Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.734
Filtrar
1.
PLoS One ; 15(9): e0238509, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32870935

RESUMO

Dendrobium bibenzyls and phenanthrenes such as chrysotoxine, cypripedin, gigantol and moscatilin have been reported to show promising inhibitory effects on lung cancer growth and metastasis in ex vivo human cell line models, suggesting their potential for clinical application in patients with lung cancer. However, it remains to be determined whether these therapeutic effects can be also seen in primary human cells and/or in vivo. In this study, we comparatively investigated the immune modulatory effects of bibenzyls and phenanthrenes, including a novel Dendrobium bibenzyl derivative, in primary human monocytes. All compounds were isolated and purified from a Thai orchid Dendrobium lindleyi Steud, a new source of therapeutic compounds with promising potential of tissue culture production. We detected increased frequencies of TNF- and IL-6-expressing monocytes after treatment with gigantol and cypripedin, whereas chrysotoxine and moscatilin did not alter the expression of these cytokines in monocytes. Interestingly, the new 4,5-dihydroxy-3,3',4'-trimethoxybibenzyl derivative showed dose-dependent immune modulatory effects in lipopolysaccharide (LPS)-treated CD14lo and CD14hi monocytes. Together, our findings show immune modulatory effects of the new bibenzyl derivative from Dendrobium lindleyi on different monocyte sub-populations. However, therapeutic consequences of these different monocyte populations on human diseases including cancer remain to be investigated.


Assuntos
Bibenzilas/farmacologia , Dendrobium , Fatores Imunológicos/farmacologia , Monócitos/efeitos dos fármacos , Fenantrenos/farmacologia , Extratos Vegetais/farmacologia , Compostos de Benzil/química , Compostos de Benzil/farmacologia , Bibenzilas/química , Células Cultivadas , Dendrobium/química , Guaiacol/análogos & derivados , Guaiacol/química , Guaiacol/farmacologia , Humanos , Fatores Imunológicos/química , Monócitos/imunologia , Naftoquinonas/química , Naftoquinonas/farmacologia , Fenantrenos/química , Extratos Vegetais/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-32640542

RESUMO

This study investigated the birnessite (δ-MnO2) catalyzed oxidative removal of 1,4-naphthoquinone (1,4-NPQ) in the presence of phenolic mediators; specifically, the kinetics of 1,4-NPQ removal under various conditions was examined, and the reaction pathway of 1,4-NPQ was verified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The removal rate of 1,4-NPQ by birnessite-catalyzed oxidation (pH = 5) was faster in the presence of phenolic mediators with electron-donating substituents (pseudo-first-order initial stage rate constant (k1) = 0.380-0.733 h-1) than with electron-withdrawing substituents (k1 = 0.071-0.244 h-1), and the effect on the substituents showed a positive correlation with the Hammett constant (Σσ) (r2 = 0.85, p < 0.001). The rate constants obtained using variable birnessite loadings (0.1-1.0 g L-1), catechol concentrations (0.1-1.0 mM), and reaction sequences indicate that phenolic mediators are the major limiting factor for the cross-coupling reaction of 1,4-NPQ in the initial reaction stages, whereas the birnessite-catalyzed surface reaction acts as the major limiting factor in the later reaction stages. This was explained by the operation of two different reaction mechanisms and reaction products identified by LC-MS/MS.


Assuntos
Naftoquinonas/química , Catálise , Cromatografia Líquida , Cinética , Compostos de Manganês , Oxirredução , Óxidos , Espectrometria de Massas em Tandem
3.
Br J Radiol ; 93(1111): 20200034, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32374626

RESUMO

Necrosis plays vital roles in living organisms which is related closely with various diseases. Non-invasively necrotic imaging can be of great values in clinical decision-making, evaluation of individualized treatment responses, and prediction of patient prognosis. This narrative review will demonstrate how the evolution of quinones for necrotic imaging has been promoted by searching for their active centers. In this review, we summarized the recent developments of various quinones with the continuous simplified π-conjugated cores in necrotic imaging and speculated their possible molecular mechanisms might be attributed to their intercalations with exposed DNA in necrotic tissues. We discussed their clinical challenges of necrotic imaging with quinones and their future translation studies deserved to be explored in personalized patient treatment.


