Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.557
Filtrar
1.
Molecules ; 26(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34361560

RESUMO

The extracts of Schisandra chinensis (Turcz.) Baill. (Schisandraceae) have various therapeutic effects, including inflammation and allergy. In this study, gomisin M2 (GM2) was isolated from S. chinensis and its beneficial effects were assessed against atopic dermatitis (AD). We evaluated the therapeutic effects of GM2 on 2,4-dinitrochlorobenzene (DNCB) and Dermatophagoides farinae extract (DFE)-induced AD-like skin lesions with BALB/c mice ears and within the tumor necrosis factor (TNF)-α and interferon (IFN)-γ-stimulated keratinocytes. The oral administration of GM2 resulted in reduced epidermal and dermal thickness, infiltration of tissue eosinophils, mast cells, and helper T cells in AD-like lesions. GM2 suppressed the expression of IL-1ß, IL-4, IL-5, IL-6, IL-12a, and TSLP in ear tissue and the expression of IFN-γ, IL-4, and IL-17A in auricular lymph nodes. GM2 also inhibited STAT1 and NF-κB phosphorylation in DNCB/DFE-induced AD-like lesions. The oral administration of GM2 reduced levels of IgE (DFE-specific and total) and IgG2a in the mice sera, as well as protein levels of IL-4, IL-6, and TSLP in ear tissues. In TNF-α/IFN-γ-stimulated keratinocytes, GM2 significantly inhibited IL-1ß, IL-6, CXCL8, and CCL22 through the suppression of STAT1 phosphorylation and the nuclear translocation of NF-κB. Taken together, these results indicate that GM2 is a biologically active compound that exhibits inhibitory effects on skin inflammation and suggests that GM2 might serve as a remedy in inflammatory skin diseases, specifically on AD.


Assuntos
Anti-Inflamatórios/farmacologia , Ciclo-Octanos/farmacologia , Dermatite Atópica , Dermatophagoides farinae/imunologia , Derme/imunologia , Dinitroclorobenzeno/toxicidade , Epiderme/imunologia , NF-kappa B/imunologia , Fator de Transcrição STAT1/imunologia , Animais , Anti-Inflamatórios/química , Ciclo-Octanos/química , Citocinas/imunologia , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Camundongos , Camundongos Endogâmicos BALB C
2.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360939

RESUMO

Air pollution-related particulate matter (PM) exposure reportedly enhances allergic airway inflammation. Some studies have shown an association between PM exposure and a risk for allergic rhinitis (AR). However, the effect of PM for AR is not fully understood. An AR mouse model was developed by intranasal administration of 100 µg/mouse PM with a less than or equal to 2.5 µm in aerodynamic diameter (PM2.5) solution, and then by intraperitoneal injection of ovalbumin (OVA) with alum and intranasal challenging with 10 mg/mL OVA. The effects of PM2.5 on oxidative stress and inflammatory response via the Nrf2/NF-κB signaling pathway in mice with or without AR indicating by histological, serum, and protein analyses were examined. PM2.5 administration enhanced allergic inflammatory cell expression in the nasal mucosa through increasing the expression of inflammatory cytokine and reducing the release of Treg cytokine in OVA-induced AR mice, although PM2.5 exposure itself induced neither allergic responses nor damage to nasal and lung tissues. Notably, repeated OVA-immunization markedly impaired the nasal mucosa in the septum region. Moreover, AR with PM2.5 exposure reinforced this impairment in OVA-induced AR mice. Long-term PM2.5 exposure strengthened allergic reactions by inducing the oxidative through malondialdehyde production. The present study also provided evidence, for the first time, that activity of the Nrf2 signaling pathway is inhibited in PM2.5 exposed AR mice. Furthermore, PM2.5 exposure increased the histopathological changes of nasal and lung tissues and related the inflammatory cytokine, and clearly enhanced PM2.5 phagocytosis by alveolar macrophages via activating the NF-κB signaling pathway. These obtained results suggest that AR patients may experience exacerbation of allergic responses in areas with prolonged PM2.5 exposure.


Assuntos
Poluição do Ar/efeitos adversos , Inflamação/imunologia , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Rinite Alérgica/imunologia , Animais , Citocinas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/imunologia , NF-kappa B/imunologia , Ovalbumina/imunologia
3.
Clin Immunol ; 230: 108793, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34242749

RESUMO

Rheumatoid arthritis (RA) is characterized by systemic synovitis leading to joint destruction in which imbalances in pro-inflammatory and anti-inflammatory cytokines promote the induction of autoimmunity. Some pro-inflammatory cytokines can trigger the signaling pathways which responsible for immune-mediated inflammation in RA, and the activated signaling pathways produce pro-inflammatory cytokines, resulting in aggravation of RA. Hence, understanding of the signaling pathways and their inhibitors might be advantageous in the development of therapeutic targets and new drugs for RA. In the current review, we summarize the signaling pathways involved in the pathogenesis of RA as well as the potential role of specific inhibitors in its management. We hope this paper may serve a reference for future studies on signaling pathways implicated in the pathogenesis of RA and benefit the treatment of RA.


