Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.221
Filtrar
1.
Kardiologiia ; 60(10): 1229, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33228505

RESUMO

Aim      To study association of single-nucleotide polymorphisms rs1049255 CYBA and rs2333227 MPO with development of ischemic heart disease (IHD) in Russian residents of Central Russia.Material and methods  The study material was DNA samples from 436 patients with IHD (265 men, 171 women; mean age, 61 years) and 370 sex- and age-matched arbitrarily healthy volunteers (209 men, 161 women; mean age, 60 years). Genotyping was performed by allelic discrimination with TaqMan probes.Results Comparative analysis of genotype frequency (log-additive regression model) showed that SNP rs1049255 CYBA (odds ratio, OR, 0.79 at 95 % confidence interval, CI, from 0.65 to 0.96; p=0.02) and rs2333227 MPO (OR 0.72 at 95 % CI from 0.55 to 0.95; p=0.02) were associated with a decreased risk of IHD adjusted for sex and age. Analysis of sex-specific effects showed that the protective effect of rs1049255 CYBA was evident only in men (OR 0.72 at 95 % CI from 0.55 to 0.94; p=0.16).Conclusion      The study demonstrated a protective effect of rs1049255 CYBA and rs2333227 MPO with respect of IHD in Russians. The protective effect of rs1049255 CYBA was observed only in men.


Assuntos
Doença da Artéria Coronariana , Estudos de Casos e Controles , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , NADPH Oxidases/genética , Polimorfismo de Nucleotídeo Único , Federação Russa/epidemiologia
2.
PLoS One ; 15(9): e0239705, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32976536

RESUMO

Adventitious root formation is essential for plant propagation, development, and response to various stresses. Reactive oxygen species (ROS) are essential for adventitious root formation. However, information on Respiratory Burst Oxidase Homolog (RBOH), a key enzyme that catalyzes the production ROS, remains limited in woody plants. Here, a total of 44 RBOH genes were identified from six Rosaceae species (Malus domestica, Prunus avium, Prunus dulcis 'Texas', Rubus occidentalis, Fragaria vesca and Rosa chinensis), including ten from M. domestica. Their phylogenetic relationships, conserved motifs and gene structures were analyzed. Exogenous treatment with the RBOH protein inhibitor diphenyleneiodonium (DPI) completely inhibited adventitious root formation, whereas exogenous H2O2 treatment enhanced adventitious root formation. In addition, we found that ROS accumulated during adventitious root primordium inducing process. The expression levels of MdRBOH-H, MdRBOH-J, MdRBOH-A, MdRBOH-E1 and MdRBOH-K increased more than two-fold at days 3 or 9 after auxin treatment. In addition, cis-acting element analysis revealed that the MdRBOH-E1 promoter contained an auxin-responsive element and the MdRBOH-K promoter contained a meristem expression element. Based on the combined results from exogenous DPI and H2O2 treatment, spatiotemporal expression profiling, and cis-element analysis, MdRBOH-E1 and MdRBOH-K appear to be candidates for the control of adventitious rooting in apple.


Assuntos
NADPH Oxidases/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Rosaceae/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Rosaceae/crescimento & desenvolvimento
3.
Trends Plant Sci ; 25(11): 1060-1062, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32861572

RESUMO

Activation of plant respiratory burst oxidase homologs (RBOHs) to generate reactive oxygen species (ROS) is a crucial defense signaling event. RBOH activation occurs predominantly through N-terminal phosphorylation and the binding of a small GTPase. Two recent papers reported that C-terminal phosphorylation and ubiquitination modulates AtRBOHD activity, which extends our understanding of the fine-tuning of RBOH signaling in plant immunity.


Assuntos
NADPH Oxidases , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Fosforilação , Imunidade Vegetal , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Cardiovasc Ther ; 2020: 1230513, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32821283