Assuntos
Sondas Moleculares , Infarto do Miocárdio/patologia , Necrose/diagnóstico por imagem , Quinonas , Animais , Antraquinonas/química , Células/patologia , DNA/análise , Humanos , Sondas Moleculares/química , Infarto do Miocárdio/diagnóstico por imagem , Naftoquinonas/química , Quinonas/química , Quinonas/classificação , Ratos
4.
Int J Nanomedicine ; 15: 3087-3098, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431503

RESUMO

Purpose: Aldo-ketoreductase (AKR) 1C3 is crucial for testosterone synthesis. Abnormally high expression/activity of AKR1C3 can promote castration-resistant prostate cancer (CRPC). A mansonone derivative and AKR1C3 inhibitor, 6e, was combined with 4D5 (extracellular fragment of the monoclonal antibody of human epidermal growth factor receptor-2)-modified chitosan to achieve a nanodrug-delivery system (CS-4D5/6e) to treat CRPC. Materials and Methods: Morphologies/properties of CS-4D5/6e were characterized by atomic force microscopy, zeta-potential analysis, and Fourier transform-infrared spectroscopy. CS-4D5/6e uptake was measured by immunofluorescence under confocal laser scanning microscopy. Testosterone in LNCaP cells overexpressing human AKR1C3 (LNCaP-AKR1C3) and cell lysates was measured to reflect AKR1C3 activity. Androgen receptor (AR) and prostate-specific antigen (PSA) expression was measured by Western blotting. CS-4D5/6e-based inhibition of AKR1C3 was evaluated in tumor-xenografted mice. Results: CS-4D5/6e was oblate, with a particle size of 200-300 nm and thickness of 1-5 nm. Zeta potential was 1.39±0.248 mV. 6e content in CS-4D5/6e was 7.3±1.4% and was 18±3.6% for 4D5. 6e and CS-4D5/6e inhibited testosterone production significantly in a concentration-dependent manner in LNCaP-AKR1C3 cells, and a decrease in expression of AKR1C3, PSA, and AR was noted. Half-maximal inhibitory concentration of CS-4D5/6e on LNCaP-AKR1C3 cells was significantly lower than that in LNCaP cells (P<0.05). CS-4D5/6e significantly reduced growth of 22Rv1 tumor xenografts by 57.00% compared with that in the vehicle group (P<0.01). Conclusion: We demonstrated the antineoplastic activity of a potent AKR1C3 inhibitor (6e) and its nanodrug-delivery system (CS-4D5/6e). First, CS-4D5/6e targeted HER2-positive CRPC cells. Second, it transferred 6e (an AKR1C3 inhibitor) to achieve a reduction in intratumoral testosterone production. Compared with 6e, CS-4D5/6e showed lower systemic toxicity. CS-4D5/6e inhibited tumor growth effectively in mice implanted with tumor xenografts by downregulating testosterone production mediated by intratumoral AKR1C3. These results showed a promising strategy for treatment of the CRPC that develops invariably in prostate-cancer patients.


Assuntos
Membro C3 da Família 1 de alfa-Ceto Redutase/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacologia , Terapia de Alvo Molecular/métodos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Animais , Anticorpos Monoclonais/química , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Quitosana/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Naftoquinonas/química , Antígeno Prostático Específico/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Receptor ErbB-2/imunologia , Receptores Androgênicos/metabolismo , Sesquiterpenos/química , Testosterona/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Biochim Biophys Acta Bioenerg ; 1861(8): 148210, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32305410