Assuntos
Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Transdução de Sinais/imunologia , Artrite Reumatoide/etiologia , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Inibidores de Janus Quinases/farmacologia , Janus Quinases/imunologia , Janus Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/imunologia , Modelos Imunológicos , NF-kappa B/antagonistas & inibidores , NF-kappa B/imunologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Molecules ; 26(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34201934

RESUMO

Mast cells play a crucial role in the pathogenesis of type 1 allergic reactions by binding to IgE and allergen complexes and initiating the degranulation process, releasing pro-inflammatory mediators. Recently, research has focused on finding a stable and effective anti-allergy compound to prevent or treat anaphylaxis. Dihydromyricetin (DHM) is a flavonoid compound with several pharmacological properties, including free radical scavenging, antithrombotic, anticancer, and anti-inflammatory activities. In this study, we investigated the anti-allergic inflammatory effects and the underlying molecular mechanism of DHM in the DNP-IgE-sensitized human mast cell line, KU812. The cytokine levels and mast cell degranulation assays were determined by enzyme-linked immunosorbent assay (ELISA). The possible mechanism of the DHM-mediated anti-allergic signaling pathway was analyzed by western blotting. It was found that treatment with DHM suppressed the levels of inflammatory cytokines TNF-α and IL-6 in DNP-IgE-sensitized KU812 cells. The anti-allergic inflammatory properties of DHM were mediated by inhibition of NF-κB activation. In addition, DHM suppressed the phosphorylation of signal transducer and activator of transcription 5 (STAT5) and mast cell-derived tryptase production. Our study shows that DHM could mitigate mast cell activation in allergic diseases.


Assuntos
Degranulação Celular/imunologia , Flavonóis/imunologia , Imunoglobulina E/imunologia , Mastócitos/imunologia , NF-kappa B/imunologia , Transdução de Sinais/imunologia , Linhagem Celular , Humanos
5.
FASEB J ; 35(8): e21785, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34314075

RESUMO

In the present study, acute onset of severe lupus nephritis was successfully treated in mice using a new, benzamide-linked, small molecule that targets immune modulation and the NLRP3 inflammasome. Specifically, 6-(2,4-difluorophenyl)-3-(3-(trifluoromethyl)phenyl)-2H-benzo[e][1,3]oxazine-2,4(3H)-dione (Cf-02) (a) reduced serum levels of IgG anti-dsDNA, IL-1ß, IL-6, and TNF-α, (b) inhibited activation of dendritic cells and differentially regulated T cell functions, and (c) suppressed the NF-κB/NLRP3 inflammasome axis, targeting priming and activating signals of the inflammasome. Moreover, treatment with Cf-02 significantly inhibited secretion of IL-1ß in lipopolysaccharide-stimulated macrophages, but this effect was abolished by autophagy induction. These results recommend Cf-02 as a promising drug candidate for the serious renal conditions associated with systemic lupus erythematosus. Future investigations should examine whether Cf-02 may also be therapeutic in other types of chronic kidney disease involving NLRP3 inflammasome-driven signaling.


Assuntos
Autofagia/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Interleucina-1beta/imunologia , Nefrite Lúpica/tratamento farmacológico , NF-kappa B/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Animais , Estudos de Casos e Controles , Células Cultivadas , Células Dendríticas , Feminino , Humanos , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Síndrome de Sjogren
6.
J Steroid Biochem Mol Biol ; 212: 105926, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34091027

RESUMO

The main physiological function of 17ß-estradiol (E2) in vertebrates is to regulate sexual development and reproduction. In fish, especially hermaphroditic fish, estrogen is often used to aid reproduction, but it also can trigger an inflammatory response. However, the molecular mechanism for this E2-induced inflammatory reaction is not clear. In this study, we found that the ERß-CXCL19/CXCR4-NFκB cascade regulated the E2-induced inflammatory response in the orange-spotted grouper (Epinephelus coioides). Strikingly, E2 treatment resulted in significantly high expression of inflammatory cytokines and induced phosphorylation and degradation of IκBα and translocation of NFκB subunit p65 to the nucleus in grouper spleen cells. However, the E2-induced inflammatory response could be prevented by the broad estrogen receptor (ER) ligand ICI 182,780. Moreover, the luciferase assay showed that E2 induced the inflammatory response by activating the promotor of chemokine CXCL19 through ERß1 and ERß2. Knockdown of CXCL19 blocked the E2-induced inflammatory response and NFκB nucleus translocation. Additionally, knockdown of chemokines CXCR4a and CXCR4b together, but not alone, blocked the E2-induced inflammatory response. The immunofluorescence assay and co-immunoprecipitation analysis showed that CXCL19 mediated the E2-induced inflammatory response by activating CXCR4a or CXCR4b. Taken together, these results showed that the ERß-CXCL19/CXCR4-NFκB pathway mediated the E2-induced inflammatory response in grouper. These findings are valuable for future comparative immunological studies and provide a theoretical basis for mitigating the adverse reactions that occur when using E2 to help fish reproduce.