RESUMO

Background: As a multifaceted disease, atherosclerosis is often characterized by the formation and accumulation of plaque anchored to the inner wall of the arteries and causes some cardiovascular diseases and vascular embolism. Numerous studies have reported on the pathogenesis of atherosclerosis. However, fewer studies focused on both genes and immune cells, and the correlation of genes and immune cells was evaluated via comprehensive bioinformatics analyses. Methods: 29 samples of atherosclerosis-related gene expression profiling, including 16 human advanced atherosclerosis plaque (AA) and 13 human early atherosclerosis plaque (EA) samples from the Gene Expression Omnibus (GEO) database, were analyzed to get differentially expressed genes (DEGs) and the construction of protein and protein interaction (PPI) networks. Besides, we detected the relative fraction of 22 immune cell types in atherosclerosis by using the deconvolution algorithm of "cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT)." Ultimately, based on the significantly changed types of immune cells, we executed the correlation analysis between DEGs and immune cells to discover the potential genes and pathways associated with immune cells. Results: We identified 17 module genes and 6 types of significantly changed immune cells. Correlation analysis showed that the relative percentage of T cell CD8 has negative correlation with the C1QB expression (R = -0.63, p = 0.02), and the relative percentage of macrophage M2 has positive correlation with the CD86 expression (R = 0.57, p = 0.041) in EA. Meanwhile, four gene expressions (CD53, C1QC, NCF2, and ITGAM) have a high correlation with the percentages of T cell CD8 and macrophages (M0 and M2) in AA samples. Conclusions: In this study, we suggested that the progression of atherosclerosis might be related to CD86, C1QB, CD53, C1QC, NCF2, and ITGAM and that it plays a role in regulating immune-competent cells such as T cell CD8 and macrophages M0 and M2. These results will enable studies of the potential genes associated with immune cells in the progression of atherosclerosis, as well as provide insight for discovering new treatments and drugs.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/imunologia , Biologia Computacional , Perfilação da Expressão Gênica , Macrófagos/imunologia , Placa Aterosclerótica , Transcriptoma , Antígeno B7-2/genética , Antígeno CD11b/genética , Doenças das Artérias Carótidas/diagnóstico por imagem , Proteínas de Transporte/genética , Bases de Dados Genéticas , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos , Proteínas Mitocondriais/genética , NADPH Oxidases/genética , Fenótipo , Mapas de Interação de Proteínas , Tetraspanina 25/genética
5.
Plant Physiol Biochem ; 154: 751-757, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32771903

RESUMO

Reactive oxygen species (ROS) are increasingly recognized as non-enzymatic players in the processes of radicle elongation growth and endosperm weakening during seed germination. NADPH oxidases (EC 1.6.3.1), also known as respiratory burst oxidase homologues (Rbohs), are key enzymes for the production of ROS. We previously reported that ROS are involved in the radicle elongation growth and endosperm weakening during lettuce seed germination. However, the function of the gene(s) encoding Rbohs during lettuce seed germination remains to be elucidated. In this study, one lettuce Rboh gene LsRbohC1 was cloned, and over-expression and RNAi-lines of this gene were generated. It was found that LsRbohC1 was abundantly expressed in germinating seeds, especially in the endosperm cap and hypocotyl. Over-expression/knock-down of this gene observably increased/decreased the production of superoxide radicals in the radicle and endosperm cap, and significantly promoted/delayed the germination process. The results suggest that LsRbohC1 plays a role in lettuce seed germination.


Assuntos
Germinação , Alface/enzimologia , NADPH Oxidases/genética , Proteínas de Plantas/genética , Sementes/enzimologia , Alface/genética , NADP , Sementes/genética
6.
Mol Plant Microbe Interact ; 33(11): 1315-1329, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32815478

RESUMO

The role of NADPH oxidases (NOXs) in pathogenesis and development in the Curvularia leaf spot agent Curvularia lunata remains poorly understood. In this study, we identified C. lunata ClNOX2, which localized to the plasma membrane and was responsible for reactive oxygen species (ROS) generation. Scavenging the ROS production inhibited the conidial germination and appressorial formation. The ClNOX2 and ClBRN1 deletion mutants were defective in 1,8-dihydroxynaphthalene (DHN) melanin accumulation, appressorial formation, and cellulase synthesis and exhibited lower virulence. However, disruption of the ClNOX2 and ClBRN1 genes facilitated hyphal growth, enhanced stress adaptation to cell-wall-disrupting agents, and promoted developmental processes such as conidiation, conidial germination, and pseudothecium and ascus formation. Interestingly, loss of ClM1, the cell wall integrity (CWI) mitogen-activated protein kinase gene in C. lunata, led to morphology and pathogenicity phenotypes similar to ClNOX2 and ClBRN1 deletion mutants such as abnormal conidia, fewer appressoria, less melanin, increased hyphal growth, and enhanced tolerance to Congo red (CR). These results indicated that the ClNOX2 gene plays an important role in C. lunata development and virulence via regulating intracellular DHN melanin biosynthesis. Quantitative reverse-transcription PCR revealed that the ClNOX2-related ROS signaling pathway and ClM1-mediated CWI signaling pathway are cross-linked in regulating DHN melanin biosynthesis. Our findings provide new insights into how ClNOX2 participates in pathogenesis and development in hemibiotrophic plant fungal pathogens.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos/enzimologia , Melaninas/biossíntese , NADPH Oxidases , Doenças das Plantas/microbiologia , Ascomicetos/patogenicidade , Proteínas Fúngicas/genética , NADPH Oxidases/genética , Espécies Reativas de Oxigênio/metabolismo , Esporos Fúngicos , Virulência
7.
Int Arch Allergy Immunol ; 181(7): 540-550, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32512560