RESUMO

An increase in the production of reactive oxygen species (ROS) in mitochondria due to targeted delivery of redox active compounds may be useful in studies of modulation of cell functions by mitochondrial ROS. Recently, the mitochondria-targeted derivative of menadione (MitoK3) was synthesized. However, MitoK3 did not induce mitochondrial ROS production and lipid peroxidation while exerting significant cytotoxic action. Here we synthesized 1,4-naphthoquinone conjugated with alkyltriphenylphosphonium (SkQN) as a prototype of mitochondria-targeted prooxidant, and its redox properties, interactions with isolated mitochondria, yeast cells and various human cell lines were investigated. According to electrochemical measurements, SkQN was more active redox agent and, due to the absence of methyl group in the naphthoquinone ring, more reactive as electrophile than MitoK3. SkQN (but not MitoK3) stimulated hydrogen peroxide production in isolated mitochondria. At low concentrations, SkQN stimulated state 4 respiration in mitochondria, decreased membrane potential, and blocked ATP synthesis, being more efficient uncoupler of oxidative phosphorylation than MitoK3. In yeast cells, SkQN decreased cell viability and induced oxidative stress and mitochondrial fragmentation. SkQN killed various tumor cells much more efficiently than MitoK3. Since many tumors are characterized by increased oxidative stress, the use of new mitochondria-targeted prooxidants may be a promising strategy for anticancer therapy.


Assuntos
Antineoplásicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Naftoquinonas/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Naftoquinonas/química , Fosforilação Oxidativa/efeitos dos fármacos , Oxigênio/metabolismo , Compostos de Fósforo/química , Espécies Reativas de Oxigênio/química
6.
J Enzyme Inhib Med Chem ; 35(1): 773-785, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32200656

RESUMO

Basis on molecular docking and pharmacophore analysis of naphthoquinone moiety, a total of 23 compounds were designed and synthesised. With the help of reverse targets searching, anti-cancer activity was preliminarily evaluated, most of them are effective against some tumour cells, especially compound 12: 1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3-en-1-yl-4-oxo-4-((4-phenoxyphenyl)amino) butanoate whose IC50 against SGC-7901 was 4.1 ± 2.6 µM. Meanwhile the anticancer mechanism of compound 12 had been investigated by AnnexinV/PI staining, immunofluorescence, Western blot assay and molecular docking. The results indicated that this compound might induce cell apoptosis and cell autophagy through regulating the PI3K signal pathway.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Naftoquinonas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Naftoquinonas/síntese química , Naftoquinonas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
7.
Mem Inst Oswaldo Cruz ; 115: e190389, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32074167

RESUMO

BACKGROUND: Chagas disease, which is caused by the protozoan Trypanosoma cruzi, is endemic to Latin America and mainly affects low-income populations. Chemotherapy is based on two nitrocompounds, but their reduced efficacy encourages the continuous search for alternative drugs. Our group has characterised the trypanocidal effect of naphthoquinones and their derivatives, with naphthoimidazoles derived from ß-lapachone (N1, N2 and N3) being the most active in vitro. OBJECTIVES: In the present work, the effects of N1, N2 and N3 on acutely infected mice were investigated. METHODS: in vivo activity of the compounds was assessed by parasitological, biochemical, histopathological, immunophenotypical, electrocardiographic (ECG) and behavioral analyses. FINDINGS: Naphthoimidazoles led to a decrease in parasitaemia (8 dpi) by reducing the number of bloodstream trypomastigotes by 25-50% but not by reducing mortality. N1 protected mice from heart injury (15 dpi) by decreasing inflammation. Bradycardia was also partially reversed after treatment with N1 and N2. Furthermore, the three compounds did not reverse hepatic and renal lesions or promote the improvement of other evaluated parameters. MAIN CONCLUSION: N1 showed moderate trypanocidal and promising immunomodulatory activities, and its use in combination with benznidazole and/or anti-arrhythmic drugs as well as the efficacy of its alternative formulations must be investigated in the near future.