Assuntos
Quimiocinas CXC/imunologia , Estradiol/farmacologia , Receptor beta de Estrogênio/imunologia , Estrogênios/farmacologia , Proteínas de Peixes/imunologia , Inflamação/induzido quimicamente , NF-kappa B/imunologia , Receptores CXCR4/imunologia , Animais , Quimiocinas CXC/genética , Citocinas/imunologia , Receptor beta de Estrogênio/genética , Proteínas de Peixes/genética , Células HEK293 , Humanos , Inflamação/imunologia , NF-kappa B/metabolismo , Perciformes , Receptores CXCR4/genética , Transdução de Sinais/efeitos dos fármacos , Baço/imunologia
7.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34108245

RESUMO

Patients with severe COVID-19 infection exhibit a low level of oxygen in affected tissue and blood. To understand the pathophysiology of COVID-19 infection, it is therefore necessary to understand cell function during hypoxia. We investigated aspects of human monocyte activation under hypoxic conditions. HMGB1 is an alarmin released by stressed cells. Under normoxic conditions, HMGB1 activates interferon regulatory factor (IRF)5 and nuclear factor-κB in monocytes, leading to expression of type I interferon (IFN) and inflammatory cytokines including tumor necrosis factor α, and interleukin 1ß, respectively. When hypoxic monocytes are activated by HMGB1, they produce proinflammatory cytokines but fail to produce type I IFN. Hypoxia-inducible factor-1α, induced by hypoxia, functions as a direct transcriptional repressor of IRF5 and IRF3. As hypoxia is a stressor that induces secretion of HMGB1 by epithelial cells, hypoxia establishes a microenvironment that favors monocyte production of inflammatory cytokines but not IFN. These findings have implications for the pathogenesis of COVID-19.


Assuntos
Hipóxia Celular/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Monócitos/imunologia , COVID-19/imunologia , Células Cultivadas , Citocinas/imunologia , Humanos , Fatores Reguladores de Interferon/metabolismo , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Interleucina-1beta/metabolismo , Monócitos/metabolismo , NF-kappa B/imunologia , NF-kappa B/metabolismo , Oxigênio/metabolismo , SARS-CoV-2/imunologia , Fator de Necrose Tumoral alfa/metabolismo
8.
EMBO J ; 40(15): e107826, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34101213

RESUMO

SARS-CoV-2 infection causes broad-spectrum immunopathological disease, exacerbated by inflammatory co-morbidities. A better understanding of mechanisms underpinning virus-associated inflammation is required to develop effective therapeutics. Here, we discover that SARS-CoV-2 replicates rapidly in lung epithelial cells despite triggering a robust innate immune response through the activation of cytoplasmic RNA sensors RIG-I and MDA5. The inflammatory mediators produced during epithelial cell infection can stimulate primary human macrophages to enhance cytokine production and drive cellular activation. Critically, this can be limited by abrogating RNA sensing or by inhibiting downstream signalling pathways. SARS-CoV-2 further exacerbates the local inflammatory environment when macrophages or epithelial cells are primed with exogenous inflammatory stimuli. We propose that RNA sensing of SARS-CoV-2 in lung epithelium is a key driver of inflammation, the extent of which is influenced by the inflammatory state of the local environment, and that specific inhibition of innate immune pathways may beneficially mitigate inflammation-associated COVID-19.


Assuntos
COVID-19/imunologia , Proteína DEAD-box 58/imunologia , Células Epiteliais/imunologia , Helicase IFIH1 Induzida por Interferon/imunologia , Macrófagos/imunologia , RNA Viral/imunologia , Receptores Imunológicos/imunologia , SARS-CoV-2 , COVID-19/genética , COVID-19/virologia , Linhagem Celular , Citocinas/genética , Citocinas/imunologia , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Inflamação/genética , Inflamação/imunologia , Inflamação/virologia , Janus Quinases/imunologia , Pulmão/citologia , Pulmão/imunologia , Pulmão/virologia , Ativação de Macrófagos , NF-kappa B/imunologia , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/virologia , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Fatores de Transcrição STAT/imunologia , Replicação Viral
9.
PLoS One ; 16(6): e0253089, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34166398