RESUMO

BACKGROUND: Chronic granulomatous disease (CGD) is a rare genetic disorder characterized by failure of phagocytic leukocytes to destroy certain microbes. We present a study on CGD patients enrolled at a single medical center concerning the infectious and noninfectious complications and genetic properties of the disease. METHODS: Icotinamide adenine dinucleotide phosphate oxidase activity and the expression of flavocytochrome b558 were measured by flow cytometry, and clinical outcomes of the patients were listed in relation to the genetic results. RESULTS: The clinical and genetic findings of 32 pediatric cases with CGD from 23 families were enrolled. Pneumonia and anemia were the most common infectious and noninfectious symptoms. Genetic analysis showed that 10 families (43.5%) carried CYBB variants and 13 families (56.5%) have autosomal recessive (AR) CGD, in which 6 families (26%) carried NCF1 variants, 4 (17.4%) carried CYBA variants, and 3 (13%) carried NCF2 variants. The median age of clinical onset was 3.3 and 48 months for patients with X-linked CGD (X-CGD) and AR-CGD, respectively. The onset of symptoms before age 1 year was 94% in X-CGD, 28.5% in AR-CGD, and 12.5% in patients with oxidase residual activity. Moreover, a de novo germline mutation at c.1415delG in CYBB (OMIM#300481) and a novel c.251_263del13bp in CYBA (OMIM#608508) were also investigated. CONCLUSIONS: Ihydrorhodamine-1,2,3 assay could not detect carrier mother in de novo case with CYBB variant. Most X-CGD patients have the onset of symptoms before age 1 year. Additionally, residual oxidase activity in AR-CGD causes a delay in onset, diagnosis, and prophylaxis. The protective role of residual activity is limited while the infection is ongoing and becoming serious.


Assuntos
Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/genética , Adolescente , Idade de Início , Criança , Pré-Escolar , Feminino , Doença Granulomatosa Crônica/complicações , Humanos , Lactente , Infecções/etiologia , Masculino , NADPH Oxidase 2/genética , NADPH Oxidases/deficiência , NADPH Oxidases/genética , Estudos Retrospectivos
8.
PLoS One ; 15(5): e0227522, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32374759

RESUMO

Expression of the voltage gated proton channel (Hv1) as identified by immunocytochemistry has been reported previously in breast cancer tissue. Increased expression of HV1 was correlated with poor prognosis and decreased overall and disease-free survival but the mechanism of its involvement in the disease is unknown. Here we present electrophysiological recordings of HV1 channel activity, confirming its presence and function in the plasma membrane of a breast cancer cell line, MDA-MB-231. With western blotting we identify significant levels of HV1 expression in 3 out of 8 "triple negative" breast cancer cell lines (estrogen, progesterone, and HER2 receptor expression negative). We examine the function of HV1 in breast cancer using MDA-MB-231 cells as a model by suppressing the expression of HV1 using shRNA (knock-down; KD) and by eliminating HV1 using CRISPR/Cas9 gene editing (knock-out; KO). Surprisingly, these two approaches produced incongruous effects. Knock-down of HV1 using shRNA resulted in slower cell migration in a scratch assay and a significant reduction in H2O2 release. In contrast, HV1 Knock-out cells did not show reduced migration or H2O2 release. HV1 KO but not KD cells showed an increased glycolytic rate accompanied by an increase in p-AKT (phospho-AKT, Ser473) activity. The expression of CD171/LCAM-1, an adhesion molecule and prognostic indicator for breast cancer, was reduced in HV1 KO cells. When we compared MDA-MB-231 xenograft growth rates in immunocompromised mice, tumors from HV1 KO cells grew less than WT in mass, with lower staining for the Ki-67 marker for cell proliferation rate. Therefore, deletion of HV1 expression in MDA-MB-231 cells limits tumor growth rate. The limited growth thus appears to be independent of oxidant production by NADPH oxidase molecules and to be mediated by cell adhesion molecules. Although HV1 KO and KD affect certain cellular mechanisms differently, both implicate HV1-mediated pathways for control of tumor growth in the MDA-MB-231 cell line.