Assuntos
Doença de Chagas/tratamento farmacológico , Naftoquinonas/uso terapêutico , Nitroimidazóis/uso terapêutico , Tripanossomicidas/uso terapêutico , Doença Aguda , Animais , Anti-Inflamatórios , Modelos Animais de Doenças , Eletrocardiografia , Masculino , Camundongos , Naftoquinonas/química , Nitroimidazóis/química , Parasitemia/tratamento farmacológico , Fatores de Tempo , Tripanossomicidas/química
8.
Phytomedicine ; 68: 153149, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32032836

RESUMO

BACKGROUND: Mast cells (MCs) are crucial effectors in allergic disorders by secreting inflammatory mediators. The Mas-related G-protein-coupled receptor X2 (Mrgprx2) was shown to have a key role in IgE-independent allergic reactions. Therefore, potential drug candidates that directly target Mrgprx2 could be used to treat pseudo-allergic diseases. Shikonin, an active ingredient derived from Lithospermum erythrorhizon Sieb. et Zucc has been used for its anti-inflammatory properties since ancient China. PURPOSE: To investigate the inhibitory effects of Shikonin on IgE-independent allergy both in vitro and in vivo, as well as the mechanism underlying its effects. METHODS/STUDY DESIGNS: The anti-anaphylactoid activity of Shikonin was evaluated in PCA and systemic anaphylaxis models, Calcium imaging was used to assess intracellular Ca2+ mobilization. The release of cytokines and chemokines was measured using enzyme immunoassay kits. Western blot analysis was conducted to investigate the molecules of PLCγ-PKC-IP3 signaling pathway. The analytical method of surface plasmon resonance was employed to study the interaction between Shikonin and potential target protein Mrgprx2. RESULTS: Shikonin can suppress compound 48/80 (C48/80)-induced PCA, active systemic anaphylaxis, and MCs degranulation in mice in a dose-dependent manner. In addition, Shikonin reduced C48/80-induced calcium flux and suppressed LAD2 cell degranulation via PLCγ-PKC-IP3 signaling pathway. Moreover, Shikonin was found to inhibit C48/80-induced Mrgprx2 expression in HEK cells, displaying specific interactions with the Mrgprx2 protein. CONCLUSION: Shikonin could be a potential antagonist of Mrgprx2, thereby inhibiting pseudo-allergic reactions through Ca2+ mobilization.


Assuntos
Anafilaxia/tratamento farmacológico , Hipersensibilidade/tratamento farmacológico , Naftoquinonas/farmacologia , Proteínas do Tecido Nervoso/imunologia , Receptores Acoplados a Proteínas-G/imunologia , Receptores de Neuropeptídeos/imunologia , Anafilaxia/induzido quimicamente , Animais , Cálcio/metabolismo , Degranulação Celular/efeitos dos fármacos , Linhagem Celular , Quimiocinas/metabolismo , Citocinas/metabolismo , Humanos , Hipersensibilidade/imunologia , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Camundongos Endogâmicos C57BL , Naftoquinonas/química , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Fosfolipase C gama/metabolismo , Receptores Acoplados a Proteínas-G/antagonistas & inibidores , Receptores Acoplados a Proteínas-G/química , Receptores Acoplados a Proteínas-G/metabolismo , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores de Neuropeptídeos/química , Receptores de Neuropeptídeos/metabolismo , Secretagogos/toxicidade , p-Metoxi-N-metilfenetilamina/toxicidade
9.
Chem Commun (Camb) ; 56(22): 3337-3340, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32090214

RESUMO

Herein, we report the chemoenzymatic synthesis of a heterodimeric (-)-rugulosin B, homodimeric (-)-rugulosin C, and several rugulin analogues in three to four steps starting from anthraquinones. This work supports dimerization between variously substituted putative monomeric intermediates during the biosynthesis of naturally occurring (+)-rugulosin B and C.