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating global pandemic, infecting over 43 million people and claiming over 1 million lives, with these numbers increasing daily. Therefore, there is urgent need to understand the molecular mechanisms governing SARS-CoV-2 pathogenesis, immune evasion, and disease progression. Here, we show that SARS-CoV-2 can block IRF3 and NF-κB activation early during virus infection. We also identify that the SARS-CoV-2 viral proteins NSP1 and NSP13 can block interferon activation via distinct mechanisms. NSP1 antagonizes interferon signaling by suppressing host mRNA translation, while NSP13 downregulates interferon and NF-κB promoter signaling by limiting TBK1 and IRF3 activation, as phospho-TBK1 and phospho-IRF3 protein levels are reduced with increasing levels of NSP13 protein expression. NSP13 can also reduce NF-κB activation by both limiting NF-κB phosphorylation and nuclear translocation. Last, we also show that NSP13 binds to TBK1 and downregulates IFIT1 protein expression. Collectively, these data illustrate that SARS-CoV-2 bypasses multiple innate immune activation pathways through distinct mechanisms.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , COVID-19/imunologia , Núcleo Celular/imunologia , Fator Regulador 3 de Interferon/imunologia , Proteínas de Ligação a RNA/imunologia , SARS-CoV-2/imunologia , Transdução de Sinais/imunologia , Proteínas não Estruturais Virais/imunologia , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , COVID-19/genética , Núcleo Celular/genética , Células HeLa , Humanos , Fator Regulador 3 de Interferon/genética , NF-kappa B/genética , NF-kappa B/imunologia , Fosforilação/genética , Fosforilação/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas de Ligação a RNA/genética , SARS-CoV-2/genética , Transdução de Sinais/genética , Proteínas não Estruturais Virais/genética
10.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070750

RESUMO

The immune system is a fine modulator of the tumor biology supporting or inhibiting its progression, growth, invasion and conveys the pharmacological treatment effect. Tumors, on their side, have developed escaping mechanisms from the immune system action ranging from the direct secretion of biochemical signals to an indirect reaction, in which the cellular actors of the tumor microenvironment (TME) collaborate to mechanically condition the extracellular matrix (ECM) making it inhospitable to immune cells. TME is composed of several cell lines besides cancer cells, including tumor-associated macrophages, cancer-associated fibroblasts, CD4+ and CD8+ lymphocytes, and innate immunity cells. These populations interface with each other to prepare a conservative response, capable of evading the defense mechanisms implemented by the host's immune system. The presence or absence, in particular, of cytotoxic CD8+ cells in the vicinity of the main tumor mass, is able to predict, respectively, the success or failure of drug therapy. Among various mechanisms of immunescaping, in this study, we characterized the modulation of the phenotypic profile of CD4+ and CD8+ cells in resting and activated states, in response to the mechanical pressure exerted by a three-dimensional in vitro system, able to recapitulate the rheological and stiffness properties of the tumor ECM.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Matriz Extracelular/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Evasão Tumoral , Microambiente Tumoral/imunologia , 5'-Nucleotidase/genética , 5'-Nucleotidase/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/patologia , Técnicas de Cultura de Células , Módulo de Elasticidade , Matriz Extracelular/química , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Humanos , Hidrogéis/química , Interferon gama/genética , Interferon gama/imunologia , Ativação Linfocitária , Mecanotransdução Celular , Modelos Biológicos , NF-kappa B/genética , NF-kappa B/imunologia , Fenótipo , Cultura Primária de Células , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Reologia , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/imunologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/genética , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia
11.
J Tradit Chin Med ; 41(2): 185-193, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33825397

RESUMO

OBJECTIVE: To investigate the anti-neuroinflammatory properties of Panax ginseng (P. ginseng) root by measuring the levels of nitric oxide (NO), tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10) in lipopolysaccharide (LPS)-stimulated BV2 microglia cells. METHODS: Maximal non-toxic dose (MNTD) of methanol extract of P. ginseng root culture on BV2 microglia cells was first determined via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, followed by treatment and LPS stimulation of cells, and the measurement of NO using Griess assay and TNF-α, IL-6, and IL-10 using ELISA assay. RESULTS: The MNTD of P. ginseng root extract was determined to be (587 ± 57) µg/mL. Following that, NO and IL-6 levels were found to be insignificantly reduced by 6.88% and 0.14% respectively in stimulated cells upon treatment with MNTD. Treatment with MNTD yielded similar insignificant result, with only a reduction of 3.58% and 0.08% in NO and IL-6 levels respectively. However, TNF-α and IL-10 levels were significantly downregulated by 15.64% and 34.96% respectively upon treatment with P. ginseng root extract at MNTD. CONCLUSION: Methanol extract of P. ginseng root culture did not show any significant anti-inflammatory effects on NO and IL-6 levels, but might potentially possess both anti-neuroinflammatory and pro-neuroinflammatory properties through the downregulation of TNF-α and IL-10 respectively.


Assuntos
Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Inflamação/tratamento farmacológico , Microglia/efeitos dos fármacos , Panax/química , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Humanos , Inflamação/genética , Inflamação/imunologia , Lipopolissacarídeos/efeitos adversos , Microglia/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Óxido Nítrico/imunologia , Raízes de Plantas/química
12.
Front Immunol ; 12: 631797, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815382