Assuntos
Proliferação de Células/genética , Canais Iônicos/genética , Proteínas de Membrana/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Sistemas CRISPR-Cas/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Xenoenxertos , Humanos , Peróxido de Hidrogênio/farmacologia , Imuno-Histoquímica , Camundongos , NADPH Oxidases/genética , RNA Interferente Pequeno/genética , Neoplasias de Mama Triplo Negativas/patologia
9.
Nat Commun ; 11(1): 1783, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286292

RESUMO

The microbial adaptations to the respiratory burst remain poorly understood, and establishing how the NADPH oxidase (NOX2) kills microbes has proven elusive. Here we demonstrate that NOX2 collapses the ΔpH of intracellular Salmonella Typhimurium. The depolarization experienced by Salmonella undergoing oxidative stress impairs folding of periplasmic proteins. Depolarization in respiring Salmonella mediates intense bactericidal activity of reactive oxygen species (ROS). Salmonella adapts to the challenges oxidative stress imposes on membrane bioenergetics by shifting redox balance to glycolysis and fermentation, thereby diminishing electron flow through the membrane, meeting energetic requirements and anaplerotically generating tricarboxylic acid intermediates. By diverting electrons away from the respiratory chain, glycolysis also enables thiol/disulfide exchange-mediated folding of bacterial cell envelope proteins during periods of oxidative stress. Thus, primordial metabolic pathways, already present in bacteria before aerobic respiration evolved, offer a solution to the stress ROS exert on molecular targets at the bacterial cell envelope.


Assuntos
Glicólise/fisiologia , NADPH Oxidases/metabolismo , Estresse Oxidativo/fisiologia , Salmonella typhimurium/enzimologia , Salmonella typhimurium/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fermentação/genética , Fermentação/fisiologia , Glicólise/genética , NADPH Oxidases/genética , Oxirredução , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Salmonella typhimurium/genética
10.
Nat Commun ; 11(1): 1838, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32296066

RESUMO

Production of reactive oxygen species (ROS) is critical for successful activation of immune responses against pathogen infection. The plant NADPH oxidase RBOHD is a primary player in ROS production during innate immunity. However, how RBOHD is negatively regulated remains elusive. Here we show that RBOHD is regulated by C-terminal phosphorylation and ubiquitination. Genetic and biochemical analyses reveal that the PBL13 receptor-like cytoplasmic kinase phosphorylates RBOHD's C-terminus and two phosphorylated residues (S862 and T912) affect RBOHD activity and stability, respectively. Using protein array technology, we identified an E3 ubiquitin ligase PIRE (PBL13 interacting RING domain E3 ligase) that interacts with both PBL13 and RBOHD. Mimicking phosphorylation of RBOHD (T912D) results in enhanced ubiquitination and decreased protein abundance. PIRE and PBL13 mutants display higher RBOHD protein accumulation, increased ROS production, and are more resistant to bacterial infection. Thus, our study reveals an intricate post-translational network that negatively regulates the abundance of a conserved NADPH oxidase.


Assuntos
Proteínas de Arabidopsis/metabolismo , NADPH Oxidases/metabolismo , Imunidade Vegetal/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , NADPH Oxidases/genética , Fosforilação/genética , Fosforilação/fisiologia , Doenças das Plantas/genética , Imunidade Vegetal/genética , Domínios Proteicos/genética , Domínios Proteicos/fisiologia , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Ubiquitinação/genética , Ubiquitinação/fisiologia
11.
J Pharmacol Exp Ther ; 373(3): 337-346, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32213546

RESUMO

Bone loss in response to alcohol intake has previously been hypothesized to be mediated by excessive production of reactive oxygen species via NADPH oxidase (Nox) enzymes. Nox4 is one of several Nox enzymes expressed in bone. We investigated the role of Nox4 in the chondro-osteoblastic lineage of the long bones in mice during normal chow feeding and during chronic ethanol feeding for 90 days. We generated mice with a genotype (PrxCre +/- Nox4 fl/fl) allowing conditional knockout of Nox4 in the limb bud mesenchyme. Adult mice had 95% knockdown of Nox4 expression in the femoral shafts. For mice on regular chow, only whole-body Nox4 knockout mice had clearly increased cortical thickness and bone mineral density in the tibiae. When chronically fed a liquid diet with and without ethanol, conditional Nox4 knockout mice had slightly reduced dimensions of the cortical and trabecular regions of the tibiae (P < 0.1). The ethanol diet caused a significant reduction in cortical bone area and cortical thickness relative to a control diet without ethanol (P < 0.05). The ethanol diet further reduced gene expression of Frizzled related protein (Frzb), myosin heavy chain 3, and several genes encoding collagen and other major structural bone proteins (P < 0.05), whereas the Nox4 genotype had no effects on these genes. In conclusion, Nox4 expression from both mesenchymal and nonmesenchymal cell lineages appears to exert subtle effects on bone. However, chronic ethanol feeding reduces cortical bone mass and cortical gene expression of major structural bone proteins in a Nox4-independent manner. SIGNIFICANCE STATEMENT: Excessive alcohol intake contributes to osteopenia and osteoporosis, with oxidative stress caused by the activity of NADPH oxidases hypothesized to be a mediator. We tested the role of NADPH oxidase (Nox) 4 in osteoblast precursors in the long bones of mice with a conditional Nox4 knockout model. We found that Nox4 exerted effects independent of alcohol intake, and ethanol effects on bone were Nox4-independent.