Assuntos
Antraquinonas/síntese química , Naftoquinonas/química , Oxirredutases/metabolismo , Antraquinonas/química , Antraquinonas/metabolismo , Biomimética , Complexos de Coordenação/química , Reação de Cicloadição , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Chumbo/química , Naftoquinonas/síntese química , Naftoquinonas/metabolismo , Oxirredução , Oxirredutases/genética , Talaromyces/enzimologia
10.
J Antibiot (Tokyo) ; 73(5): 324-328, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32051568

RESUMO

Lavanducyanin is a bioactive phenazine-containing secondary metabolite, and naphthomevalin is an antibacterial polyketide secondary metabolite. Herein, new analogues of lavanducyanin (2) and of naphthomevalin (4), together with lavanducyanin (1) and naphthomevalin (3), were identified from Streptomyces sp. CPCC 203577, an actinomycete soil isolate. The structures of 2 and 4 were elucidated as 1-hydroxy-7-oxolavanducyanin and Δ7″,8″-6″-hydroxynaphthomevalin, respectively, by 1D and 2D NMR. Antibacterial assays revealed that 2 had significant but reduced anti-Gram-positive bacterial activity compared with 1, and 4 was devoid of anti-Gram-positive bacterial activity. This indicated that the phenazinone nucleus in lavanducyanin and the monoterpene side chain in naphthomevalin might be important for their anti-Gram-positive bacterial activity. Compounds 1-4 were all inactive against Gram-negative bacteria.


Assuntos
Antibacterianos/farmacologia , Fenazinas/farmacologia , Streptomyces/metabolismo , Antibacterianos/química , Antibacterianos/isolamento & purificação , Bactérias Gram-Negativas/química , Bactérias Gram-Positivas/química , Naftoquinonas/química , Naftoquinonas/isolamento & purificação , Naftoquinonas/farmacologia , Fenazinas/química , Fenazinas/isolamento & purificação , Metabolismo Secundário , Microbiologia do Solo , Streptomyces/isolamento & purificação , Relação Estrutura-Atividade
11.
Molecules ; 25(3)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013142

RESUMO

Twelve 1, 4-naphthoquinone derivatives, including two new (1 and 2) and 10 known (3-12), were obtained from endophytic fungus Talaromyces sp. SK-S009 isolated from the fruit of Kandelia obovata. All structures were identified through extensive analysis of the nuclear magnetic resonance (NMR), mass spectrometry (MS) and circular dichroism (CD), as well as by comparison with literature data. These compounds significantly inhibited the lipopolysaccharide (LPS)-induced nitric oxide (NO) production in the murine macrophage cell line (RAW 264.7 cells). The half maximal inhibitory concentration (IC50) values, except for compound 2, were lower than that of indomethacin (26.3 µM). Compound 9 inhibited the LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA expressions in RAW 264.7 macrophages. Additionally, compound 9 reduced the mRNA levels of pro-inflammatory factors interleukin (IL)1ß, IL-6, and tumor necrosis factor (TNF)-α. The results of this study demonstrated that these 1, 4-naphthoquinone derivatives can inhibit LPS-induced inflammation.


Assuntos
Anti-Inflamatórios não Esteroides/isolamento & purificação , Naftoquinonas/farmacologia , Talaromyces/química , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Ciclo-Oxigenase 2/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Lipopolissacarídeos , Camundongos , Estrutura Molecular , Naftoquinonas/química , Naftoquinonas/isolamento & purificação , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Células RAW 264.7 , Reação em Cadeia da Polimerase em Tempo Real
13.
Nanotechnology ; 31(17): 175705, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31931488

RESUMO

Due to the resistance to drugs, studies involving the combination and controlled release of different agents are gradually increasing. In this study, two different active ingredients, known to have antibacterial and antiparasitic activities, were encapsulated into single polymeric nanoparticles. After co-encapsulation their antibacterial and antileishmanial activity was enhanced approximately 5 and 250 times, respectively. Antibacterial and antileishmanial activities of caffeic acid phenethyl ester and juglone loaded, multifunctional nanoformulations (CJ4-CJ6-CJ8) were also evaluated for the first time in the literature comparatively with their combined free formulations. The antibacterial activity of the multifunctional nanoformulation (CJ8) were found to have a much higher activity (MIC values 6.25 and 12.5 µg ml-1 for S. aureus and E. coli, respectively) than all other formulations. Similar efficacy for CJ8 was obtained in the antiparasitic study against the Leishmania promastigotes and the IC50 was reduced to 0.1263 µg ml-1. The high activity of multifunctional nanoparticles is not only due to the synergistic effect of the active molecules but also by the encapsulation into polymeric nanoparticles. Therefore, it has been shown in the literature for the first time that the biological activity of molecules whose activity is increased by the synergistic effect can be improved with nanosystems.