RESUMO

Pro-inflammatory signaling mediated by Toll-like receptor 4 (TLR4)/myeloid differentiation-2 (MD-2) complex plays a crucial role in the instantaneous protection against infectious challenge and largely contributes to recovery from Gram-negative infection. Activation of TLR4 also boosts the adaptive immunity which is implemented in the development of vaccine adjuvants by application of minimally toxic TLR4 activating ligands. The modulation of pro-inflammatory responses via the TLR4 signaling pathway was found beneficial for management of acute and chronic inflammatory disorders including asthma, allergy, arthritis, Alzheimer disease pathology, sepsis, and cancer. The TLR4/MD-2 complex can recognize the terminal motif of Gram-negative bacterial lipopolysaccharide (LPS)-a glycophospholipid lipid A. Although immense progress in understanding the molecular basis of LPS-induced TLR4-mediated signaling has been achieved, gradual, and predictable TLR4 activation by structurally defined ligands has not yet been attained. We report on controllable modulation of cellular pro-inflammatory responses by application of novel synthetic glycolipids-disaccharide-based lipid A mimetics (DLAMs) having picomolar affinity for TLR4/MD-2. Using crystal structure inspired design we have developed endotoxin mimetics where the inherently flexible ß(1 → 6)-linked diglucosamine backbone of lipid A is replaced by a conformationally restricted α,α-(1↔1)-linked disaccharide scaffold. The tertiary structure of the disaccharide skeleton of DLAMs mirrors the 3-dimensional shape of TLR4/MD-2 bound E. coli lipid A. Due to exceptional conformational rigidity of the sugar scaffold, the specific 3D organization of DLAM must be preserved upon interaction with proteins. These structural factors along with specific acylation and phosphorylation pattern can ensure picomolar affinity for TLR4 and permit efficient dimerization of TLR4/MD-2/DLAM complexes. Since the binding pose of lipid A in the binding pocket of MD-2 (±180°) is crucial for the expression of biological activity, the chemical structure of DLAMs was designed to permit a predefined binding orientation in the binding groove of MD-2, which ensured tailored and species-independent (human and mice) TLR4 activation. Manipulating phosphorylation and acylation pattern at the sugar moiety facing the secondary dimerization interface allowed for adjustable modulation of the TLR4-mediated signaling. Tailored modulation of cellular pro-inflammatory responses by distinct modifications of the molecular structure of DLAMs was attained in primary human and mouse immune cells, lung epithelial cells and TLR4 transfected HEK293 cells.


Assuntos
Materiais Biomiméticos/farmacologia , Dissacarídeos/farmacologia , Imunomodulação , Lipídeo A/farmacologia , Animais , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Citocinas/imunologia , Dissacarídeos/química , Escherichia coli , Células HEK293 , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Lipídeo A/química , Lipopolissacarídeos/química , Lipopolissacarídeos/farmacologia , Antígeno 96 de Linfócito/química , Antígeno 96 de Linfócito/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , NF-kappa B/imunologia , Transdução de Sinais/efeitos dos fármacos , Células THP-1 , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/imunologia
13.
J Biol Chem ; 296: 100630, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33823154

RESUMO

Unchecked inflammation can result in severe diseases with high mortality, such as macrophage activation syndrome (MAS). MAS and associated cytokine storms have been observed in COVID-19 patients exhibiting systemic hyperinflammation. Interleukin-18 (IL-18), a proinflammatory cytokine belonging to the IL-1 family, is elevated in both MAS and COVID-19 patients, and its level is known to correlate with the severity of COVID-19 symptoms. IL-18 binds its specific receptor IL-1 receptor 5 (IL-1R5, also known as IL-18 receptor alpha chain), leading to the recruitment of the coreceptor, IL-1 receptor 7 (IL-1R7, also known as IL-18 receptor beta chain). This heterotrimeric complex then initiates downstream signaling, resulting in systemic and local inflammation. Here, we developed a novel humanized monoclonal anti-IL-1R7 antibody to specifically block the activity of IL-18 and its inflammatory signaling. We characterized the function of this antibody in human cell lines, in freshly obtained peripheral blood mononuclear cells (PBMCs) and in human whole blood cultures. We found that the anti-IL-1R7 antibody significantly suppressed IL-18-mediated NFκB activation, reduced IL-18-stimulated IFNγ and IL-6 production in human cell lines, and reduced IL-18-induced IFNγ, IL-6, and TNFα production in PBMCs. Moreover, the anti-IL-1R7 antibody significantly inhibited LPS- and Candida albicans-induced IFNγ production in PBMCs, as well as LPS-induced IFNγ production in whole blood cultures. Our data suggest that blocking IL-1R7 could represent a potential therapeutic strategy to specifically modulate IL-18 signaling and may warrant further investigation into its clinical potential for treating IL-18-mediated diseases, including MAS and COVID-19.