Assuntos
Osso e Ossos/efeitos dos fármacos , Etanol/administração & dosagem , Expressão Gênica/efeitos dos fármacos , NADPH Oxidase 4/genética , Animais , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/genética , Feminino , Genótipo , Masculino , Camundongos , Camundongos Knockout , NADPH Oxidases/genética , Osteoblastos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo
12.
Plant Sci ; 292: 110372, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32005378

RESUMO

Polyamines (PAs) are small aliphatic amines with important regulatory activities in plants. Biotic stress results in changes in PA levels due to de novo synthesis and PA oxidation. In Arabidopsis thaliana five FAD-dependent polyamine oxidase enzymes (AtPAO1-5) participate in PA back-conversion and degradation. PAO activity generates H2O2, an important molecule involved in cell signaling, elongation, programmed cell death, and defense responses. In this work we analyzed the role of AtPAO genes in the Arabidopsis thaliana-Pseudomonas syringae pathosystem. AtPAO1 and AtPAO2 genes were transcriptionally up-regulated in infected plants. Atpao1-1 and Atpao2-1 single mutant lines displayed altered responses to Pseudomonas, and an increased susceptibility was found in the double mutant Atpao1-1 x Atpao2-1. These polyamine oxidases mutant lines showed disturbed contents of ROS (H2O2 and O2-) and altered activities of RBOH, CAT and SOD enzymes both in infected and control plants. In addition, changes in the expression levels of AtRBOHD, AtRBOHF, AtPRX33, and AtPRX34 genes were also noticed. Our data indicate an important role for polyamine oxidases in plant defense and ROS homeostasis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , NADPH Oxidases/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH2/genética , Pseudomonas syringae/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , NADPH Oxidases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH2/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-32083974

RESUMO

Doxorubicin (Dox) is an effective chemotherapeutic for a variety of pediatric malignancies. Unfortunately, Dox administration often results in a cumulative dose-dependent cardiotoxicity that manifests with marked oxidative stress, leading to heart failure. Adjunct therapies are needed to mitigate Dox cardiotoxicity and enhance quality of life in pediatric patients with cancer. Angiotensin-(1-7) [Ang-(1-7)] is an endogenous hormone with cardioprotective properties. This study investigated whether adjunct Ang-(1-7) attenuates cardiotoxicity resulting from exposure to Dox in male and female juvenile rats. Dox significantly reduced body mass, and the addition of Ang-(1-7) had no effect. However, adjunct Ang-(1-7) prevented Dox-mediated diastolic dysfunction, including markers of decreased passive filling as measured by reduced early diastole mitral valve flow velocity peak (E) (P < 0.05) and early diastole mitral valve annulus peak velocity (e'; P < 0.001) and increased E/e' (P < 0.001), an echocardiographic measure of diastolic dysfunction. Since Dox treatment increases reactive oxygen species (ROS), the effect of Ang-(1-7) on oxidative by-products and enzymes that generate or reduce ROS was investigated. In hearts of male and female juvenile rats, Dox increased NADPH oxidase 4 (P < 0.05), a major cardiovascular NADPH oxidase isozyme that generates ROS, as well as 4-hydroxynonenal (P < 0.001) and malondialdehyde (P < 0.001), markers of lipid peroxidation; Ang-(1-7) prevented these effects of Dox. Cotreatment with Dox and Ang-(1-7) increased the antioxidant enzymes SOD1 (male: P < 0.05; female: P < 0.01) and catalase (P < 0.05), which likely contributed to reduced ROS. These results demonstrate that Ang-(1-7) prevents diastolic dysfunction in association with a reduction in ROS, suggesting that the heptapeptide hormone may serve as an effective adjuvant to improve Dox-induced cardiotoxicity.NEW & NOTEWORTHY Ang-(1-7) is a clinically safe peptide hormone with cardioprotective and antineoplastic properties that could be used as an adjuvant therapy to improve cancer treatment and mitigate the long-term cardiotoxicity associated with doxorubicin in pediatric patients with cancer.