Assuntos
Antibacterianos/farmacologia , Antiparasitários/farmacologia , Ácidos Cafeicos/farmacologia , Naftoquinonas/farmacologia , Álcool Feniletílico/análogos & derivados , Antibacterianos/química , Antiparasitários/química , Ácidos Cafeicos/química , Escherichia coli/efeitos dos fármacos , Leishmania/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Nanopartículas , Naftoquinonas/química , Tamanho da Partícula , Álcool Feniletílico/química , Álcool Feniletílico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Staphylococcus aureus/efeitos dos fármacos
14.
Chem Pharm Bull (Tokyo) ; 68(1): 46-57, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31902901

RESUMO

Over the past decade, a number of new 1,4-naphthoquinones have been isolated from natural sources and new 1,4-naphthoquinones with diverse structural features have been synthesized. Cardioprotective, anti-ischemic, hepatoprotective, neuroprotective and some other new properties were found for these compounds; their role in protecting against neurodegenerative diseases has been established. Their anti-inflammatory, antimicrobial and antitumor activities have been studied in more detail; new, previously unknown intracellular molecular targets and mechanisms of action have been discovered. Some compounds of this class are already being used as a medicinal drugs and some substances can be used as biochemical tools and probes for non-invasive detection of pathological areas in cells and tissues in myocardial infarction and neurodegenerative diseases using modern molecular imaging techniques.


Assuntos
Anti-Infecciosos/química , Anti-Inflamatórios/química , Naftoquinonas/química , Substâncias Protetoras/química , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Bactérias/efeitos dos fármacos , Citocinas/metabolismo , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Naftoquinonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Trypanosoma/efeitos dos fármacos
15.
Anticancer Res ; 40(1): 229-238, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31892571

RESUMO

BACKGROUND/AIM: We previously reported the potential of aminonaphthoquinone derivatives as therapeutic agents against breast and other oestrogen-responsive tumours when combined with curcumin. This study aimed at screening of novel aminonaphthoquinone derivatives (Rau 008, Rau 010, Rau 015 and Rau 018) combined with curcumin for cytotoxic, anti-angiogenic and anti-metastatic effects on MCF-7 and MDA-MB-231 breast cancer cells. MATERIALS AND METHODS: Cytotoxic and anti-angiogenic effects were analysed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and enzyme-linked immunosorbent assay; while anti-metastatic effects were measured using adhesion assay, Boyden chambers and Matrigel. RESULTS: Curcumin combined with Rau 008 elicited marked cytotoxic effects in MCF-7 cells compared with the individual treatments, whereas when it was combined with Rau 015 and with Rau 018, it displayed similar effects in MDA-MB-231 cells. The anti-angiogenic effect of Rau 015 plus curcumin in MCF-7 cells and Rau 018 plus curcumin in MDA-MB-231 cells was more effective than individual treatments, while the metastatic capability of MDA-MB-231 cells was significantly reduced after treatment with the aminonaphthoquinone-curcumin combinations. CONCLUSION: Aminonaphthoquinones may offer significant promise as therapeutic agents against breast cancer, particularly when combined with curcumin.


