Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.123
Filtrar
1.
Clin. transl. oncol. (Print) ; 25(12): 3460-3470, dec. 2023.
Artigo em Inglês | IBECS | ID: ibc-227291

RESUMO

Purpose This study aimed to evaluate the role of NADPH in pancreatic ductal adenocarcinoma using bioinformatic analyses and experimental validations. Methods We compared the expression levels, performed GO and KEGG analysis of NADPH oxidase family and its regulatory subunits, and determined the survival of patients with pancreatic ductal adenocarcinoma by GEPIA, David and KM plotter. The relationship between their expression with immune infiltration levels, phagocytotic/NK cell immune checkpoints, recruitment-related molecules were detected by Timer 2.0 and TISIDB, respectively. Subsequently, their correlation with NK cell infiltration level was verified by immunohistochemistry. Results The expression of some members of the NADPH oxidase family and its regulatory subunits was significantly increased in pancreatic ductal adenocarcinoma tissues compared to that in normal tissues and was positively correlated with natural killer (NK) cell infiltration. Furthermore, the NADPH oxidase family and its regulatory subunits were associated with survival and immune status in patients with pancreatic ductal adenocarcinoma, including chemokines, immune checkpoints, and immune infiltration levels of NK cells, monocytes, and myeloid-derived suppressor cells. Conclusions These results suggest the NADPH oxidase family and its regulatory subunits might serve as indicators for predicting the responsiveness to immunotherapy and outcome of patients with pancreatic ductal adenocarcinoma, providing a new perspective or strategy for immunotherapy in pancreatic ductal adenocarcinoma (AU)


Assuntos
Humanos , Adenocarcinoma/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Biomarcadores Tumorais , NADP/metabolismo , Imunoterapia , Prognóstico
2.
Elife ; 122023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37983176

RESUMO

Six transmembrane epithelial antigen of the prostate (STEAP) 1-4 are membrane-embedded hemoproteins that chelate a heme prosthetic group in a transmembrane domain (TMD). STEAP2-4, but not STEAP1, have an intracellular oxidoreductase domain (OxRD) and can mediate cross-membrane electron transfer from NADPH via FAD and heme. However, it is unknown whether STEAP1 can establish a physiologically relevant electron transfer chain. Here, we show that STEAP1 can be reduced by reduced FAD or soluble cytochrome b5 reductase that serves as a surrogate OxRD, providing the first evidence that STEAP1 can support a cross-membrane electron transfer chain. It is not clear whether FAD, which relays electrons from NADPH in OxRD to heme in TMD, remains constantly bound to the STEAPs. We found that FAD reduced by STEAP2 can be utilized by STEAP1, suggesting that FAD is diffusible rather than staying bound to STEAP2. We determined the structure of human STEAP2 in complex with NADP+ and FAD to an overall resolution of 3.2 Å by cryo-electron microscopy and found that the two cofactors bind STEAP2 similarly as in STEAP4, suggesting that a diffusible FAD is a general feature of the electron transfer mechanism in the STEAPs. We also demonstrated that STEAP2 reduces ferric nitrilotriacetic acid (Fe3+-NTA) significantly slower than STEAP1 and proposed that the slower reduction is due to the poor Fe3+-NTA binding to the highly flexible extracellular region in STEAP2. These results establish a solid foundation for understanding the function and mechanisms of the STEAPs.


Assuntos
Elétrons , Próstata , Masculino , Humanos , NADP/metabolismo , Microscopia Crioeletrônica , Próstata/metabolismo , Oxirredutases/metabolismo , Heme/metabolismo , Antígenos de Neoplasias
3.
J Agric Food Chem ; 71(46): 17852-17859, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37935620

RESUMO

Since the discovery of l-glutamate-producing Corynebacterium glutamicum, it has evolved to be an industrial workhorse. For biobased chemical production, suppling sufficient amounts of the NADPH cofactor is crucial. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme that converts glyceraldehyde-3-phosphate (G3P) to 1,3-bisphosphoglycerate and produces NADH, is a major prospective solution for the cofactor imbalance issue. In this study, we determined the crystal structure of GAPDH from C. glutamicum ATCC13032 (CgGAPDH). Based on the structural information, we generated six CgGAPDH variants, CgGAPDHL36S, CgGAPDHL36S/T37K, CgGAPDHL36S/T37K/P192S, CgGAPDHL36S/T37K/F100V/P192S, CgGAPDHL36S/T37K/F100L/P192S, and CgGAPDHL36S/T37K/F100I/P192S, that can produce both NADH and NAPDH. The final CgGAPDHL36S/T37K/F100V/P192S variant showed a 212-fold increase in enzyme activity for NADP as well as 200% and 30% increased activity for the G3P substrate under NAD and NADP cofactor conditions, respectively. In addition, crystal structures of CgGAPDH variants in complex with NAD(P) permit the elucidation of differences between wild-type CgGAPDH and variants in relation to cofactor stabilization.


Assuntos
Corynebacterium glutamicum , NAD , NADP/metabolismo , NAD/metabolismo , Corynebacterium glutamicum/metabolismo , Estudos Prospectivos , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Engenharia de Proteínas
4.
Curr Opin Biotechnol ; 84: 103019, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37939631

RESUMO

Controlling the flow of carbon and reducing power in biological systems is a central theme in metabolic engineering. Often, trade-offs in pushing carbon flux through targeted pathways while operating in conditions agreeable to the host are required due to the central pools of the shared native redox cofactors NAD(P)/H. Noncanonical redox cofactors (NRCs) have emerged as promising tools to transform how engineers develop biotransformation systems. These new-to-Nature redox cofactors have been demonstrated to function orthogonally to the endogenous cofactors, support pathway thermodynamics optimization, and achieve product scopes previously difficult to reach due to endogenous pathway crosstalk. This review will discuss the development of NRC infrastructures, comprising NRC pools, cofactor reduction sources, and cofactor oxidation sinks, the (pool-source-sink) infrastructure.


Assuntos
Escherichia coli , NAD , NADP/metabolismo , Escherichia coli/metabolismo , NAD/metabolismo , Oxirredução , Engenharia Metabólica
5.
Sci Rep ; 13(1): 19553, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945678

RESUMO

The cloning and characterization of the complete coding sequence of the Clarias magur SRD5A1 (CmSRD5A1) gene, which encodes an enzyme responsible for regulating steroid levels by converting testosterone into 5α-dihydrotestosterone (DHT), have been successfully achieved. DHT plays a vital role in enabling the complete expression of testosterone's actions in neuroendocrine tissues. The ORF of the full-length cDNA sequence of SRD5A1 was 795 bp, translating into 265 amino acids, with a total length of 836 bp including UTRs. Like other vertebrates, the signal peptide analysis revealed that SRD5A1 is a non-secretory protein, and hydropathy profiles indicated that it is hydrophobic in nature. The 3D structure of CmSRD5A1 sequence generated above was predicted using highly accurate AlphaFold 2 in Google Colab online platform. CmSRD5A1 contains seven transmembrane helices connected by six loops, with the N-termini located on the periplasmic side and C-termini on the cytosolic side. Structural superimposition with known bacterial and human SRD5As showed very high structural similarity. The electrostatic potential calculation and surface analysis of CmSRD5A1 revealed the presence of a large cavity with two openings one highly electropositive towards the cytosolic side and another relatively neutral towards the transmembrane region. The structural comparison revealed that the electropositive side of the cavity should bind to NADPH and the steroid hormone in the hydrophobic environment. Polar residues binding to NADPH are highly conserved and the same as known strictures. The conserved residues involved in hydrogen bonding with the ketone group at C-3 in the steroids hence fevering Δ4 double-bond reduction are identified as E66 and Y101. Our findings showed that SRD5A1 expression was lower during the spawning phase than the preparatory phase in female fish, while the administration of Ovatide (a GnRH analogue) resulted in up-regulation of expression after 6 h of injection in the ovary. In males, the lowest expression was observed during the preparatory phase and peaked at 16 h post- Ovatide injection in the testis. The expression of SRD5A1 in the brain of female fish was slightly higher during the Ovatide stimulation phase than the spawning phase. This study represents the first report on the cloning and characterization of the full-length cDNA of SRD5A1 in Indian catfish.


Assuntos
Peixes-Gato , Colestenona 5 alfa-Redutase , Masculino , Animais , Feminino , Humanos , Colestenona 5 alfa-Redutase/metabolismo , Peixes-Gato/genética , Peixes-Gato/metabolismo , DNA Complementar/genética , NADP/metabolismo , Sequência de Aminoácidos , Testosterona/metabolismo , Di-Hidrotestosterona/metabolismo , Esteroides/metabolismo , Clonagem Molecular , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo
6.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003259

RESUMO

Formate dehydrogenases catalyze the reversible oxidation of formate to carbon dioxide. These enzymes play an important role in CO2 reduction and serve as nicotinamide cofactor recycling enzymes. More recently, the CO2-reducing activity of formate dehydrogenases, especially metal-containing formate dehydrogenases, has been further explored for efficient atmospheric CO2 capture. Here, we investigate the nicotinamide binding site of formate dehydrogenase from Rhodobacter capsulatus for its specificity toward NAD+ vs. NADP+ reduction. Starting from the NAD+-specific wild-type RcFDH, key residues were exchanged to enable NADP+ binding on the basis of the NAD+-bound cryo-EM structure (PDB-ID: 6TG9). It has been observed that the lysine at position 157 (Lys157) in the ß-subunit of the enzyme is essential for the binding of NAD+. RcFDH variants that had Glu259 exchanged for either a positively charged or uncharged amino acid had additional activity with NADP+. The FdsBL279R and FdsBK276A variants also showed activity with NADP+. Kinetic parameters for all the variants were determined and tested for activity in CO2 reduction. The variants were able to reduce CO2 using NADPH as an electron donor in a coupled assay with phosphite dehydrogenase (PTDH), which regenerates NADPH. This makes the enzyme suitable for applications where it can be coupled with other enzymes that use NADPH.


Assuntos
NAD , Rhodobacter capsulatus , NADP/metabolismo , NAD/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Dióxido de Carbono/metabolismo , Elétrons , Oxirredução , Oxidantes , Niacinamida , Cinética
7.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003258

RESUMO

Inactivation of enzymes responsible for biosynthesis of the cell wall component of ADP-glycero-manno-heptose causes the development of oxidative stress and sensitivity of bacteria to antibiotics of a hydrophobic nature. The metabolic precursor of ADP-heptose is sedoheptulose-7-phosphate (S7P), an intermediate of the non-oxidative branch of the pentose phosphate pathway (PPP), in which ribose-5-phosphate and NADPH are generated. Inactivation of the first stage of ADP-heptose synthesis (ΔgmhA) prevents the outflow of S7P from the PPP, and this mutant is characterized by a reduced biosynthesis of NADPH and of the Glu-Cys-Gly tripeptide, glutathione, molecules known to be involved in the resistance to oxidative stress. We found that the derepression of purine biosynthesis (∆purR) normalizes the metabolic equilibrium in PPP in ΔgmhA mutants, suppressing the negative effects of gmhA mutation likely via the over-expression of the glycine-serine pathway that is under the negative control of PurR and might be responsible for the enhanced synthesis of NADPH and glutathione. Consistently, the activity of the soxRS system, as well as the level of glutathionylation and oxidation of proteins, indicative of oxidative stress, were reduced in the double ΔgmhAΔpurR mutant compared to the ΔgmhA mutant.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , NADP/metabolismo , Purinas/farmacologia , Purinas/metabolismo , Heptoses/química , Heptoses/metabolismo , Glutationa/metabolismo , Via de Pentose Fosfato
8.
Nat Commun ; 14(1): 7148, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932304

RESUMO

Cyclic electron transfer (CET) predominates when NADP+ is at basal levels, early in photosynthetic induction; however, the mechanism underlying the subsequent supply of NADP+ to fully drive steady-state linear electron transfer remains unclear. Here, we investigated whether CET is involved in de novo NADP+ supply in Arabidopsis thaliana and measured chloroplastic NADP dynamics to evaluate responsiveness to variable light, photochemical inhibitors, darkness, and CET activity. The sum of oxidized and reduced forms shows that levels of NADP and NAD increase and decrease, respectively, in response to light; levels of NADP and NAD decrease and increase in the dark, respectively. Moreover, consistent with the pH change in the stroma, the pH preference of chloroplast NAD+ phosphorylation and NADP+ dephosphorylation is alkaline and weakly acidic, respectively. Furthermore, CET is correlated with upregulation of light-responsive NADP level increases and downregulation of dark-responsive NADP level reductions. These findings are consistent with CET helping to regulate NADP pool size via stromal pH regulation under fluctuating light conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , NADP/metabolismo , NAD/metabolismo , Cloroplastos/metabolismo , Transporte de Elétrons , Fotossíntese , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução
9.
Biomed Pharmacother ; 168: 115711, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37879213

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is the most common pathological type of esophageal cancer in China, accounting for more than 90 %. Most patients were diagnosed with advanced-stage ESCC, for whom new adjuvant therapy is recommended. Therefore, it is urgent to explore new therapeutic targets for ESCC. Ferroptosis, a newly discovered iron-dependent programmed cell death, has been shown to play an important role in carcinogenesis by many studies. This study explored the effect of Polo like kinase 1 (PLK1) on chemoradiotherapy sensitivity of ESCC through ferroptosis METHODS: In this study, we knocked out the expression of PLK1 (PLK1-KO) in ESCC cell lines (KYSE150 and ECA109) with CRISPR/CAS9. The effects of PLK1-knock out on G6PD, the rate-limiting enzyme of pentose phosphate pathway (PPP), and downstream NADPH and GSH were explored. The lipid peroxidation was observed by flow cytometry, and the changes in mitochondria were observed by transmission electron microscopy. Next, through the CCK-8 assay and clone formation assay, the sensitivity to cobalt 60 rays, paclitaxel, and cisplatin were assessed after PLK1-knock out, and the nude mouse tumorigenesis experiment further verified it. The regulation of transcription factor YY1 on PLK1 was evaluated by dual luciferase reporter assay. The expression and correlation of PLK1 and YY1, and their impact on prognosis were analyzed in more than 300 ESCC cases from the GEO database and our center. Finally, the above results were further proved by single-cell sequencing. RESULTS: After PLK1 knockout, the expression of G6PD dimer and the level of NADPH and GSH in KYSE150 and ECA109 cells significantly decreased. Accordingly, lipid peroxidation increased, mitochondria became smaller, membrane density increased, and ferroptosis was more likely to occur. However, with the stimulation of exogenous GSH (10 mM), there was no significant difference in lipid peroxidation and ferroptosis between the PLK1-KO group and the control group. After ionizing radiation, the PLK1-KO group had higher lipid peroxidation ratio, more cell death, and was more sensitive to radiation, while exogenous GSH (10 mM) could eliminate this difference. Similar results could also be observed when receiving paclitaxel combined with cisplatin and chemoradiotherapy. The expression of PLK1, G6PD dimer, and the level of NADPH and GSH in KYSE150, ECA109, and 293 T cells stably transfected with YY1-shRNAs significantly decreased, and the cells were more sensitive to radiotherapy and chemotherapy. ESCC patients from the GEO database and our center, YY1 and PLK1 expression were significantly positively-correlated, and the survival of patients with high expression of PLK1 was significantly shorter. Further analysis of single-cell sequencing specimens of ESCC in our center confirmed the above results. CONCLUSION: In ESCC, down-regulation of PLK1 can inhibit PPP, and reduce the level of NADPH and GSH, thereby promoting ferroptosis and improving their sensitivity to radiotherapy and chemotherapy. Transcription factor YY1 has a positive regulatory effect on PLK1, and their expressions were positively correlated. PLK1 may be a target for predicting and enhancing the chemoradiotherapy sensitivity of ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ferroptose , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Quimiorradioterapia , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/patologia , NADP/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Via de Pentose Fosfato , Fator de Transcrição YY1/metabolismo
10.
Sci Rep ; 13(1): 17819, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857669

RESUMO

Macrophages play an important role as effector cells in innate immune system. Meanwhile, macrophages activated in a pro-inflammatory direction alter intracellular metabolism and damage intact tissues by increasing reactive oxygen species (ROS). Electrical stimulation (ES), a predominant physical agent to control metabolism in cells and tissues, has been reported to exert anti-inflammatory effect on immune cells. However, the mechanism underlying the anti-inflammatory effects by ES is unknown. This study aimed to investigate the effect of ES on metabolism in glycolytic-tricarboxylic acid cycle (TCA) cycle and inflammatory responses in macrophages. ES was performed on bone marrow-derived macrophages and followed by a stimulation with LPS. The inflammatory cytokine expression levels were analyzed by real-time polymerase chain reaction and ELISA. ROS production was analyzed by CellRox Green Reagent and metabolites by capillary electrophoresis-mass spectrometry. As a result, ES significantly reduced proinflammatory cytokine expression levels and ROS generation compared to the LPS group and increased glucose-1-phosphate, a metabolite of glycogen. ES also increased intermediate metabolites of the pentose phosphate pathway (PPP); ribulose-5-phosphate, rebose-5 phosphate, and nicotinamide adenine dinucleotide phosphate, a key factor of cellular antioxidation systems, as well as α-Ketoglutarate, an anti-oxidative metabolite in the TCA cycle. Our findings imply that ES enhanced NADPH production with enhancement of PPP, and also decreased oxidative stress and inflammatory responses in macrophages.


Assuntos
Lipopolissacarídeos , Via de Pentose Fosfato , Espécies Reativas de Oxigênio/metabolismo , NADP/metabolismo , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/metabolismo , Estimulação Elétrica , Fosfatos/metabolismo
11.
J Mol Endocrinol ; 71(4)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855366

RESUMO

In the endoplasmic reticulum (ER) lumen, glucose-6-phosphatase catalytic subunit 1 and 2 (G6PC1; G6PC2) hydrolyze glucose-6-phosphate (G6P) to glucose and inorganic phosphate whereas hexose-6-phosphate dehydrogenase (H6PD) hydrolyzes G6P to 6-phosphogluconate (6PG) in a reaction that generates NADPH. 11ß-hydroxysteroid dehydrogenase type 1 (HSD11B1) utilizes this NADPH to convert inactive cortisone to cortisol. HSD11B1 inhibitors improve insulin sensitivity whereas G6PC inhibitors are predicted to lower fasting blood glucose (FBG). This study investigated whether G6PC1 and G6PC2 influence G6P flux through H6PD and vice versa. Using a novel transcriptional assay that utilizes separate fusion genes to quantitate glucocorticoid and glucose signaling, we show that overexpression of H6PD and HSD11B1 in the islet-derived 832/13 cell line activated glucocorticoid-stimulated fusion gene expression. Overexpression of HSD11B1 blunted glucose-stimulated fusion gene expression independently of altered G6P flux. While overexpression of G6PC1 and G6PC2 blunted glucose-stimulated fusion gene expression, it had minimal effect on glucocorticoid-stimulated fusion gene expression. In the liver-derived HepG2 cell line, overexpression of H6PD and HSD11B1 activated glucocorticoid-stimulated fusion gene expression but overexpression of G6PC1 and G6PC2 had no effect. In rodents, HSD11B1 converts 11-dehydrocorticosterone (11-DHC) to corticosterone. Studies in wild-type and G6pc2 knockout mice treated with 11-DHC for 5 weeks reveal metabolic changes unaffected by the absence of G6PC2. These data suggest that HSD11B1 activity is not significantly affected by the presence or absence of G6PC1 or G6PC2. As such, G6PC1 and G6PC2 inhibitors are predicted to have beneficial effects by reducing FBG without causing a deleterious increase in glucocorticoid signaling.


Assuntos
Glucocorticoides , Glucose-6-Fosfato , Animais , Camundongos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Linhagem Celular , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Glucose/metabolismo , Glucose-6-Fosfato/metabolismo , NADP/metabolismo , Humanos
12.
Sci Adv ; 9(40): eadi8317, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37792934

RESUMO

Several genetically encoded sensors have been developed to study live cell NADPH/NADP+ dynamics, but their use has been predominantly in vitro. Here, we developed an in vivo assay using the Apollo-NADP+ sensor and microfluidic devices to measure endogenous NADPH/NADP+ dynamics in the pancreatic ß cells of live zebrafish embryos. Flux through the pentose phosphate pathway, the main source of NADPH in many cell types, has been reported to be low in ß cells. Thus, it is unclear how these cells compensate to meet NADPH demands. Using our assay, we show that pyruvate cycling is the main source of NADP+ reduction in ß cells, with contributions from folate cycling after acute electrical activation. INS1E ß cells also showed a stress-induced increase in folate cycling and further suggested that this cycling requires both increased glycolytic intermediates and cytosolic NAD+. Overall, we show in vivo application of the Apollo-NADP+ sensor and reveal that ß cells are capable of adapting NADPH/NADP+ redox during stress.


Assuntos
Células Secretoras de Insulina , Animais , NADP/metabolismo , Peixe-Zebra/metabolismo , Oxirredução , Ácido Fólico/metabolismo
13.
Invest Ophthalmol Vis Sci ; 64(13): 19, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37824136

RESUMO

Purpose: To explore the mechanism underlying IL-8-induced neutrophil extracellular trap (NET) formation in patients with ocular-active Behçet's disease (BD) and the effect of inhibiting NET formation on the severity of inflammation in experimental autoimmune uveitis (EAU) mice. Methods: The serum extracellular DNA and neutrophil elastase (NE) and IL-8 levels in patients with ocular-active BD, the expression of myeloperoxidase, NE, and histone H3Cit in IL-8-induced neutrophils isolated from healthy controls, and the effects of NETs on HMC3 cells were detected. Female C57BL/6J mice were immunized with IRBP651-670 to induce EAU and EAU mice received intravitreal injection of the CXCR2 (IL-8 receptor) antagonist SB225002 or PBS. The serum levels of extracellular DNA, NE, and keratinocyte-derived chemokine (the mouse ortholog of human IL-8) and expression of myeloperoxidase, NE, and histone H3Cit in mouse retinas were detected. Disease severity was evaluated by clinical and histopathological scores. Results: Serum keratinocyte-derived chemokine expression levels in EAU mice and IL-8 expression levels in patients with ocular-active BD increased. IL-8 notably increased NET formation in a dose-dependent manner through an nicotinamide adenine dinucleotide phosphate oxidase and mitogen-activated protein kinase pathway dependent mechanism. IL-8-induced NET formation damaged HMC3 cells in vitro. Pretreatment with SB225002 notably ameliorated the production of NETs in EAU mice. Conclusions: Our data confirm that NET formation is induced by IL-8. IL-8-induced NET formation was found to be related to mitogen-activated protein kinase and nicotinamide adenine dinucleotide phosphate pathways. Pretreatment with the CXCR2 antagonist SB225002 alleviated neutrophil infiltration and suppressed NET formation in EAU mice.


Assuntos
Síndrome de Behçet , Armadilhas Extracelulares , Interleucina-8 , Uveíte , Animais , Feminino , Humanos , Camundongos , DNA/metabolismo , Armadilhas Extracelulares/metabolismo , Histonas , Interleucina-8/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NADP/metabolismo , Neutrófilos , Peroxidase/metabolismo , Uveíte/tratamento farmacológico
14.
Int J Mol Sci ; 24(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37834433

RESUMO

Pseudomonas aeruginosa PAO1, as an experimental model for Gram-negative bacteria, harbors two NADP+-dependent isocitrate dehydrogenases (NADP-IDHs) that were evolved from its ancient counterpart NAD-IDHs. For a better understanding of PaIDH1 and PaIDH2, we cloned the genes, overexpressed them in Escherichia coli and purified them to homogeneity. PaIDH1 displayed higher affinity to NADP+ and isocitrate, with lower Km values when compared to PaIDH2. Moreover, PaIDH1 possessed higher temperature tolerance (50 °C) and wider pH range tolerance (7.2-8.5) and could be phosphorylated. After treatment with the bifunctional PaIDH kinase/phosphatase (PaIDH K/P), PaIDH1 lost 80% of its enzymatic activity in one hour due to the phosphorylation of Ser115. Small-molecule compounds like glyoxylic acid and oxaloacetate can effectively inhibit the activity of PaIDHs. The mutant PaIDH1-D346I347A353K393 exhibited enhanced affinity for NAD+ while it lost activity towards NADP+, and the Km value (7770.67 µM) of the mutant PaIDH2-L589 I600 for NADP+ was higher than that observed for NAD+ (5824.33 µM), indicating a shift in coenzyme specificity from NADP+ to NAD+ for both PaIDHs. The experiments demonstrated that the mutation did not alter the oligomeric state of either protein. This study provides a foundation for the elucidation of the evolution and function of two NADP-IDHs in the pathogenic bacterium P. aeruginosa.


Assuntos
Coenzimas , Pseudomonas aeruginosa , Coenzimas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , NADP/metabolismo , NAD/metabolismo , Sequência de Aminoácidos , Isocitrato Desidrogenase/metabolismo , Isocitratos/metabolismo , Cinética
15.
Redox Biol ; 67: 102897, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37804695

RESUMO

TXNL1 (also named TRP32, for thioredoxin related protein of 32 kDa) is a cytosolic thioredoxin-fold protein expressed in all cell types and conserved from yeast to mammals, but with yet poorly known function. Here, we expressed and purified human TXNL1 together with several Cys-to-Ser variants, characterizing their enzymatic properties. TXNL1 could reduce disulfides in insulin, cystine and glutathione disulfide (GSSG) in reactions coupled to thioredoxin reductase (TXNRD1, TrxR1) using NADPH, similarly to thioredoxin (TXN, Trx1), but with lower catalytic efficacy due to at least one order of magnitude higher Km of TrxR1 for TXNL1 compared to Trx1. However, in sharp contrast to Trx1, we found that TXNL1 also had efficient chaperone activity that did not require ATP. TXNL1 made non-covalent complexes with reduced insulin, thereby keeping it in solution, and TXNL1 provided chaperone function towards whole cell lysate proteins by preventing their aggregation during heating. The chaperone activities of TXNL1 did not require its redox activity or any dithiol-disulfide exchange reactions, as revealed using Cys-to-Ser substituted variants, as well as a maintained chaperone activity of TXNL1 also in the absence of TrxR1 and NADPH. These results reveal that TXNL1 has dual functions, supporting TrxR1-driven redox activities in disulfide reduction reactions, as well as being an ATP-independent chaperone that does not require involvement of its redox activity.


Assuntos
Cistina , Insulinas , Animais , Humanos , NADP/metabolismo , Oxirredução , Tiorredoxinas/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Insulinas/metabolismo , Trifosfato de Adenosina/metabolismo , Mamíferos/metabolismo
16.
Biochem Pharmacol ; 217: 115856, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37838274

RESUMO

Maintaining redox homeostasis is an essential feature of cancer cells, and disrupting this homeostasis to cause oxidative stress and induce cell death is an important strategy in cancer therapy. M4IDP, a zoledronic acid derivative, can cause the death of human colorectal cancer cells by increasing the level of intracellular reactive oxygen species (ROS). However, its potential molecular mechanism is unclear. Our in vitro studies showed that treatment with M4IDP promoted oxidative stress in HCT116 cells, as measured by the decreased ratios of GSH/GSSG and NADPH/NADP+ and increased level of MDA. M4IDP could cause the decrease of GSH content, the increase of GSSG content, the decrease of NADPH content and pentose phosphate pathway flux, the downregulation of G6PD expression, the upregulation of unprenylated Rap1A and total expression of RhoA and CDC42. The increase of ROS and cytotoxicity induced by M4IDP could be reversed by the supplementation of NADPH, the overexpression of G6PD and the supplementation of GGOH. In vivo studies showed that M4IDP inhibited tumor growth in the human colorectal cancer xenograft mouse model, which was accompanied with a decreased [18F]FDG uptake. Collectively, these results provide evidence that M4IDP can promote oxidation in colon cancer cells by inhibiting mevalonate pathway and pentose phosphate pathway and produce therapeutic effect. This study revealed for the first time a possible mechanism of bisphosphonate-induced increase of ROS in malignant tumor cells. This is helpful for the development of new molecular therapeutic targets and can provide new ideas for the combined therapy of bisphosphonates in tumors.


Assuntos
Neoplasias do Colo , Ácido Mevalônico , Humanos , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Dissulfeto de Glutationa/metabolismo , Dissulfeto de Glutationa/farmacologia , Ácido Mevalônico/farmacologia , NADP/metabolismo , NADP/farmacologia , Via de Pentose Fosfato/fisiologia , Estresse Oxidativo , Neoplasias do Colo/tratamento farmacológico
17.
Protein Eng Des Sel ; 362023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-37658768

RESUMO

Oxidoreductases catalyze essential redox reactions, and many require a diffusible cofactor for electron transport, such as NAD(H). Non-canonical cofactor analogs have been explored as a means to create enzymatic reactions that operate orthogonally to existing metabolism. Here, we aimed to engineer the formate dehydrogenase from Candid boidinii (CbFDH) for activity with the non-canonical cofactor nicotinamide adenine dinucleotide 3'-phosphate (3'-NADP(H)). We used PyRosetta, the Cofactor Specificity Reversal Structural Analysis and Library Design (CSR-SALAD), and structure-guided saturation mutagenesis to identify mutations that enable CbFDH to use 3'-NADP+. Two single mutants, D195A and D195G, had the highest activities with 3'-NADP+, while the double mutant D195G/Y196S exhibited the highest cofactor selectivity reversal behavior. Steady state kinetic analyses were performed; the D195A mutant exhibited the highest KTS value with 3'-NADP+. This work compares the utility of computational approaches for cofactor specificity engineering while demonstrating the engineering of an important enzyme for novel non-canonical cofactor selectivity.


Assuntos
Formiato Desidrogenases , Oxirredutases , NADP/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , NAD/química
18.
J Immunol ; 211(10): 1561-1577, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37756544

RESUMO

Lipid accumulation in macrophages (Mφs) is a hallmark of atherosclerosis, yet how lipid accumulation affects inflammatory responses through rewiring of Mφ metabolism is poorly understood. We modeled lipid accumulation in cultured wild-type mouse thioglycolate-elicited peritoneal Mφs and bone marrow-derived Mφs with conditional (Lyz2-Cre) or complete genetic deficiency of Vhl, Hif1a, Nos2, and Nfe2l2. Transfection studies employed RAW264.7 cells. Mφs were cultured for 24 h with oxidized low-density lipoprotein (oxLDL) or cholesterol and then were stimulated with LPS. Transcriptomics revealed that oxLDL accumulation in Mφs downregulated inflammatory, hypoxia, and cholesterol metabolism pathways, whereas the antioxidant pathway, fatty acid oxidation, and ABC family proteins were upregulated. Metabolomics and extracellular metabolic flux assays showed that oxLDL accumulation suppressed LPS-induced glycolysis. Intracellular lipid accumulation in Mφs impaired LPS-induced inflammation by reducing both hypoxia-inducible factor 1-α (HIF-1α) stability and transactivation capacity; thus, the phenotype was not rescued in Vhl-/- Mφs. Intracellular lipid accumulation in Mφs also enhanced LPS-induced NF erythroid 2-related factor 2 (Nrf2)-mediated antioxidative defense that destabilizes HIF-1α, and Nrf2-deficient Mφs resisted the inhibitory effects of lipid accumulation on glycolysis and inflammatory gene expression. Furthermore, oxLDL shifted NADPH consumption from HIF-1α- to Nrf2-regulated apoenzymes. Thus, we postulate that repurposing NADPH consumption from HIF-1α to Nrf2 transcriptional pathways is critical in modulating inflammatory responses in Mφs with accumulated intracellular lipid. The relevance of our in vitro models was established by comparative transcriptomic analyses, which revealed that Mφs cultured with oxLDL and stimulated with LPS shared similar inflammatory and metabolic profiles with foamy Mφs derived from the atherosclerotic mouse and human aorta.


Assuntos
Aterosclerose , Hipercolesterolemia , Humanos , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Lipopolissacarídeos/metabolismo , NADP/metabolismo , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Glicólise , Aterosclerose/metabolismo , Colesterol/metabolismo , Antioxidantes/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
19.
Int J Biol Macromol ; 253(Pt 2): 126637, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37657580

RESUMO

The expression of multifunctional proteins can facilitate the setup of a biotechnology process that requires multiple functions absolved by different proteins. Herein the functional and conformational characterization of a formate dehydrogenase-monooxygenase chimera enzyme is presented. The fused enzyme (FDH-PAMO) was prepared by linking the C-terminus of the mutant NADP+-dependent formate dehydrogenase from Pseudomonas sp. 101 (FDH) to the N-terminus of the NADPH-dependent monooxygenase from Thermobifida fusca (PAMO) through a peptide linker of 9 amino acids (ASGGGGSGT) generating a chimera protein of 107,056 Da. The catalytic properties (e.g., kinetic parameters kcat and Km), stability, fluorescence and circular dichroism spectra showed that the so-obtained chimera enzyme FDH-PAMO retains the same functional and conformational properties of the two parental enzymes. Furthermore, SEC chromatographic analysis indicated that, in solution (pH 7.4), FDH-PAMO assembles to tetramers (up to 4.2 %) due to the propensity of FDH and PAMO to form dimers, up to 96.6 % and 6.2 %, respectively. This study provides valuable insights into the structural stability of a thermostable protein (e.g., PAMO) after increasing its size through fusion with another similarly sized thermostable protein (e.g., FDH).


Assuntos
Formiato Desidrogenases , Oxigenases de Função Mista , Oxigenases de Função Mista/química , NADP/metabolismo , Formiato Desidrogenases/química , NADPH Desidrogenase , Pseudomonas/genética , Pseudomonas/metabolismo
20.
Redox Biol ; 67: 102867, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37688977

RESUMO

Increasing evidence shows that metabolic factors are involved in the pathological process of osteoarthritis (OA). Lactate has been shown to contribute to the onset and progression of diseases. While whether lactate is involved in the pathogenesis of OA through impaired chondrocyte function and its mechanism remains unclear. This study confirmed that serum lactate levels were elevated in OA patients compared to healthy controls and were positively correlated with synovial fluid lactate levels, which were also correlated with fasting blood glucose, high-density lipoprotein, triglyceride. Lactate treatment could up-regulate expressions of the lactate receptor hydroxy-carboxylic acid receptor 1 (HCAR1) and lactate transporters in human chondrocytes. We demonstrated the dual role of lactate, which as a metabolite increased NADPH levels by shunting glucose metabolism to the pentose phosphate pathway, and as a signaling molecule up-regulated NADPH oxidase 4 (NOX4) via activating PI3K/Akt signaling pathway through receptor HCAR1. Particularly, lactate could promote reactive oxygen species (ROS) generation and chondrocyte damage, which was attenuated by pre-treatment with the NOX4 inhibitor GLX351322. We also confirmed that lactate could increase expression of catabolic enzymes (MMP-3/13, ADAMTS-4), reduce the synthesis of type II collagen, promote expression of inflammatory cytokines (IL-6, CCL-3/4), and induce cellular hypertrophy and aging in chondrocytes. Subsequently, we showed that chondrocyte damage mediated by lactate could be reversed by pre-treatment with N-Acetyl-l-cysteine (NAC, ROS scavenger). Finally, we further verified in vivo that intra-articular injection of lactate in Sprague Dawley (SD) rat models could damage cartilage and exacerbate the progression of OA models that could be countered by the NOX4 inhibitor GLX351322. Our study highlights the involvement of lactate as a metabolic factor in the OA process, providing a theoretical basis for potential metabolic therapies of OA in the future.


Assuntos
Condrócitos , Osteoartrite , Ratos , Animais , Humanos , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Condrócitos/metabolismo , NADP/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ácido Láctico/metabolismo , Células Cultivadas , Ratos Sprague-Dawley , Osteoartrite/genética , Osteoartrite/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...