Assuntos
Angiotensina I/uso terapêutico , Antineoplásicos/toxicidade , Antioxidantes/uso terapêutico , Doxorrubicina/toxicidade , Cardiopatias/tratamento farmacológico , Fragmentos de Peptídeos/uso terapêutico , Animais , Cardiotoxicidade , Catalase/metabolismo , Feminino , Cardiopatias/etiologia , Frequência Cardíaca , Masculino , Malondialdeído/metabolismo , Valva Mitral/fisiopatologia , Miocárdio/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
14.
Environ Health ; 19(1): 13, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014026

RESUMO

BACKGROUND: Noise-induced hearing loss (NIHL) is a complex disease caused by environmental and genetic risk factors. This study was to explore the association of noise kurtosis, triphosphopyridine nucleotide oxidase 3 (NOX3) and lifestyles with NIHL. METHODS: This case-control study included 307 patients with NIHL and 307 matched control individuals from Zhejiang province of China. General characteristics, noise exposure data, the exfoliated cells of the oral mucosa, and lifestyle details of individuals were collected. The kompetitive allele specific polymerase chain reaction (KASP) method was used to analyze the genotypes of three single nucleotide polymorphisms (SNPs) of NOX3. RESULTS: People who exposed to complex noise had a higher risk of NIHL than those exposed to steady noise (adjusted: OR = 1.806, P = 0.002). The GT genotype of additive model and TT + GT genotype of dominant model in NOX3 rs12195525 decreased the risk of NIHL (adjusted: OR = 0.618, P = 0.043; OR = 0.622, P = 0.036). Smoking and exposure to high video volume increased the risk of NIHL (adjusted: OR = 1.486, P = 0.038; OR = 1.611, P = 0.014). Oppositely, regular physical exercise decreased the risk of NIHL (adjusted: OR = 0.598, P = 0.004). A positive interaction was found between complex noise and lifestyles including high video volume exposure and no physical exercise in the additive models (RERI = 1.088, P < 0.001; RERI = 1.054, P = 0.024). A positive interaction was also found between NOX3 rs12195525 GG genotype and lifestyles including smoking and high video volume exposure in the additive models (RERI = 1.042, P = 0.005; RERI = 0.774, P = 0.044). CONCLUSIONS: Noise temporal structure, NOX3 rs12195525 polymorphism, and the three lifestyles of smoking, video volume, and physical exercise were related to the NIHL. There were the interactions between noise temporal structure and the lifestyle of video volume or physical exercise, as well as between NOX3 and the lifestyle of smoking or video volume. These results provide a theoretical basis for the prevention and genetic testing of NIHL.


Assuntos
Perda Auditiva Provocada por Ruído/epidemiologia , Estilo de Vida , NADPH Oxidases/genética , Ruído Ocupacional/efeitos adversos , Ruído/efeitos adversos , Polimorfismo de Nucleotídeo Único , Adulto , Estudos de Casos e Controles , China/epidemiologia , Feminino , Perda Auditiva Provocada por Ruído/etiologia , Perda Auditiva Provocada por Ruído/genética , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , NADPH Oxidases/metabolismo
15.
Int J Mol Sci ; 21(3)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028642

RESUMO

Human epidermis is positioned at the interface with the external environment, protecting our bodies against external challenges, including air pollutants. Emerging evidence suggests that diesel particulate extract (DPE), a major component of air pollution, leads to impairment of diverse cellular functions in keratinocytes (KC). In this study, we investigated the cellular mechanism underlying DPE-induced KC apoptosis. We first addressed cell death occurring in KC exposed to DPE, paralleled by increased activation of NADPH oxidases (NOXs) and subsequent ROS generation. Blockade of NOX activation with a specific inhibitor attenuated the expected DPE-induced KC apoptosis. In contrast, pre-treatment with a specific inhibitor of reactive oxygen species (ROS) generation did not reverse DPE/NOX-mediated increase in KC apoptosis. We next noted that NOX-mediated KC apoptosis is mainly attributable to neutral sphingomyelinase (SMase)-mediated stimulation of ceramides, which is a well-known pro-apoptotic lipid. Moreover, we found that inhibition of NOX activation significantly attenuated DPE-mediated increase in the ratio of ceramide to its key metabolite sphingosine-1-phosphate (S1P), an important determinant of cell fate. Together, these results suggest that activation of neutral SMase serves as a key downstream signal for the DPE/NOX activation-mediated alteration in ceramide and S1P productions, and subsequent KC apoptosis.