Assuntos
Anti-Inflamatórios/farmacologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Fatores Imunológicos/farmacologia , Interleucina-18/genética , Receptores de Interleucina-18/genética , Anti-Inflamatórios/metabolismo , Anticorpos Monoclonais/biossíntese , Anticorpos Neutralizantes/biossíntese , COVID-19/tratamento farmacológico , Candida albicans/crescimento & desenvolvimento , Candida albicans/patogenicidade , Regulação da Expressão Gênica , Células HEK293 , Humanos , Fatores Imunológicos/biossíntese , Inflamação , Interferon gama/genética , Interferon gama/imunologia , Interleucina-18/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Síndrome de Ativação Macrofágica/tratamento farmacológico , NF-kappa B/genética , NF-kappa B/imunologia , Cultura Primária de Células , Receptores de Interleucina-18/antagonistas & inibidores , Receptores de Interleucina-18/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
14.
FEBS Lett ; 595(11): 1587-1603, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33792041

RESUMO

OX40 is a costimulatory molecule that belongs to the tumor necrosis factor receptor (TNFR) superfamily. OX40 agonist-based combinations are emerging as promising candidates for novel cancer immunotherapy. Clinical trials have shown that OX40 agonist antibodies could lead to better results in cancer patients. Using a hybridoma platform and three different types of immunization strategies, namely recombinant protein, DNA, and overexpressing cells, we identified a chimeric anti-OX40 antibody (mAb035-hIgG1 from DNA immunization) that shows excellent binding specificity, and slightly stronger activation of human memory CD4+ T cells and similar potent antitumor activity compared with BMS 986178, an anti-OX40 antibody currently being evaluated for the treatment of solid tumors. This paper further systematically investigates the antigen-specific immune response, the number of binders, epitope bins, and functional activities of antibodies among different immunization strategies. Interestingly, we found that different immunization strategies affect the biological activity of monoclonal antibodies.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Imunização/métodos , Receptores OX40/imunologia , Proteínas Recombinantes de Fusão/farmacologia , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/isolamento & purificação , Afinidade de Anticorpos , Especificidade de Anticorpos , Antineoplásicos Imunológicos/isolamento & purificação , Antineoplásicos Imunológicos/metabolismo , Bioensaio , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Células CHO , Cricetulus , Feminino , Adjuvante de Freund/administração & dosagem , Expressão Gênica , Genes Reporter , Células HEK293 , Humanos , Hibridomas/química , Hibridomas/imunologia , Fragmentos Fc das Imunoglobulinas/biossíntese , Fragmentos Fc das Imunoglobulinas/isolamento & purificação , Fragmentos Fc das Imunoglobulinas/farmacologia , Células Jurkat , Luciferases/genética , Luciferases/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/genética , NF-kappa B/imunologia , Receptores OX40/antagonistas & inibidores , Receptores OX40/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação
15.
J Biol Chem ; 296: 100687, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33891947

RESUMO

Glucocorticoids are potent anti-inflammatory drugs that are used to treat an extraordinary range of human disease, including COVID-19, underscoring the ongoing importance of understanding their molecular mechanisms. Early studies of GR signaling led to broad acceptance of models in which glucocorticoid receptor (GR) monomers tether repressively to inflammatory transcription factors, thus abrogating inflammatory gene expression. However, newer data challenge this core concept and present an exciting opportunity to reframe our understanding of GR signaling. Here, we present an alternate, two-part model for transcriptional repression by glucocorticoids. First, widespread GR-mediated induction of transcription results in rapid, primary repression of inflammatory gene transcription and associated enhancers through competition-based mechanisms. Second, a subset of GR-induced genes, including targets that are regulated in coordination with inflammatory transcription factors such as NF-κB, exerts secondary repressive effects on inflammatory gene expression. Within this framework, emerging data indicate that the gene set regulated through the cooperative convergence of GR and NF-κB signaling is central to the broad clinical effectiveness of glucocorticoids in terminating inflammation and promoting tissue repair.


Assuntos
Anti-Inflamatórios/uso terapêutico , COVID-19/tratamento farmacológico , Dexametasona/uso terapêutico , Glucocorticoides/uso terapêutico , NF-kappa B/genética , Receptores de Glucocorticoides/genética , Animais , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Regulação da Expressão Gênica , Genômica/métodos , Humanos , Inflamação/prevenção & controle , Modelos Genéticos , NF-kappa B/antagonistas & inibidores , NF-kappa B/imunologia , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/imunologia , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Transdução de Sinais , Transcrição Genética/efeitos dos fármacos , Transcrição Genética/imunologia
16.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925531

RESUMO

The impact of naturally occurring regulatory T cells (nTregs) on the suppression or induction of lung allergic responses in mice depends on the nuclear environment and the production of the pro-inflammatory cytokine interleukin 6 (IL-6). These activities were shown to be different in nTregs derived from wild-type (WT) and CD8-deficient mice (CD8-/-), with increased IL-6 levels in nTregs from CD8-/- mice in comparison to WT nTregs. Thus, identification of the molecular mechanisms regulating IL-6 production is critical to understanding the phenotypic plasticity of nTregs. Electrophoretic mobility shift assays (EMSA) were performed to determine transcription factor binding to four Il-6 promoter loci using nuclear extracts from nTregs of WT and CD8-/- mice. Increased transcription factor binding for each of the Il-6 loci was identified in CD8-/- compared to WT nTregs. The impact of transcription factor binding and a novel short tandem repeat (STR) on Il-6 promoter activity was analyzed by luciferase reporter assays. The Il-6 promoter regions closer to the transcription start site (TSS) were more relevant to the regulation of Il-6 depending on NF-κB, c-Fos, and SP and USF family members. Two Il-6 promoter loci were most critical for the inducibility by lipopolysaccharide (LPS) and tumor necrosis factor α (TNFα). A novel STR of variable length in the Il-6 promoter was identified with diverging prevalence in nTregs from WT or CD8-/- mice. The predominant GT repeat in CD8-/- nTregs revealed the highest luciferase activity. These novel regulatory mechanisms controlling the transcriptional regulation of the Il-6 promoter are proposed to contribute to nTregs plasticity and may be central to disease pathogenesis.


