RESUMO
Reactive oxygen species (ROS) are a contributing factor to impaired function and pathology after spinal cord injury (SCI). The NADPH oxidase (NOX) enzyme is a key source of ROS; there are several NOX family members, including NOX2 and NOX4, that may play a role in ROS production after SCI. Previously, we showed that a temporary inhibition of NOX2 by intrathecal administration of gp91ds-tat immediately after injury improved recovery in a mouse SCI model. However, chronic inflammation was not affected by this single acute treatment, and other NOX family members were not assessed. Therefore, we aimed to explore the effect of genetic knockout (KO) of NOX2 or acute inhibition of NOX4 with GKT137831. A moderate SCI contusion injury was performed in 3 month old NOX2 KO and wild-type (WT) mice, who received no treatment or GKT137831/vehicle 30 minutes post-injury. Motor function was assessed using the Basso Mouse Scale (BMS), followed by evaluation of inflammation and oxidative stress markers. NOX2 KO mice, but not GKT137831 treated mice, demonstrated significantly improved BMS scores at 7, 14, and 28 days post injury (DPI) in comparison to WT mice. However, both NOX2 KO and GKT137831 significantly reduced ROS production and oxidative stress markers. Furthermore, a shift in microglial activation toward a more neuroprotective, anti-inflammatory state was observed in KO mice at 7 DPI and a reduction of microglial markers at 28 days. While acute alterations in inflammation were noted with GKT137831 administration, this was not sustained through 28 days. In vitro analysis also showed that while GKT137831 reduced ROS production by microglia, it did not translate to changes in pro-inflammatory marker expression within these cells. These data demonstrate that NOX2 and NOX4 play a role in post-injury ROS, but a single dose of NOX4 inhibitor fails to enhance long-term recovery.
Assuntos
Roedores , Traumatismos da Medula Espinal , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidase 2/metabolismo , NADPH Oxidases/metabolismo , Traumatismos da Medula Espinal/patologia , Camundongos Knockout , NADPH Oxidase 4/metabolismoRESUMO
BACKGROUND: Excessive oxidative stress plays a critical role in the progression of various diseases, including intervertebral disk degeneration (IVDD). Recent studies have found that anemonin (ANE) possesses antioxidant and anti-inflammatory effects. However, the role of ANE in IVDD is still unclear. Therefore, this study investigated the effect and mechanism of ANE on H2O2 induced degeneration of nucleus pulposus cells (NPCs). METHODS: NPCs were pretreated with ANE, and then treated with H2O2. NOX4 was upregulated by transfection of pcDNA-NOX4 into NPCs. Cytotoxicity was detected by MTT, oxidative stress-related indicators and inflammatory factors were measured by ELISA, mRNA expression was assessed by RT-PCR, and protein expression was tested by western blot. RESULTS: ANE attenuated H2O2-induced inhibition of NPCs activity. H2O2 enhanced oxidative stress, namely, increased ROS and MDA levels and decreased SOD level. However, these were suppressed and pretreated by ANE. ANE treatment repressed the expression of inflammatory factors (IL-6, IL-1ß and TNF-α) in H2O2-induced NPCs. ANE treatment also prevented the degradation of extracellular matrix induced by H2O2, showing the downregulation of MMP-3, 13 and ADAMTS-4, 5 and the upregulation of collagen II. NOX4 is a key factor regulating oxidative stress. Our study confirmed that ANE could restrain NOX4 and p-NF-κB. In addition, overexpression of NOX4 counteracted the antioxidant and anti-inflammatory activities of ANE in H2O2-induced NPCs, and the inhibition of the degradation of extracellular matrix induced by ANE was also reversed by overexpression of NOX4. CONCLUSION: ANE repressed oxidative stress, inflammation and extracellular matrix degradation in H2O2-induced NPCs by inhibiting NOX4/NF-κB pathway. Our study indicated that ANE might be a candidate drug for the treatment of IVDD.
Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Humanos , NF-kappa B/metabolismo , Peróxido de Hidrogênio/farmacologia , Núcleo Pulposo/metabolismo , Antioxidantes/farmacologia , Transdução de Sinais , Estresse Oxidativo , Inflamação/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Anti-Inflamatórios/farmacologia , Matriz Extracelular/metabolismo , NADPH Oxidase 4/metabolismoRESUMO
BACKGROUND: The incidence of heart failure (HF) presents an escalating trend annually, second only to cancer. Few literatures are available regarding on the role of paraoxonase 2 (PON2) in HF so far despite the protective role of PON2 in cardiovascular diseases. METHODS: PON2 expression in AC16 cells was examined with reverse transcriptase-quantitative polymerase chain reaction and western blot following angiotensin II (Ang II) challenging. After PON2 elevation, 2, 7-dichlorofluorescein diacetate assay estimated reactive oxygen species content, related kits appraised oxidative stress, enzyme-linked immunosorbent assay evaluated inflammatory levels, and Western blot was applied to the analysis of apoptosis levels. Research on cytoskeleton was conducted by immunofluorescence (IF), and Western blot analysis of the expressions of hypertrophy-related proteins was performed. BioGRID and GeneMania databases were used to analyze the relationship between PON2 and Calnexin (CANX), which was corroborated by co-immunoprecipitation experiment. Subsequently, PON2 and CANX were simultaneously overexpressed in AC16 cells induced by Ang II to further figure out the mechanism. RESULTS: PON2 expression was depleted in Ang II-induced AC16 cells. PON2 might mediate CANX/NOX4 signaling to inhibit oxidation, inflammatory, hypertrophy, and damage in Ang II-induced AC16 cells. CONCLUSION: PON2 can ease Ang II-induced cardiomyocyte injury via targeting CANX/NOX4 signaling.
Assuntos
Angiotensina II , Arildialquilfosfatase , Calnexina , Miócitos Cardíacos , NADPH Oxidase 4 , Humanos , Angiotensina II/farmacologia , Arildialquilfosfatase/metabolismo , Calnexina/metabolismo , Hipertrofia/metabolismo , Miócitos Cardíacos/metabolismo , NADPH Oxidase 4/metabolismo , Transdução de SinaisRESUMO
Excess iron accumulation is a risk factor for osteopenia and osteoporosis, and ferroptosis is becoming well understood as iron-dependent form of cell death resulting from lipid peroxide accumulation. However, any pathological impacts of ferroptosis on osteoporosis remain unknown. Here, we show that ferroptosis is involved in excess-iron-induced bone loss and demonstrate that osteoporotic mice and humans have elevated skeletal accumulation of the NADPH oxidase 4 (NOX4) enzyme. Mechanistically, we found that the NOX4 locus contains iron-response element-like (IRE-like) sequences that are normally bound (and repressed) by the iron regulatory protein 1 (IRP1) protein. Binding with iron induces dissociation of IRP1 from the IRE-like sequences and thereby activates NOX4 transcription. Elevated NOX4 increases lipid peroxide accumulation and causes obvious dysregulation of mitochondrial morphology and function in osteoblasts. Excitingly, the osteoporotic bone loss which we initially observed in an excessive-iron accumulating mouse line (Hepc1-/-) was blocked upon treatment with the ferroptosis-inhibitor ferrostatin-1 (Ferr-1) and with the iron chelator deferoxamine (DFO), suggesting a potential therapeutic strategy for preventing osteoporotic bone loss based on disruption of ferroptosis.
Assuntos
Ferroptose , Sobrecarga de Ferro , Osteoporose , Humanos , Camundongos , Animais , NADPH Oxidase 4/metabolismo , Peróxidos Lipídicos , Ferro/metabolismo , Osteoblastos/metabolismoRESUMO
Previously, we showed wild-type (WT) and mutant (mt) forms of p53 differentially regulate ROS generation by NADPH oxidase-4 (NOX4). We found that WT-p53 suppresses TGF-ß-induced NOX4, ROS production, and cell migration, whereas tumor-associated mt-p53 proteins enhance NOX4 expression and cell migration by TGF-ß/SMAD3-dependent mechanisms. In this study, we investigated the role of mutant p53-induced NOX4 on the cancer cell secretome and the effects NOX4 signaling have on the tumor microenvironment (TME). We found conditioned media collected from H1299 lung epithelial cells stably expressing either mutant p53-R248Q or R273H promotes the migration and invasion of naïve H1299 cells and chemotactic recruitment of THP-1 monocytes. These effects were diminished with conditioned media from cells co-transfected with dominant negative NOX4 (P437H). We utilized immunoblot-based cytokine array analysis to identify factors in mutant p53 H1299 cell conditioned media that promote cell migration and invasion. We found CCL5 was significantly reduced in conditioned media from H1299 cells co-expressing p53-R248Q and dominant negative NOX4. Moreover, neutralization of CCL5 reduced autocrine-mediated H1299 cell mobility. Furthermore, CCL5 and TGF-beta from M2-polarized macrophages have a significant role in crosstalk and H1299 cell migration and invasion. Collectively, our findings provide further insight into NOX4-based communication in the tumor microenvironment and its potential as a therapeutic target affecting metastatic disease progression.
Assuntos
Secretoma , Proteína Supressora de Tumor p53 , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/farmacologia , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , HumanosRESUMO
Capacitation is a series of physiological, biochemical, and metabolic changes experienced by mammalian spermatozoa. These changes enable them to fertilize eggs. The capacitation prepares the spermatozoa to undergo the acrosomal reaction and hyperactivated motility. Several mechanisms that regulate capacitation are known, although they have not been fully disclosed; among them, reactive oxygen species (ROS) play an essential role in the normal development of capacitation. NADPH oxidases (NOXs) are a family of enzymes responsible for ROS production. Although their presence in mammalian sperm is known, little is known about their participation in sperm physiology. This work aimed to identify the NOXs related to the production of ROS in guinea pig and mouse spermatozoa and define their participation in capacitation, acrosomal reaction, and motility. Additionally, a mechanism for NOXs' activation during capacitation was established. The results show that guinea pig and mouse spermatozoa express NOX2 and NOX4, which initiate ROS production during capacitation. NOXs inhibition by VAS2870 led to an early increase in the capacitation and intracellular concentration of Ca2+ in such a way that the spermatozoa also presented an early acrosome reaction. In addition, the inhibition of NOX2 and NOX4 reduced progressive motility and hyperactive motility. NOX2 and NOX4 were found to interact with each other prior to capacitation. This interaction was interrupted during capacitation and correlated with the increase in ROS. Interestingly, the association between NOX2-NOX4 and their activation depends on calpain activation, since the inhibition of this Ca2+-dependent protease prevents NOX2-NOX4 from dissociating and ROS production. The results indicate that NOX2 and NOX4 could be the most important ROS producers during guinea pig and mouse sperm capacitation and that their activation depends on calpain.
Assuntos
Calpaína , Sêmen , Masculino , Animais , Cobaias , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Calpaína/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , NADPH Oxidases/metabolismo , Mamíferos/metabolismo , NADPH Oxidase 4/metabolismoRESUMO
Reactive oxygen species (ROS) represent a group of high reactive molecules with dualistic natures since they can induce cytotoxicity or regulate cellular physiology. Among the ROS, the superoxide anion radical (O2·-) is a key redox signaling molecule prominently generated by the NADPH oxidase (NOX) enzyme family and by the mitochondrial electron transport chain. Notably, altered redox balance and deregulated redox signaling are recognized hallmarks of cancer and are involved in malignant progression and resistance to drugs treatment. Since oxidative stress and metabolism of cancer cells are strictly intertwined, in this review, we focus on the emerging roles of NOX enzymes as important modulators of metabolic reprogramming in cancer. The NOX family includes seven isoforms with different activation mechanisms, widely expressed in several tissues. In particular, we dissect the contribute of NOX1, NOX2, and NOX4 enzymes in the modulation of cellular metabolism and highlight their potential role as a new therapeutic target for tumor metabolism rewiring.
Assuntos
NADPH Oxidases , Superóxidos , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo , Estresse Oxidativo , Oxirredução , NADPH Oxidase 4/metabolismoRESUMO
Cardiovascular disease (CVD) is the leading cause of death worldwide, in both developed and developing countries. According to the WHO report, the morbidity and mortality caused by CVD will continue to rise with the estimation of death going up to 22.2 million in 2030. NADPH oxidase (NOX)-derived reactive oxygen species (ROS) production induces endothelial nitric oxide synthase (eNOS) uncoupling and mitochondrial dysfunction, resulting in sustained oxidative stress and the development of cardiovascular diseases. Seven distinct members of the family have been identified of which four (namely, NOX1, 2, 4 and 5) may have cardiovascular functions. Currently, the treatment and management plan for patients with CVDs mainly depends on the drugs. However, prolonged use of prescribed drugs may cause adverse drug reactions. Therefore, it is crucial to find alternative treatment options with lesser adverse effects. Natural products have been gaining interest as complementary therapy for CVDs over the past decade due to their wide range of medicinal properties, including antioxidants. These might be due to their potent active ingredients, such as flavonoid and phenolic compounds. Numerous natural compounds have been demonstrated to have advantageous effects on cardiovascular disease via NADPH cascade. This review highlights the potential of natural products targeting NOX-derived ROS generation in treating CVDs. Emphasis is put on the activation of the oxidases, including upstream or downstream signalling events.
Assuntos
Doenças Cardiovasculares , NADPH Oxidases , Humanos , NADPH Oxidases/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Oxirredutases/metabolismo , Estresse Oxidativo , NADPH Oxidase 4/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismoRESUMO
Significance: Reactive oxygen species (ROS) play a key role in the pathogenesis of cardiac remodeling and the subsequent progression to heart failure (HF). Nicotinamide adenosine dinucleotide phosphate (NADPH) oxidases (NOXs) are one of the major sources of ROS and are expressed in different heart cell types, including cardiomyocytes, endothelial cells, fibroblasts, and inflammatory cells. Recent Advances: NOX-derived ROS are usually produced in a regulated and spatially confined fashion and typically linked to specific signaling. The two main cardiac isoforms, namely nicotinamide adenine dinucleotide phosphate oxidase isoform 2 (NOX2) and nicotinamide adenine dinucleotide phosphate oxidase isoform 4 (NOX4), possess different biochemical and (patho)physiological properties and exert distinct effects on the cardiac phenotype in many settings. Recent work has defined important cell-specific effects of NOX2 that contribute to pathological cardiac remodeling and dysfunction. NOX4, on the other hand, may exert protective effects by stimulating adaptive stress responses, with recent data showing that NOX4-mediated signaling regulates transcription and metabolism in the heart. Critical Issues: The inhibition of NOX2 appears to be a very promising therapeutic target to ameliorate pathological cardiac remodeling. If the beneficial effects of NOX4 can be enhanced, this might be a unique approach to boosting adaptive responses and thereby impact cell survival, activation, contractility, and growth. Future Directions: Increasing knowledge regarding the intricacies of NOX-mediated signaling may yield tractable therapeutic targets, in contrast to the non-specific targeting of oxidative stress. Antioxid. Redox Signal. 38, 371-387.
Assuntos
Nucleotídeos de Adenina , NADPH Oxidases , Humanos , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidases/metabolismo , Nucleotídeos de Adenina/metabolismo , NADP/metabolismo , Niacinamida , Oxirredutases/metabolismo , Remodelação Ventricular , Células Endoteliais/metabolismo , Estresse Oxidativo/genética , NADPH Oxidase 4/metabolismo , Isoformas de Proteínas/metabolismo , Fosfatos , Adenosina/metabolismoRESUMO
Diabetic retinopathy is one of the common microvascular complications of diabetes, and it is the main cause of vision loss among working-age people. This study interpreted the roles of miR-99a-5p in DR patients and human retinal microvascular endothelial cell (hRMECs) injury induced by high glucose. The expression of miR-99a-5p was detected in patients with NDR, NPDR, and PDR. The indictive impacts of miR-99a-5p were tested by the ROC curve, and the link between miR-99a-5p and clinical information was verified by the Pearson test. HG was used to instruct cell models. The CCK-8 and transwell methods were performed to detect the proliferative and migrated cells. The targeted relationship was explained by luciferase activity. The content of miR-99a-5p was gradually lessened in NPDR and PDR patients. MiR-99a-5p might differentiate DR patients from NDR patients and PDR patients from NPDR patients. The interconnection between miR-99a-5p and clinical factors was endorsed in all DR patients. Overexpression of miR-99a-5p assuaged the abnormality of cell migration and proliferation of hRMECs triggered by HG. NOX4 was a downstream signaling component of miR-99a-5p. In conclusion, MiR-99a-5p protected hRMECs against HG damage, and the miR-99a-5p might be a novel target for diagnosis of DR.
Assuntos
Retinopatia Diabética , MicroRNAs , Doenças Retinianas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Transdução de Sinais , Proliferação de Células/genética , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismoRESUMO
The increasing abundance of fine particulate matter (PM2.5) in the environment has increased susceptibility to acute exacerbation of COPD (AECOPD). During PM2.5 exposure, excessive reactive oxygen species (ROS) production triggers a redox imbalance, which contributes to damage to organelles and disruption of homeostasis. At present, there are limited data on whether NOX4/Nrf2 redox imbalance increases susceptibility to acute exacerbation of COPD (AECOPD), and the underlying mechanism is unclear. Therefore, the current study was aimed to evaluate the role of NOX4/Nrf2 redox balance on AECOPD induced by PM2.5-CS-exposure. Here, we report that PM2.5 exacerbates cytotoxicity by enhancing NOX4/Nrf2 redox imbalance-mediated mitophagy. First, exposure to a low-dose of PM2.5 (200 µg/ml) significantly exacerbated oxidative stress and mitochondrial damage by increasing the ROS overproduction, enhancing the excessive NOX4/Nrf2 redox imbalance, decreasing the mitochondrial membrane potential (MMP), and enhancing the mitochondrial fragmentation that were caused by a low-dose of CSE (2.5%). Second, coexposure to PM2.5 and CSE (PM2.5-CSE) induced excessive mitophagy. Third, PM2.5 exacerbated CS-induced COPD, as shown by excessive inflammatory cell infiltration, inflammatory cytokine production and mucus hypersecretion, goblet cell hyperplasia, NOX4/Nrf2 redox imbalance, and mitophagy, these effects triggered excessive ROS production and mitochondrial damage in mice. Mechanistically, PM2.5-CS-induced excessive levels of mitophagy by triggering redox imbalance, leading to greater cytotoxicity and AECOPD; however, reestablishing the NOX4/Nrf2 redox balance via NOX4 blockade or mitochondria-specific ROS inhibitor treatment alleviated this cytotoxicity and ameliorated AECOPD. PM2.5 may exacerbate NOX4/Nrf2 redox imbalance and subsequently enhance mitophagy by increasing the ROS and mito-ROS levels, thereby increasing susceptibility to AECOPD.