Assuntos
Apoptose , Óleos Combustíveis/toxicidade , Queratinócitos/patologia , NADPH Oxidases/metabolismo , Petróleo/toxicidade , Esfingomielina Fosfodiesterase/metabolismo , Ceramidas/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Lisofosfolipídeos/metabolismo , NADPH Oxidases/genética , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Esfingomielina Fosfodiesterase/genética , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Emissões de Veículos/toxicidade
16.
Int J Mol Sci ; 21(3)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050714

RESUMO

Intracellular acid stress inhibits plant growth by unknown mechanisms and it occurs in acidic soils and as consequence of other stresses. In order to identify mechanisms of acid toxicity, we screened activation-tagging lines of Arabidopsis thaliana for tolerance to intracellular acidification induced by organic acids. A dominant mutant, sbt4.13-1D, was isolated twice and shown to over-express subtilase SBT4.13, a protease secreted into endoplasmic reticulum. Activity measurements and immuno-detection indicate that the mutant contains less plasma membrane H+-ATPase (PMA) than wild type, explaining the small size, electrical depolarization and decreased cytosolic pH of the mutant but not organic acid tolerance. Addition of acetic acid to wild-type plantlets induces production of ROS (Reactive Oxygen Species) measured by dichlorodihydrofluorescein diacetate. Acid-induced ROS production is greatly decreased in sbt4.13-1D and atrboh-D,F mutants. The latter is deficient in two major NADPH oxidases (NOXs) and is tolerant to organic acids. These results suggest that intracellular acidification activates NOXs and the resulting oxidative stress is important for inhibition of growth. The inhibition of acid-activated NOXs in the sbt4.13-1D mutant compensates inhibition of PMA to increase acid tolerance.


Assuntos
Germinação , Estresse Oxidativo , Prótons , Subtilisinas/genética , Arabidopsis , Proteínas de Arabidopsis/genética , Mutação , NADPH Oxidases/genética , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Subtilisinas/metabolismo
17.
PLoS One ; 15(2): e0228750, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32032367

RESUMO

OBJECTIVE: Accumulating epidemiological studies have demonstrated that diabetes is an important risk factor for dementia. However, the underlying pathological and molecular mechanisms, and effective treatment, have not been fully elucidated. Herein, we investigated the effect of the dipeptidyl peptidase-4 (DPP-4) inhibitor, linagliptin, on diabetes-related cognitive impairment. METHOD: Streptozotocin (STZ)-induced diabetic mice were treated with linagliptin (3 mg/kg/24 h) for 17 weeks. The radial arm water maze test was performed, followed by evaluation of oxidative stress using DNP-MRI and the expression of NAD(P)H oxidase components and proinflammatory cytokines and of microglial activity. RESULTS: Administration of linagliptin did not affect the plasma glucose and body weight of diabetic mice; however, it improved cognitive impairment. Additionally, linagliptin reduced oxidative stress and the mRNA expression of NAD(P)H oxidase component and TNF-α, and the number and body area of microglia, all of which were significantly increased in diabetic mice. CONCLUSIONS: Linagliptin may have a beneficial effect on diabetes-related dementia by inhibiting oxidative stress and microglial activation, independently of glucose-lowering.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Linagliptina/farmacologia , Microglia/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Glicemia/análise , Peso Corporal/efeitos dos fármacos , Encéfalo/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Inibidores da Dipeptidil Peptidase IV/farmacologia , Linagliptina/uso terapêutico , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/efeitos dos fármacos , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Estreptozocina/toxicidade , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
18.
Food Chem ; 317: 126416, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32087519

RESUMO

T-2 toxin at low concentrations can induce ROS accumulation and modulate host resistance in plants. NOX plays crucial roles in ROS production and is regulated by Ca2+via direct binding to EF-hand motifs. In this study, the effect of EGTA (Ca2+ chelating agent) on the expression and enzymatic activity of NOX, as well as the activities and corresponding gene expressions involved in ROS metabolism and cell membrane integrity, were investigated in treated slices. Results indicated that EGTA treatment significantly affected gene expression and activity of NOX, and reduced ROS accumulation and cell membrane integrity and the enzymatic activities and gene expression involved in ROS metabolism when exposed to treatment. The addition of exogenous Ca2+ restored the initial relative transcript abundance, ROS accumulation and their activities. Results suggest that Ca2+ affected by EGTA plays a crucial role in NOX activity regulation, ultimately affecting ROS metabolism in slices induced by T-2 toxin.


Assuntos
Cálcio/metabolismo , NADPH Oxidases/metabolismo , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Solanum tuberosum/metabolismo , Toxina T-2/metabolismo , Animais , Cálcio/química , Membrana Celular/metabolismo , Ácido Egtázico/química , Malondialdeído/metabolismo , NADPH Oxidases/genética , Proteínas de Plantas/genética , Tubérculos/metabolismo
19.
Nat Med ; 26(2): 200-206, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31988463

RESUMO

Chronic granulomatous disease (CGD) is a rare inherited disorder of phagocytic cells1,2. We report the initial results of nine severely affected X-linked CGD (X-CGD) patients who received ex vivo autologous CD34+ hematopoietic stem and progenitor cell-based lentiviral gene therapy following myeloablative conditioning in first-in-human studies (trial registry nos. NCT02234934 and NCT01855685). The primary objectives were to assess the safety and evaluate the efficacy and stability of biochemical and functional reconstitution in the progeny of engrafted cells at 12 months. The secondary objectives included the evaluation of augmented immunity against bacterial and fungal infection, as well as assessment of hematopoietic stem cell transduction and engraftment. Two enrolled patients died within 3 months of treatment from pre-existing comorbidities. At 12 months, six of the seven surviving patients demonstrated stable vector copy numbers (0.4-1.8 copies per neutrophil) and the persistence of 16-46% oxidase-positive neutrophils. There was no molecular evidence of either clonal dysregulation or transgene silencing. Surviving patients have had no new CGD-related infections, and six have been able to discontinue CGD-related antibiotic prophylaxis. The primary objective was met in six of the nine patients at 12 months follow-up, suggesting that autologous gene therapy is a promising approach for CGD patients.


Assuntos
Cromossomos Humanos X , Terapia Genética/métodos , Doença Granulomatosa Crônica/genética , Lentivirus/genética , Adolescente , Antígenos CD34/genética , Criança , Pré-Escolar , Comorbidade , Inativação Gênica , Genes Reguladores , Vetores Genéticos , Doença Granulomatosa Crônica/terapia , Células-Tronco Hematopoéticas/citologia , Humanos , Masculino , NADPH Oxidases/genética , Neutrófilos/metabolismo , Segurança do Paciente , Regiões Promotoras Genéticas , Condicionamento Pré-Transplante , Resultado do Tratamento , Reino Unido , Estados Unidos , Adulto Jovem
20.
Blood ; 135(12): 891-903, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31951647

RESUMO

Leukocyte reduced NADP (NADPH) oxidase plays a key role in host defense and immune regulation. Genetic defects in NADPH oxidase result in chronic granulomatous disease (CGD), characterized by recurrent bacterial and fungal infections and aberrant inflammation. Key drivers of hyperinflammation induced by fungal cell walls in CGD are still incompletely defined. In this study, we found that CGD (CYBB-) neutrophils produced higher amounts of leukotriene B4 (LTB4) in vitro after activation with zymosan or immune complexes, compared with wild-type (WT) neutrophils. This finding correlated with increased calcium influx in CGD neutrophils, which was restrained in WT neutrophils by the electrogenic activity of NADPH oxidase. Increased LTB4 generation by CGD neutrophils was also augmented by paracrine cross talk with the LTB4 receptor BLT1. CGD neutrophils formed more numerous and larger clusters in the presence of zymosan in vitro compared with WT cells, and the effect was also LTB4- and BLT1-dependent. In zymosan-induced lung inflammation, focal neutrophil infiltrates were increased in CGD compared with WT mice and associated with higher LTB4 levels. Inhibiting LTB4 synthesis or antagonizing the BLT1 receptor after zymosan challenge reduced lung neutrophil recruitment in CGD to WT levels. Thus, LTB4 was the major driver of excessive neutrophilic lung inflammation in CGD mice in the early response to fungal cell walls, likely by a dysregulated feed-forward loop involving amplified neutrophil production of LTB4. This study identifies neutrophil LTB4 generation as a target of NADPH oxidase regulation, which could potentially be exploited therapeutically to reduce excessive inflammation in CGD.


Assuntos
Parede Celular/imunologia , Fungos/imunologia , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Infiltração de Neutrófilos/genética , Neutrófilos/metabolismo , Receptores do Leucotrieno B4/metabolismo , Animais , Cálcio , Modelos Animais de Doenças , Suscetibilidade a Doenças , Camundongos , Micoses/genética , Micoses/imunologia , Micoses/metabolismo , Micoses/microbiologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Neutrófilos/patologia , Oxirredução , Estresse Oxidativo , Ligação Proteica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA