galloprovincialis to TCPP exposure were focused and highlighted. After TCPP (100 nmol L-1) exposure for 42 days, male mussels showed similar average bioaccumulation (37.14 ± 6.09 nmol g-1 fat weight (fw)) of TCPP with that in female mussels (32.28 ± 4.49 nmol g-1 fw). Proteomic analysis identified 219 differentially expressed proteins (DEPs) between male and female mussels in control group. There were 52 and 54 DEPs induced by TCPP in male and female mussels, respectively. Interestingly, gender-specific DEPs included 37 and 41 DEPs induced by TCPP in male and female mussels, respectively. The proteomic differences between male and female mussels were related to protein synthesis and degradation, energy metabolism, and functions of cytoskeleton and motor proteins. TCPP influenced protein synthesis, energy metabolism, cytoskeleton functions, immunity, and reproduction in both male and female mussels. Protein-protein interaction (PPI) networks indicated that protein synthesis and energy metabolism were the main biological processes influenced by TCPP. However, DEPs involved in these processes and their interaction patterns were quite different between male and female mussels. Basically, twelve ribosome DEPs which directly or indirectly interacted were found in protein synthesis in TCPP-exposed male mussels, while only 3 ribosome DEPs (not interacted) in TCPP-exposed female mussels. In energy metabolism, only 4 DEPs (with the relatively simple interaction pattern) mainly resided in fatty acid metabolism, butanoate/propanoate metabolism and glucose metabolism were discovered in TCPP-exposed male mussels, and more DEPs (with multiple interactions) functioned in TCA cycle and pyruvate/glyoxylate/dicarboxylate metabolism were found in TCCP-exposed female mussels. Taken together, TCPP induced gender-specific toxicological effects in mussels, which may shed new lights on further understanding the toxicological mechanisms of TCPP in aquatic organisms.


Assuntos
Retardadores de Chama , Mytilus , Poluentes Químicos da Água , Animais , Feminino , Masculino , Fosfatos , Proteômica , Poluentes Químicos da Água/toxicidade
19.
Aquat Toxicol ; 228: 105619, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32937230

RESUMO

Commonly affected by changes in climate and environmental conditions, coastal areas are very dynamic environments where shellfish play an important ecological role. In this study, the oxidative stress and genotoxic responses of mussels (Mytilus galloprovincialis) exposed to paralytic shellfish toxin (PST) - producing dinoflagellates Gymnodinium catenatum were evaluated under i) current conditions (CC: 19 °C; pH 8.0), ii) warming (W: 24 °C; pH 8.0), iii) acidification (A:19 °C; pH 7.6) and iv) combined effect of warming and acidification (WA: 24 °C; pH 7.6). Mussels were fed with G. catenatum for 5 days, and to a non-toxic diet during the following 10 days. A battery of oxidative stress biomarkers and comet assay was performed at the peak of toxin accumulation and at the end of the post-exposure phase. Under CC, gills and hepatopancreas displayed different responses/vulnerabilities and mechanisms to cope with PST. While gills presented a tendency for lipid peroxidation (LPO) and genetic damage (expressed by the Genetic Damage Indicator - GDI), hepatopancreas seems to better cope with the toxins, as no LPO was observed. However, the mechanisms involved in hepatopancreas protection were not enough to maintain DNA integrity. The absence of LPO, and the antioxidant system low responsiveness, suggests DNA damage was not oxidative. When exposed to toxic algae under W, toxin-modulated antioxidant responses were observed in both gills and hepatopancreas. Simultaneous exposure to the stressors highlighted gills susceptibility with a synergistic interaction increasing DNA damage. Exposure to toxic algae under A led to genotoxicity potentiation in both organs. The combined effect of WA did not cause relevant interactions in gills antioxidant responses, but stressors interactions impacted LPO and GDI. Antioxidant responses and LPO pointed out to be modulated by the environmental conditions in hepatopancreas, while GDI results support the dominance of toxin-triggered process. Overall, these results reveal that simultaneous exposure to warming, acidification and PSTs impairs mussel DNA integrity, compromising the genetic information due to the synergetic effects. Finally, this study highlights the increasing ecological risk of harmful algal blooms to Mytilus galloprovinciallis populations.


Assuntos
Dano ao DNA , Toxinas Marinhas/toxicidade , Mytilus/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Ensaio Cometa , Dinoflagelados/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/metabolismo , Concentração de Íons de Hidrogênio , Peroxidação de Lipídeos/efeitos dos fármacos , Toxinas Marinhas/metabolismo , Mytilus/genética , Mytilus/metabolismo , Temperatura
20.
Toxicon ; 186: 19-25, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32738246

RESUMO

The first survey of the phycotoxin profile in mussels (Mytilus galloprovincialis) from the coastal waters of Bosnia and Herzegovina (The Bay of Neum, Middle Adriatic Sea) in correlation to the Makarska City Bay (Croatia, Middle Adriatic Sea) was conducted in 2017. Throughout the monitoring period, occasions of gymnodimine (GYM) and azaspiracid (AZA2) shellfish toxicity were recorded in concentrations that do not endanger human health. The occurrence of yessotoxins (YTXs), the most common toxins found in the Adriatic Sea, was correlated to the presence of the Gonyaulax species, a potential source of YTX. The DSP group of toxins is represented by the ester-OA. Phytoplankton analysis confirmed the presence of dinoflagellates from the Prorocentrum genus, a species associated with DSP toxicity. Occurrence frequency and variability of toxin composition were investigated in conjunction to physico-chemical parameters in the surrounding sea water. In the central Adriatic Sea, the infestation period ranges in general from June to August. However, the depuration phase extended beyond September in the Bay of Neum, increasing the length of the decontamination period.


Assuntos
Toxinas Marinhas/análise , Venenos de Moluscos/análise , Frutos do Mar/estatística & dados numéricos , Animais , Croácia , Dinoflagelados , Compostos Heterocíclicos com 3 Anéis/análise , Humanos , Hidrocarbonetos Cíclicos/análise , Iminas/análise , Mytilus , Oxocinas/análise , Fitoplâncton , Alimentos Marinhos , Intoxicação por Frutos do Mar , Compostos de Espiro/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...