Assuntos
Fator 2 Relacionado a NF-E2 , Doença Pulmonar Obstrutiva Crônica , Camundongos , Animais , Espécies Reativas de Oxigênio/farmacologia , Mitofagia , Doença Pulmonar Obstrutiva Crônica/etiologia , Material Particulado/toxicidade , Oxirredução , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismoRESUMO
Human embryonic stem cell (hES)-derived mesenchymal stem cells (-MSCs) are an unlimited source of MSCs. The hair growth-promoting effects of diverse MSCs have been reported, but not that of hES-MSCs. In the present study, we investigated the hair growth-promoting effects of hES-MSCs and their underlying mechanisms. hES-MSCs or conditioned medium of hES-MSCs exhibited hair-growth effects, which increased the length of mouse vibrissae and human hair follicles. hES-MSCs accelerated the telogen-to-anagen transition in C3H mice and were more effective than adipose-derived stem cells. We further examined whether hypoxia could enhance the hair-growth promoting effects of hES-MSCs. The injection of hES-MSCs or conditioned medium (Hyp-CM) cultured under hypoxia (2% O2) enhanced the telogen-to-anagen transition in C3H mice. Additionally, Hyp-CM increased the length of mouse vibrissae, human hair follicles, and the proliferation of human dermal papilla and outer root sheath cells. Moreover, fibroblast growth factor 7, interleukin 12B, and teratocarcinoma-derived growth factor 1 were upregulated under hypoxia, and the co-treatment with these three proteins increased the hair length and induced telogen-to-anagen transition. Hypoxia increased reactive oxygen species (ROS) production, and ROS scavenging attenuated the secretion of growth factors. NADPH oxidase 4 was primarily expressed in hES-MSCs and generated ROS under hypoxia. Collectively, our results suggest that hES-MSCs exhibit hair-growth effects, which is enhanced by hypoxia.
Assuntos
Folículo Piloso , Células-Tronco Mesenquimais , Humanos , Animais , Camundongos , NADPH Oxidase 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Camundongos Endogâmicos C3H , Proliferação de Células , Folículo Piloso/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Embrionárias/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Hipóxia/metabolismo , Células CultivadasRESUMO
Differentiation of fibroblasts to myofibroblasts is governed by the transforming growth factor beta (TGF-ß) through a mechanism involving redox signaling and generation of reactive oxygen species (ROS). Myofibroblasts synthesize proteins of the extracellular matrix (ECM) and display a contractile phenotype. Myofibroblasts are predominant contributors of wound healing and several pathological states, including fibrotic diseases and cancer. Inhibition of the ROS-generating enzyme NADPH oxidase 4 (NOX4) has been proposed to mitigate fibroblast to myofibroblast differentiation and to offer a therapeutic option for the treatment of fibrotic diseases. In this study, we addressed the role of NOX4 in physiological wound healing and in TGF-ß-induced myofibroblast differentiation. We explored the phenotypic changes induced by TGF-ß in primary skin fibroblasts isolated from Nox4-deficient mice by immunofluorescence, Western blotting and RNA sequencing. Mice deficient for Cyba, the gene coding for p22phox, a key subunit of NOX4 were used for confirmatory experiments as well as human primary skin fibroblasts. In vivo, the wound healing was similar in wild-type and Nox4-deficient mice. In vitro, despite a strong upregulation following TGF-ß treatment, Nox4 did not influence skin myofibroblast differentiation although a putative NOX4 inhibitor GKT137831 and a flavoprotein inhibitor diphenylene iodonium mitigated this mechanism. Transcriptomic analysis revealed upregulation of the mitochondrial protein Ucp2 and the stress-response protein Hddc3 in Nox4-deficient fibroblasts, which had however no impact on fibroblast bioenergetics. Altogether, we provide extensive evidence that NOX4 is dispensable for wound healing and skin fibroblast to myofibroblast differentiation, and suggest that another H2O2-generating flavoprotein drives this mechanism.
Assuntos
Peróxido de Hidrogênio , Miofibroblastos , Animais , Humanos , Camundongos , Diferenciação Celular , Fibroblastos/metabolismo , Fibrose , Peróxido de Hidrogênio/metabolismo , Miofibroblastos/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1 , CicatrizaçãoRESUMO
Vascular endothelial dysfunction plays a central role in the most dreadful human diseases, including stroke, tumor metastasis, and the coronavirus disease 2019 (COVID-19). Strong evidence suggests that angiotensin II (Ang II)-induced mitochondrial dysfunction is essential for endothelial dysfunction pathogenesis. However, the precise molecular mechanisms remain obscure. Here, polymerase-interacting protein 2 (Poldip 2) was found in the endothelial mitochondrial matrix and no effects on Poldip 2 and NADPH oxidase 4 (NOX 4) expression treated by Ang II. Interestingly, we first found that Ang II-induced NOX 4 binds with Poldip 2 was dependent on cyclophilin D (CypD). CypD knockdown (KD) significantly inhibited the binding of NOX 4 to Poldip 2, and mitochondrial ROS generation in human umbilical vein endothelial cells (HUVECs). Similar results were also found in cyclosporin A (CsA) treated HUVECs. Our previous study suggested a crosstalk between extracellular regulated protein kinase (ERK) phosphorylation and CypD expression, and gallic acid (GA) inhibited mitochondrial dysfunction in neurons depending on regulating the ERK-CypD axis. Here, we confirmed that GA inhibited Ang II-induced NOX 4 activation and mitochondrial dysfunction via ERK/CypD/NOX 4/Poldip 2 pathway, which provide novel mechanistic insight into CypD act as a key regulator of the NOX 4/Poldip 2 axis in Ang II-induced endothelial mitochondrial dysfunction and GA might be beneficial in the treatment of wide variety of diseases, such as COVID-19, which is worthy further research.
Assuntos
COVID-19 , Doenças Vasculares , Humanos , NADPH Oxidase 4/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ciclofilina D/metabolismo , Ciclofilina D/farmacologia , NADPH Oxidases/metabolismo , Estresse Oxidativo , Ácido Gálico/farmacologia , COVID-19/metabolismo , Mitocôndrias , Células Endoteliais da Veia Umbilical HumanaRESUMO
Vascular endothelial dysfunction plays a central role in the most dreadful human diseases, including stroke, tumor metastasis, and the coronavirus disease 2019 (COVID-19). Strong evidence suggests that angiotensin II (Ang II)-induced mitochondrial dysfunction is essential for endothelial dysfunction pathogenesis. However, the precise molecular mechanisms remain obscure. Here, polymerase-interacting protein 2 (Poldip 2) was found in the endothelial mitochondrial matrix and no effects on Poldip 2 and NADPH oxidase 4 (NOX 4) expression treated by Ang II. Interestingly, we first found that Ang II-induced NOX 4 binds with Poldip 2 was dependent on cyclophilin D (CypD). CypD knockdown (KD) significantly inhibited the binding of NOX 4 to Poldip 2, and mitochondrial ROS generation in human umbilical vein endothelial cells (HUVECs). Similar results were also found in cyclosporin A (CsA) treated HUVECs. Our previous study suggested a crosstalk between extracellular regulated protein kinase (ERK) phosphorylation and CypD expression, and gallic acid (GA) inhibited mitochondrial dysfunction in neurons depending on regulating the ERK-CypD axis. Here, we confirmed that GA inhibited Ang II-induced NOX 4 activation and mitochondrial dysfunction via ERK/CypD/NOX 4/Poldip 2 pathway, which provide novel mechanistic insight into CypD act as a key regulator of the NOX 4/Poldip 2 axis in Ang II-induced endothelial mitochondrial dysfunction and GA might be beneficial in the treatment of wide variety of diseases, such as COVID-19, which is worthy further research.
Assuntos
COVID-19 , Doenças Vasculares , Humanos , NADPH Oxidase 4/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ciclofilina D/metabolismo , Ciclofilina D/farmacologia , NADPH Oxidases/metabolismo , Estresse Oxidativo , Ácido Gálico/farmacologia , COVID-19/metabolismo , Mitocôndrias , Células Endoteliais da Veia Umbilical HumanaRESUMO
NADPH oxidase 4 (Nox4) is the main source of reactive oxygen species, which promote osteoclast formation and lead to bone loss, thereby causing osteoporosis. However, the role of Nox4 in osteoblasts during early development remains unclear. We used zebrafish to study the effect of Nox4 deletion on bone mineralization in early development. nox4-/- zebrafish showed decreased bone mineralization during early development and significantly reduced numbers of osteoblasts, osteoclasts, and chondrocytes. Transcriptome sequencing showed that the TGF-ß signaling pathway was significantly disrupted in nox4-/- zebrafish. Inhibiting TGF-ß signaling rescued the abnormal bone development caused by nox4 deletion and increased the number of osteoblasts. We used Saos-2 human osteosarcoma cells to confirm our results, which clarified the role of Nox4 in human osteoblasts. Our results demonstrate the mechanism of reduced bone mineralization in early development and provide a basis for the clinical treatment of osteoporosis.
Assuntos
Osteoporose , Fator de Crescimento Transformador beta , Animais , Humanos , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Osteoblastos/metabolismo , Transdução de Sinais , Osteoporose/metabolismoRESUMO
OBJECTIVE AND BACKGROUND: Gingival overgrowth (GO) is a common side effect of some drugs such as anticonvulsants, immunosuppressant, and calcium channel blockers. Among them, the antiepileptic agent phenytoin is the most common agent related to this condition due to its high incidence. Transforming growth factor ß (TGFß) importantly contributes to the pathogenesis of GO. Connective tissue growth factor (CTGF or CCN2) is a key mediator of tissue fibrosis and is positively associated with the degree of fibrosis in GO. We previously showed that Src, c-jun N-terminal kinase, and Smad3 mediate TGFß1-induced CCN2 protein expression in human gingival fibroblasts (HGFs). This study investigates whether phenytoin can induce CCN2 synthesis through activated latent TGFß in HGFs and its mechanisms. METHODS: CCN2 synthesis, latent TGFß1 activation, and cellular reactive oxygen species (ROS) generation in HGFs were studied using western blot analysis, a TGFß1 Emax® ImmunoAssay System, and 2',7'-dichlorodihydrofluorescein diacetate (an oxidation-sensitive fluorescent probe), respectively. RESULTS: Phenytoin significantly stimulated CCN2 synthesis, latent TGFß1 activation, and ROS generation in HGFs. Addition of an TGFß-neutralizing antibody, TGFß receptor kinase inhibitor SB431542, and Smad3 inhibitor SIS3 completely inhibited phenytoin-induced CCN2 synthesis. General antioxidant N-acetylcysteine, NADPH oxidase (NOX) inhibitor diphenylene iodonium, and specific NOX4 inhibitor plumbagin almost completely suppressed phenytoin-induced total cellular ROS and latent TGFß1 activation. Curcumin dose-dependently decreased phenytoin-induced TGFß1 activation and CCN2 synthesis in HGFs. CONCLUSIONS: Our findings indicated that NOX4-derived ROS play pivotal roles in phenytoin-induced latent TGFß1 activation. Molecular targeting the phenytoin/NOX4/ROS/TGFß1 pathway may provide promising strategies for the prevention and treatment of GO. Curcumin-inhibited phenytoin-induced CCN2 synthesis is caused by the suppression of latent TGFß1 activation.
Assuntos
Curcumina , Crescimento Excessivo da Gengiva , Humanos , Gengiva/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Curcumina/farmacologia , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/farmacologia , Fenitoína/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas , Fibroblastos , Fator de Crescimento Transformador beta1/metabolismo , Crescimento Excessivo da Gengiva/induzido quimicamente , FibroseRESUMO
BACKGROUND: Baicalin is a generally available flavonoid with potent biological activity. The present study aimed to assess the underlying mechanism of baicalin in treatment of atherosclerosis (AS) with the help of network pharmacology, molecular docking and experimental validation. METHODS: The target genes of baicalin and AS were identified from public databases, and the overlapping results were considered to be baicalin-AS targets. Core target genes of baicalin were obtained through the PPI network and validated by a clinical microarray dataset (GSE132651). Human aortic endothelial cells (HAECs) were treated with Lipopolysaccharide (LPS) to construct an endothelial injury model. The expression of NOX4 was examined by real-time qPCR and western blot. Flow cytometry was used to detect intracellular levels of reactive oxygen species (ROS). Furthermore, HAECs were transfected with NOX4-specific siRNA and then co-stimulated with baicalin and LPS to investigate whether NOX4 was involved in the anti-oxidative stress effects of baicalin. RESULTS: In this study, baicalin had 45 biological targets against AS. Functional enrichment analysis demonstrated that most targets were involved in oxidative stress. Using the CytoHubba plug-in, we obtained the top 10 genes in the PPI network ranked by the EPC algorithm. Molecular docking and microarray dataset validation indicated that NOX4 may be an essential target of baicalin, and its expression was significantly suppressed in AS samples compared to controls. In endothelial injury model, intervention of HAECs with baicalin increased the expression levels of NOX4 and NOS3 (eNOS), and decreased LPS-induced ROS generation. After inhibition of NOX4, the anti-ROS-generating effect of baicalin was abolished. CONCLUSION: Collectively, we combined network pharmacology and endothelial injury models to investigate the anti-AS mechanism of baicalin. The results demonstrate that baicalin may exert anti-oxidative stress effects by targeting NOX4, providing new mechanisms and insights to baicalin for the treatment of AS.
Assuntos
Aterosclerose , Células Endoteliais , Aterosclerose/tratamento farmacológico , Células Cultivadas , Flavonoides/farmacologia , Humanos , Lipopolissacarídeos , Simulação de Acoplamento Molecular , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/farmacologia , Farmacologia em Rede , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Espécies Reativas de Oxigênio/metabolismoRESUMO
Background: Activation of endothelial cells by inflammatory mediators secreted by CD4+ T lymphocytes plays a key role in the inflammatory response. Exosomes represent a specific class of signaling cues transporting a mixture of proteins, nucleic acids, and other biomolecules. So far, the impact of exosomes shed by T lymphocytes on cardiac endothelial cells remained unknown. Methods and Results: Supernatants of CD4+ T cells activated with anti-CD3/CD28 beads were used to isolate exosomes by differential centrifugation. Activation of CD4+ T cells enhanced exosome production, and these exosomes (CD4-exosomes) induced oxidative stress in cardiac microvascular endothelial cells (cMVECs) without affecting their adhesive properties. Furthermore, CD4-exosome treatment aggravated the generation of mitochondrial reactive oxygen species (ROS), reduced nitric oxide (NO) levels, and enhanced the proliferation of cMVECs. These effects were reversed by adding the antioxidant apocynin. On the molecular level, CD4-exosomes increased NOX2, NOX4, ERK1/2, and MEK1/2 in cMVECs, and ERK1/2 and MEK1/2 proteins were found in CD4-exosomes. Inhibition of either MEK/ERK with U0126 or ERK with FR180204 successfully protected cMVECs from increased ROS levels and reduced NO bioavailability. Treatment with NOX1/4 inhibitor GKT136901 effectively blocked excessive ROS and superoxide production, reversed impaired NO levels, and reversed enhanced cMVEC proliferation triggered by CD4-exosomes. The siRNA-mediated silencing of Nox4 in cMVECs confirmed the key role of NOX4 in CD4-exosome-induced oxidative stress. To address the properties of exosomes under inflammatory conditions, we used the mouse model of CD4+ T cell-dependent experimental autoimmune myocarditis. In contrast to exosomes obtained from control hearts, exosomes obtained from inflamed hearts upregulated NOX2, NOX4, ERK1/2, MEK1/2, increased ROS and superoxide levels, and reduced NO bioavailability in treated cMVECs, and these changes were reversed by apocynin. Conclusion: Our results point to exosomes as a novel class of bioactive factors secreted by CD4+ T cells in immune response and represent potential important triggers of NOX4-dependent endothelial dysfunction. Neutralization of the prooxidative aspect of CD4-exosomes could open perspectives for the development of new therapeutic strategies in inflammatory cardiovascular diseases.
Assuntos
Células Endoteliais , Exossomos , Acetofenonas , Animais , Antioxidantes/farmacologia , Antígenos CD28/metabolismo , Células Endoteliais/metabolismo , Exossomos/metabolismo , Mediadores da Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NADPH Oxidase 4/metabolismo , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo , Linfócitos T/metabolismoRESUMO
The loss of vascular integrity is a cardinal feature of acute inflammatory responses evoked by activation of the TLR4 inflammatory cascade. Utilizing in vitro and in vivo models of inflammatory lung injury, we explored TLR4-mediated dysregulated signaling that results in the loss of endothelial cell (EC) barrier integrity and vascular permeability, focusing on Dock1 and Elmo1 complexes that are intimately involved in regulation of Rac1 GTPase activity, a well recognized modulator of vascular integrity. Marked reductions in Dock1 and Elmo1 expression was observed in lung tissues (porcine, rat, mouse) exposed to TLR4 ligand-mediated acute inflammatory lung injury (LPS, eNAMPT) in combination with injurious mechanical ventilation. Lung tissue levels of Dock1 and Elmo1 were preserved in animals receiving an eNAMPT-neutralizing mAb in conjunction with highly significant decreases in alveolar edema and lung injury severity, consistent with Dock1/Elmo1 as pathologic TLR4 targets directly involved in inflammation-mediated loss of vascular barrier integrity. In vitro studies determined that pharmacologic inhibition of Dock1-mediated activation of Rac1 (TBOPP) significantly exacerbated TLR4 agonist-induced EC barrier dysfunction (LPS, eNAMPT) and attenuated increases in EC barrier integrity elicited by barrier-enhancing ligands of the S1P1 receptor (sphingosine-1-phosphate, Tysiponate). The EC barrier-disrupting influence of Dock1 inhibition on S1PR1 barrier regulation occurred in concert with: 1) suppressed formation of EC barrier-enhancing lamellipodia, 2) altered nmMLCK-mediated MLC2 phosphorylation, and 3) upregulation of NOX4 expression and increased ROS. These studies indicate that Dock1 is essential for maintaining EC junctional integrity and is a critical target in TLR4-mediated inflammatory lung injury.