Assuntos
Hipersensibilidade/imunologia , Interleucina-6/imunologia , Pneumopatias/imunologia , Linfócitos T Reguladores/metabolismo , Adaptação Fisiológica/imunologia , Animais , Plasticidade Celular/genética , Plasticidade Celular/imunologia , Citocinas/imunologia , Interleucina-10/imunologia , Interleucina-6/genética , Pneumopatias/genética , Pneumopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , Regiões Promotoras Genéticas , Linfócitos T Reguladores/imunologia , Fator de Necrose Tumoral alfa/metabolismo
17.
Fish Shellfish Immunol ; 113: 118-124, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33848637

RESUMO

During viral infection, proper regulation of immune signaling is essential to ensure successful clearance of virus. Immunoproteasome is constitutively expressed and gets induced during viral infection by interferon signaling and contributes to regulate proinflammatory cytokine production and activation of the NF-κB pathway. In this study, we identified Hs-PSMB8, a member of the proteasome ß-subunits (PSMB) family, as a negative regulator of NF-κB responses during NNV infection. The transient expression of Hs-PSMB8 delayed the appearance of cytopathic effect (CPE) and showed a higher viral load. The Hs-PSMB8 interacted with NNV which was confirmed using immunocolocalization and co-IP. Overexpression of Hs-PSMB8 diminished virus induced activation of the NF-κB promoters and downregulated the activation of IL-1ß, TNFα, IL6, IL8, IFNγ expression upon NNV infection. Collectively, our results demonstrate that PSMB8 is an important regulator of NF-κB signaling during NNV infection in sevenband grouper.


Assuntos
Bass/genética , Bass/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/imunologia , Sequência de Aminoácidos , Animais , Doenças dos Peixes/virologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , NF-kappa B/imunologia , Nodaviridae/fisiologia , Filogenia , Complexo de Endopeptidases do Proteassoma/química , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/virologia , Alinhamento de Sequência/veterinária , Transdução de Sinais/imunologia
18.
Front Immunol ; 12: 653344, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868293

RESUMO

Sepsis is a heterogeneous syndrome caused by a dysregulated host response during the process of infection. Neutrophils are involved in the development of sepsis due to their essential role in host defense. COVID-19 is a viral sepsis. Disfunction of neutrophils in sepsis has been described in previous studies, however, little is known about the role of microRNA-let-7b (miR-let-7b), toll-like receptor 4 (TLR4), and nuclear factor kappa B (NF-κB) activity in neutrophils and how they participate in the development of sepsis. In this study, we investigated the regulatory pathway of miR-let-7b/TLR4/NF-κB in neutrophils. We also explored the downstream cytokines released by neutrophils following miR-let-7b treatment and its therapeutic effects in cecal ligation and puncture (CLP)-induced septic mice. Six-to-eight-week-old male C57BL/6 mice underwent CLP following treatment with miR-let-7b agomir. Survival (n=10), changes in liver and lungs histopathology (n=4), circulating neutrophil counts (n=4), the liver-body weight ratio (n=4-7), and the lung wet-to-dry ratio (n=5-6) were recorded. We found that overexpression of miR-let-7b could significantly down-regulate the expression of human-derived neutrophilic TLR4 at a post-transcriptional level, a decreased level of proinflammatory factors including interleukin-6 (IL-6), IL-8, tumor necrosis factor α (TNF-α), and an upregulation of anti-inflammatory factor IL-10 in vitro. After miR-let-7b agomir treatment in vivo, neutrophil recruitment was inhibited and thus the injuries of liver and lungs in CLP-induced septic mice were alleviated (p=0.01 and p=0.04, respectively), less weight loss was reduced, and survival in septic mice was also significantly improved (p=0.013). Our study suggested that miR-let-7b could be a potential target of sepsis.


Assuntos
COVID-19/imunologia , MicroRNAs/imunologia , NF-kappa B/imunologia , Neutrófilos/imunologia , SARS-CoV-2/imunologia , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/imunologia , COVID-19/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Neutrófilos/patologia
19.
J Sci Food Agric ; 101(13): 5325-5336, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33650104

RESUMO

BACKGROUND: Roasted peanut is widely loved as a kind of food with rich taste. However, peanut allergy is one of the major threats to human health, which affects about 5% of children and 1.4-2% of adults in the world. RESULTS: To evaluate the sensitization mechanism of peanut allergen Ara h 3, Caco-2 cells as the model, which has the similar structure and function to differentiated small intestinal epithelial cells. Compared with Ara h 3-raw (purified from raw peanut) group, more significant results such as the inhibited Caco-2 cell viability and proliferation, the increased secretion of reactive oxygen species (ROS) and the decreased transepithelial electrical resistance were obtained in Ara h 3-roasted (purified from roasted peanut) group. Accordingly, oxidative stress and NF-κB signaling pathway were more imbalanced, which lead to the increased of thymic stromal lymphopoietin (TSLP), interleukin 6 (IL-6), IL-8 and monocyte chemotactic protein 1 (MCP-1). Then, the gene expression of tight junction proteins ZO-1, occludin and JAM-1 were reduced, which proved that the integrity of the Caco-2 monolayer barrier is severely damaged. CONCLUSION: These finding identify the mechanisms of the allergenicity of roasted peanut allergy proteins are probably associated with intestinal uptake and cytokine dependent allergies. The aggravated allergic reaction might be caused by the increment of TSLP, IL-6, IL-8 and MCP-1 due to the activated NF-κB signaling pathway, and the enhanced transport of Ara h 3-roasted protein by Caco-2 monolayer. © 2021 Society of Chemical Industry.


Assuntos
Antígenos de Plantas/imunologia , Arachis/imunologia , Células Epiteliais/imunologia , Hipersensibilidade a Amendoim/imunologia , Proteínas de Plantas/imunologia , Alérgenos/química , Alérgenos/imunologia , Antígenos de Plantas/química , Arachis/química , Células CACO-2 , Moléculas de Adesão Celular/imunologia , Quimiocina CCL2/imunologia , Humanos , Interleucina-6/imunologia , Interleucina-8/imunologia , Intestino Delgado/imunologia , NF-kappa B/imunologia , Proteínas de Plantas/química , Receptores de Superfície Celular/imunologia , Sementes/química , Sementes/imunologia , Proteína da Zônula de Oclusão-1/imunologia
20.
mBio ; 12(2)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653893

RESUMO

Multiple studies have implicated microbes in the development of inflammation, but the mechanisms remain unknown. Bacteria in the genus Fusobacterium have been identified in the intestinal mucosa of patients with digestive diseases; thus, we hypothesized that Fusobacterium nucleatum promotes intestinal inflammation. The addition of >50 kDa F. nucleatum conditioned media, which contain outer membrane vesicles (OMVs), to colonic epithelial cells stimulated secretion of the proinflammatory cytokines interleukin-8 (IL-8) and tumor necrosis factor (TNF). In addition, purified F. nucleatum OMVs, but not compounds <50 kDa, stimulated IL-8 and TNF production; which was decreased by pharmacological inhibition of Toll-like receptor 4 (TLR4). These effects were linked to downstream effectors p-ERK, p-CREB, and NF-κB. F. nucleatum >50-kDa compounds also stimulated TNF secretion, p-ERK, p-CREB, and NF-κB activation in human colonoid monolayers. In mice harboring a human microbiota, pretreatment with antibiotics and a single oral gavage of F. nucleatum resulted in inflammation. Compared to mice receiving vehicle control, mice treated with F. nucleatum showed disruption of the colonic architecture, with increased immune cell infiltration and depleted mucus layers. Analysis of mucosal gene expression revealed increased levels of proinflammatory cytokines (KC, TNF, IL-6, IFN-γ, and MCP-1) at day 3 and day 5 in F. nucleatum-treated mice compared to controls. These proinflammatory effects were absent in mice who received F. nucleatum without pretreatment with antibiotics, suggesting that an intact microbiome is protective against F. nucleatum-mediated immune responses. These data provide evidence that F. nucleatum promotes proinflammatory signaling cascades in the context of a depleted intestinal microbiome.IMPORTANCE Several studies have identified an increased abundance of Fusobacterium in the intestinal tracts of patients with colon cancer, liver cirrhosis, primary sclerosing cholangitis, gastroesophageal reflux disease, HIV infection, and alcoholism. However, the direct mechanism(s) of action of Fusobacterium on pathophysiological within the gastrointestinal tract is unclear. These studies have identified that F. nucleatum subsp. polymorphum releases outer membrane vesicles which activate TLR4 and NF-κB to stimulate proinflammatory signals in vitro Using mice harboring a human microbiome, we demonstrate that F. nucleatum can promote inflammation, an effect which required antibiotic-mediated alterations in the gut microbiome. Collectively, these results suggest a mechanism by which F. nucleatum may contribute to intestinal inflammation.


Assuntos
Membrana Externa Bacteriana/imunologia , Vesículas Extracelulares/imunologia , Fusobacterium nucleatum/imunologia , Fusobacterium nucleatum/metabolismo , Inflamação/microbiologia , Animais , Células Cultivadas , Colo/citologia , Meios de Cultura/farmacologia , Citocinas/análise , Citocinas/imunologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Feminino , Fusobacterium nucleatum/patogenicidade , Microbioma Gastrointestinal , Células HT29 , Humanos , Inflamação/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , Transdução de Sinais , Receptor 4 Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...