Assuntos
Neoplasias da Mama/patologia , Curcumina/farmacologia , Progressão da Doença , Naftoquinonas/farmacologia , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/tratamento farmacológico , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/química , Curcumina/uso terapêutico , Matriz Extracelular/metabolismo , Feminino , Humanos , Células MCF-7 , Naftoquinonas/química , Invasividade Neoplásica , Neovascularização Patológica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
J Antibiot (Tokyo) ; 73(5): 290-298, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31992865

RESUMO

The emergence of antibiotic resistance necessitates not only the identification of new compounds with antimicrobial properties, but also new strategies and combination therapies to circumvent this growing problem. Here, we report synergistic activity against methicillin-resistant Staphylococcus aureus (MRSA) of the ß-lactam antibiotic oxacillin combined with 7,8-dideoxygriseorhodin C in vitro. Ongoing efforts to identify antibiotics from marine mollusk-associated bacteria resulted in the isolation of 7,8-dideoxygriseorhodin C from a Streptomyces sp. strain cultivated from a marine gastropod tissue homogenate. Despite the long history of 7,8-dideoxygriseorhodin C in the literature, the absolute configuration has never been previously reported. A comparison of measured and calculated ECD spectra resolved the configuration of the spiroketal carbon C6, and 2D ROESY NMR spectroscopy established the absolute configuration as 6s,6aS. The compound is selective against Gram-positive bacteria including MRSA and Enterococcus faecium with an MIC range of 0.125-0.5 µg ml-1. Moreover, the compound synergizes with oxacillin against MRSA as observed in the antimicrobial microdilution and time-kill assays. Simultaneous treatment of the compound with oxacillin resulted in an approximately tenfold decrease in MIC with a combination index of <0.5, indicating synergistic anti-MRSA activity.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Oxacilina/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/isolamento & purificação , Sinergismo Farmacológico , Enterococcus faecium/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Naftoquinonas/administração & dosagem , Naftoquinonas/química , Naftoquinonas/isolamento & purificação , Naftoquinonas/farmacologia , Oxacilina/administração & dosagem , Compostos de Espiro/administração & dosagem , Compostos de Espiro/química , Compostos de Espiro/isolamento & purificação , Compostos de Espiro/farmacologia , Streptomyces/metabolismo
17.
Chem Biodivers ; 17(2): e1900597, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31804031

RESUMO

A series of bis-naphthoquinone derivatives prepared by condensation of aryl aldehydes with lawsone were tested for antiparasitic activities against Toxoplasma gondii and Trypanosoma brucei parasites. Monofluorophenyl derivative 1a, 3,4-difluorophenyl analog 1c and furyl compound 1l exhibited significant activity against T. gondii cells and appear to be new promising drug candidates against this parasite. The 3,4,5-trifluorophenyl derivative 1g and the isovanillyl derivative 1j displayed selective activity against Leishmania major amastigotes.


Assuntos
Antiparasitários/química , Naftoquinonas/química , Antiparasitários/síntese química , Antiparasitários/farmacologia , Humanos , Leishmania major/efeitos dos fármacos , Leishmania major/crescimento & desenvolvimento , Estágios do Ciclo de Vida/efeitos dos fármacos , Naftoquinonas/síntese química , Naftoquinonas/farmacologia , Relação Estrutura-Atividade , Toxoplasma/efeitos dos fármacos , Trypanosoma brucei brucei/efeitos dos fármacos
18.
ChemSusChem ; 13(3): 564-573, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31808287

RESUMO

Electrofermentation actively regulates the bacterial redox state, which is essential for bioconversion and has been highlighted as an effective method for further improvements of the productivity of either reduced or oxidized platform chemicals. 1,3-Propanediol (1,3-PDO) is an industrial value-added chemical that can be produced from glycerol fermentation. The bioconversion of 1,3-PDO from glycerol requires additional reducing energy under anoxic conditions. The cathode-based conversion of glycerol to 1,3-PDO with various electron shuttles (2-hydroxy-1,4-naphthoquinone, neutral red, and hydroquinone) using Klebsiella pneumoniae L17 was investigated. The externally poised potential of -0.9 V vs. Ag/AgCl to the cathode increased 1,3-PDO (35.5±3.1 mm) production if 100 µm neutral red was used compared with non-bioelectrochemical system fermentation (23.7±2.4 mm). Stoichiometric metabolic flux and transcriptional analysis indicated a shift in the carbon flux toward the glycerol reductive pathway. The homologous overexpression of glycerol dehydratase (DhaB) and 1,3-PDO oxidoreductase (DhaT) enzymes synergistically enhanced 1,3-PDO conversion (39.3±0.8 mm) under cathode-driven fermentation. Interestingly, a small current uptake (0.23 mmol of electrons) caused significant metabolic flux changes with a concomitant increase in 1,3-PDO production. This suggests that both an increase in 1,3-PDO production and regulation of the cellular metabolic pathway are feasible by electrode-driven control in cathodic electrofermentation.


Assuntos
Glicerol/química , Klebsiella pneumoniae/metabolismo , Propilenoglicóis/química , Técnicas Eletroquímicas/métodos , Eletrodos , Transporte de Elétrons , Fermentação , Hidroliases/metabolismo , Hidroquinonas/química , Naftoquinonas/química , Vermelho Neutro/química , Oxirredução , Oxirredutases/metabolismo , Transdução de Sinais
19.
J Biosci Bioeng ; 129(1): 23-30, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31506243

RESUMO

The cross-coupling reaction is one of the most important chemical reactions in the modern organic chemistry. Biocatalysts capable of catalyzing C-C coupling reactions are desired in the chemical industry for sustainable development. Cytochrome P450 monooxygenases (P450s) have received considerable attention as biocatalysts capable of catalyzing such reactions. Here, we focused on actinomycete P450s, which have high homology with CYP158A2, involved in the oxidative C-C coupling reaction for flaviolin dimerization in Streptomyces coelicolor A3(2). The screening of a chemical library composed of 426 aromatic compounds identified several combinations of P450s and their potential substrates. The type-I difference spectrum indicated that the identified substrates bind to the active sites of a P450, named StVI from Streptomyces violaceusniger. A redshift of the absorption maximum of the reaction products, together with LC-MS analysis suggested the presence of extended conjugate systems in the products through direct C-C coupling between two aromatic rings. The results demonstrated that actinomycete P450s have great potential to be utilized as biocatalysts for oxidative C-C coupling reactions and to facilitate the synthesis of diverse coupling products.


Assuntos
Actinobacteria/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Actinobacteria/química , Actinobacteria/genética , Actinobacteria/metabolismo , Proteínas de Bactérias/genética , Catálise , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/genética , Dimerização , Naftoquinonas/química , Naftoquinonas/metabolismo , Oxirredução , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo
20.
Phytochemistry ; 169: 112182, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31669820

RESUMO

The chemical study on the heartwoods extract of Ventilago harmandiana (Rhamnaceae) resulted in the isolation of ten previously undescribed pyranonaphthoquinones (ventilanones A-J), an undescribed anthraquinone (ventilanone K), together with eight known anthraquinone derivatives. Their structures were elucidated by extensive analysis of their spectroscopic data. The absolute configuration of ventilanone A was established from single crystal X-ray crystallographic analysis of its p-bromobenzenesulfonate ester derivative using Cu Kα radiation. The absolute configurations of the other related compounds were identified by comparison of their ECD data with those of ventilanone A and related known compounds. Cytotoxic and anti-inflammatory activities of some of the isolated compounds were evaluated. Ventilanone A and ventilanone C exhibited moderate cytotoxicity against P-388 cell line. Ventilanone D exhibited significant anti-inflammatory activity while ventilanone A and ventilanone C showed moderate activity.


Assuntos
Antraquinonas/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Edema/tratamento farmacológico , Naftoquinonas/farmacologia , Rhamnaceae/química , Animais , Antraquinonas/química , Antraquinonas/isolamento & purificação , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Camundongos , Modelos Moleculares , Estrutura Molecular , Naftoquinonas/química , Naftoquinonas/isolamento & purificação , Ratos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA