Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.055
Filtrar
1.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37762346

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects most people worldwide. AD is a complex central nervous system disorder. Several drugs have been designed to cure AD, but with low success rates. Because the blood-brain and blood-cerebrospinal fluid barriers are two barriers that protect the central nervous system, their presence has severely restricted the efficacy of many treatments that have been studied for AD diagnosis and/or therapy. The use of nanoparticles for the diagnosis and treatment of AD is the focus of an established and rapidly developing field of nanomedicine. Recent developments in nanomedicine have made it possible to effectively transport drugs to the brain. However, numerous obstacles remain to the successful use of nanomedicines in clinical settings for AD treatment. Furthermore, given the rapid advancement in nanomedicine therapeutics, better outcomes for patients with AD can be anticipated. This article provides an overview of recent developments in nanomedicine using different types of nanoparticles for the management and treatment of AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Nanomedicina , Sistema Nervoso Central , Encéfalo
2.
Front Immunol ; 14: 1226360, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727791

RESUMO

Angiogenesis is a hallmark of cancer biology, and neoadjuvant therapies targeting either tumor vasculature or VEGF signaling have been developed to treat solid malignant tumors. However, these therapies induce complete vascular depletion leading to hypoxic niche, drug resistance, and tumor recurrence rate or leading to impaired delivery of chemo drugs and immune cell infiltration at the tumor site. Achieving a balance between oxygenation and tumor growth inhibition requires determining vascular normalization after treatment with a low dose of antiangiogenic agents. However, monotherapy within the approved antiangiogenic agents' benefits only some tumors and their efficacy improvement could be achieved using immunotherapy and emerging nanocarriers as a clinical tool to optimize subsequent therapeutic regimens and reduce the need for a high dosage of chemo agents. More importantly, combined immunotherapies and nano-based delivery systems can prolong the normalization window while providing the advantages to address the current treatment challenges within antiangiogenic agents. This review summarizes the approved therapies targeting tumor angiogenesis, highlights the challenges and limitations of current therapies, and discusses how vascular normalization, immunotherapies, and nanomedicine could introduce the theranostic potentials to improve tumor management in future clinical settings.


Assuntos
Inibidores da Angiogênese , Imunoterapia , Humanos , Inibidores da Angiogênese/uso terapêutico , Hipóxia , Nanomedicina , Sistemas de Liberação de Fármacos por Nanopartículas
3.
Eur J Drug Metab Pharmacokinet ; 48(5): 515-529, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37656402

RESUMO

Messenger RNA (mRNA) has emerged as a new therapeutic agent for the prevention and treatment of a wide range of diseases. The recent achievement of the two lipid nanoparticle-mRNA vaccines developed by Moderna and Pfizer-BioNTech against coronavirus 2019 (COVID-19) disease in record time highlights the huge potential of mRNA technology and reshaping the landscape of vaccine development and the future of gene therapies. Challenges related to translational efficacy, mRNA stability, immunogenicity, and ensuring the quality of final products have been significantly improved by recent advancements in mRNA engineering and delivery. Thus, the present review aims to provide the latest innovations that incrementally overcome these issues and future directions in the context of ongoing clinical trials against infectious diseases and beyond.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , COVID-19/terapia , Nanomedicina , Doenças Transmissíveis/tratamento farmacológico , RNA Mensageiro/genética
4.
Mediators Inflamm ; 2023: 4035516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662481

RESUMO

Sepsis is a life-threatening clinical condition caused by infection and transposition of pathogens and pathogen-associated molecular patterns (PAMPs) into the host bloodstream. During sepsis, activation of toll-like receptors (TLRs) on immune cells triggers the release of pro-inflammatory cytokines and overstimulates the production of vasodilatory mediators such as nitric oxide (NO). These vascular changes lead to widespread inflammation, tissue damage, multiple organ failure, and often death. New therapeutic options are urgently needed. To this end, thiostrepton (TST) has emerged as a candidate for sepsis treatment due to its action as an antibiotic and anti-inflammatory molecule (TLR7-9 inhibitor). Reports in the literature suggest that TLR9 inhibition substantially suppresses the excessive host inflammatory response and attenuates sepsis-induced mortality in the cecal ligation and puncture (CLP) murine model of sepsis. However, to the best of our knowledge, TST has never been directly tested as a therapeutic option for the management of sepsis, possibly due to its low water solubility and drug delivery issues. These facts prompted us to test the central hypothesis that TST encapsulated in phospholipid sterically stabilized micelles (TST-SSM) could be developed into a novel treatment for sepsis. Thus, using our published method of encapsulating the hydrophobic antibiotic TST-SSM, we evaluated the in vivo efficacy of TST-SSM nanomedicine in the murine model of polymicrobial sepsis. We found that TST-SSM increased the median survival of CLP-induced septic mice from 31 to 44 hr by reducing the bacterial burden in the blood and peritoneal lavage. Moreover, plasma levels of pro-inflammatory cytokines (interleukin 6 and tumor necrosis factor-alpha) and NO derivatives were also reduced, whereas renal and hepatic function biomarkers creatinine and aspartate transferase were significantly improved. In conclusion, we identified that TST-SSM nanomedicine has significant potential as a therapeutic agent for sepsis management, primarily due to its anti-inflammatory and antibiotic properties.


Assuntos
Sepse , Tioestreptona , Animais , Camundongos , Receptor Toll-Like 9 , Modelos Animais de Doenças , Nanomedicina , Sepse/tratamento farmacológico , Inflamação/tratamento farmacológico , Antibacterianos , Citocinas
5.
Int J Nanomedicine ; 18: 4885-4906, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37667771

RESUMO

Background: Deaths from bacterial infections have risen year by year. This trend is further aggravated as the overuse antibiotics and the bacterial resistance to all known antibacterial agents. Therefore, new therapeutic alternatives are urgently needed. Methods: Enlightenment the combination usage of traditional herb medicine, one carrier-free binary nanoparticles (GA-BBR NPs) was discovered, which was self-assembled from gallic acid and berberine through electrostatic interaction, π-π stacking and hydrophobic interaction; and it could be successfully prepared by a green, cost-effective and "one-pot" preparation process. Results: The nanoparticles exhibited strong antibacterial activity and biofilm removal ability against multidrug-resistant S. aureus (MRSA) by downregulating mRNA expression of rpsF, rplC, rplN, rplX, rpsC, rpmC and rpsH to block bacterial translation mechanisms in vitro and in vivo, and it had well anti-inflammatory activity and a promising role in promoting angiogenesis to accelerate the wound healing on MRSA-infected wounds model in vivo. Additionally, the nanoparticles displayed well biocompatibility without cytotoxicity, hemolytic activity, and tissue or organ toxicity. Conclusion: GA-BBR NPs originated from the drug combination has potential clinical transformation value, and this study provides a new idea for the design of carrier-free nanomedicine derived from natural herbals.


Assuntos
Berberina , Staphylococcus aureus Resistente à Meticilina , Nanomedicina , Antibacterianos/farmacologia , Anti-Inflamatórios , Berberina/farmacologia , Excipientes
6.
Front Immunol ; 14: 1241791, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731484

RESUMO

Glioma is the most common primary intracranial tumor in adults with poor prognosis. Current clinical treatment for glioma includes surgical resection along with chemoradiotherapy. However, the therapeutic efficacy is still unsatisfactory. The invasive nature of the glioma makes it impossible to completely resect it. The presence of blood-brain barrier (BBB) blocks chemotherapeutic drugs access to brain parenchyma for glioma treatment. Besides, tumor heterogeneity and hypoxic tumor microenvironment remarkably limit the efficacy of radiotherapy. With rapid advances of nanotechnology, the emergence of a new treatment approach, namely, reactive oxygen species (ROS)-based nanotherapy, provides an effective approach for eliminating glioma via generating large amounts of ROS in glioma cells. In addition, the emerging nanotechnology also provides BBB-crossing strategies, which allows effective ROS-based nanotherapy of glioma. In this review, we summarized ROS-based nanomedicine and their application in glioma treatment, including photodynamic therapy (PDT), photothermal therapy (PTT), chemodynamic therapy (CDT), sonodynamic therapy (SDT), radiation therapy, etc. Moreover, the current challenges and future prospects of ROS-based nanomedicine are also elucidated with the intention to accelerate its clinical translation.


Assuntos
Glioma , Nanomedicina , Adulto , Humanos , Barreira Hematoencefálica , Espécies Reativas de Oxigênio , Glioma/terapia , Estresse Oxidativo , Microambiente Tumoral
8.
Theranostics ; 13(12): 4121-4137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554266

RESUMO

Background: Due to the immunosuppressive tumor microenvironment (TME), radiation therapy (RT)-mediated immune response is far from satisfactory. How to improve the efficacy of immunogenic RT by priming strong immunogenic cell death (ICD) is an interesting and urgent challenge. Methods: A polyacrylic acid-coated core-shell UiO@Mn3O4 (denoted as UMP) nanocomposite is constructed for immunogenic RT via multiple strategies. Results: Reshaping the TME via Mn3O4-mediated integration of O2 production, GSH depletion, ROS generation and cell cycle arrest, accompanied by Hf-based UiO-mediated radiation absorption, eventually amplifies UMP-mediated RT to induce intense ICD. With the potent ICD induction and reprogrammed tumor-associated macrophages, this synergetic strategy can promote dendritic cells maturation and CD8+ T cells infiltration, and potentiate anti-tumor immunity against primary, distant, and metastatic tumors. Conclusion: This work is expected to shed light on the immunosuppressive TME-reshaping via multiple strategies to reinforce the immunogenic RT outcome and facilitate the development of effective cancer nanomedicine.


Assuntos
Morte Celular , Nanomedicina , Nanoestruturas , Neoplasias , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Pontos de Checagem do Ciclo Celular , Morte Celular/imunologia , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Glutationa/metabolismo , Camundongos Endogâmicos BALB C , Nanomedicina/métodos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Metástase Neoplásica/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/radioterapia , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral , Macrófagos Associados a Tumor/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Adv Drug Deliv Rev ; 200: 115051, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37549848

RESUMO

Imbalance in the tissue microenvironment is the main obstacle to drug delivery and distribution in the human body. Before penetrating the pathological tissue microenvironment to the target site, therapeutic agents are usually accompanied by three consumption steps: the first step is tissue physical barriers for prevention of their penetration, the second step is inactivation of them by biological molecules, and the third step is a cytoprotective mechanism for preventing them from functioning on specific subcellular organelles. However, recent studies in drug-hindering mainly focus on normal physiological rather than pathological microenvironment, and the repair of damaged physiological barriers is also rarely discussed. Actually, both the modulation of pathological barriers and the repair of damaged physiological barriers are essential in the disease treatment and the homeostasis maintenance. In this review, we present an overview describing the latest advances in the generality of these pathological barriers and barrier-modulated nanomedicine. Overall, this review holds considerable significance for guiding the design of nanomedicine to increase drug efficacy in the future.


Assuntos
Nanopartículas , Neoplasias , Humanos , Nanomedicina , Nanopartículas/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
10.
ACS Nano ; 17(16): 15328-15353, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37573530

RESUMO

Ferroptosis, a type of regulated cell death driven by iron-dependent phospholipid peroxidation, has captured much attention in the field of nanomedicine since it was coined in 2012. Compared with other regulated cell death modes such as apoptosis and pyroptosis, ferroptosis has many distinct features in the molecular mechanisms and cellular morphology, representing a promising strategy for treating cancers that are resistant to conventional therapeutic modalities. Moreover, recent insights collectively reveal that ferroptosis is tightly connected to the maintenance of the tumor immune microenvironment (TIME), suggesting the potential application of ferroptosis therapies for evoking robust antitumor immunity. From a biochemical perspective, ferroptosis is intricately regulated by multiple cellular metabolic pathways, including iron metabolism, lipid metabolism, redox metabolism, etc., highlighting the importance to elucidate the relationship between tumor metabolism and ferroptosis for developing antitumor therapies. In this review, we provide a comprehensive discussion on the current understanding of ferroptosis-inducing mechanisms and thoroughly discuss the relationship between ferroptosis and various metabolic traits of tumors, which offer promising opportunities for direct tumor inhibition through a nanointegrated approach. Extending from the complex impact of ferroptosis on TIME, we also discussed those important considerations in the development of ferroptosis-based immunotherapy, highlighting the challenges and strategies to enhance the ferroptosis-enabled immunostimulatory effects while avoiding potential side effects. We envision that the insights in this study may facilitate the development and translation of ferroptosis-based nanomedicines for tumor treatment.


Assuntos
Ferroptose , Neoplasias , Humanos , Nanomedicina , Metabolismo dos Lipídeos , Neoplasias/tratamento farmacológico , Ferro , Microambiente Tumoral
11.
PLoS One ; 18(8): e0290237, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37624853

RESUMO

Recently, bioinspired material such as nanoparticle has been successfully applied in the cancer therapy. However, how to precisely control the drug release from nanomedicine in tumor tissue and overcome the hypoxic microenvironment of tumor tissue is still an important challenge in the development of nanomedicine. In this work, a new type of drug-loaded nanoparticles P(AAm-co-AN)-AuNRs@CeO2-DOX (PA-DOX) was prepared by combining high-efficiency photothermal reagents, critical up-conversion temperature polymer layer and anti-cancer drug doxorubicin (DOX) for the treatment of hepatocellular carcinoma (HCC). In this system, CeO2 can decompose hydrogen peroxide to H2O and O2 alleviate the anaerobic microenvironment of liver cancer cells. As a photothermal reagent, AuNRs@CeO2 can convert near-infrared light into heat energy to achieve local heat to kill cancer cells and ablate solid tumors. In addition, the elevated temperature would enable the polymer layer to undergo a phase transition to release more DOX to achieve a controlled release mechanism, which will open up a new horizon for clinical cancer treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Temperatura , Liberação Controlada de Fármacos , Nanomedicina , Neoplasias Hepáticas/tratamento farmacológico , Doxorrubicina/uso terapêutico , Hipóxia , Polímeros , Microambiente Tumoral
12.
Molecules ; 28(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37570844

RESUMO

Photodynamic therapy (PDT) and photothermal therapy (PTT) have emerged as promising non-invasive approaches to cancer treatment. However, the development of multifunctional nanomedicines is necessary to enhance these approaches' effectiveness and safety. In this study, we investigated a polydopamine-based nanoparticle (PDA-ZnPc+ Nps) loaded with the efficient photosensitizer ZnPc(4TAP)12+ (ZnPc+) through in vitro and in vivo experiments to achieve synergistic PDT and PTT. Our results demonstrated that PDA-ZnPc+ Nps exhibited remarkable efficacy due to its ability to generate reactive oxygen species (ROS), induce photothermal effects, and promote apoptosis in cancer cells. Moreover, in both MCF-7 cells and MCF-7 tumor-bearing mice, the combined PDT/PTT treatment with PDA-ZnPc+ Nps led to synergistic effects. Subcellular localization analysis revealed a high accumulation of ZnPc+ in the cytoplasm of cancer cells, resulting in cellular disruption and vacuolation following synergistic PDT/PTT. Furthermore, PDA-ZnPc+ Nps exhibited significant antitumor effects without causing evident systemic damage in vivo, enabling the use of lower doses of photosensitizer and ensuring safer treatment. Our study not only highlights the potential of PDA-ZnPc+ Nps as a dual-functional anticancer agent combining PDA and PTT but also offers a strategy for mitigating the side effects associated with clinical photosensitizers, particularly dark toxicity.


Assuntos
Nanopartículas , Fotoquimioterapia , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Terapia Fototérmica , Nanomedicina , Linhagem Celular Tumoral
13.
Nanoscale ; 15(32): 13202-13223, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37526946

RESUMO

In recent years, tremendous progress has been made in the development of nanomedicines for advanced therapeutics, yet their unsatisfactory targeting ability hinders the further application of nanomedicines. Nanomaterials undergo a series of processes, from intravenous injection to precise delivery at target sites. Each process faces different or even contradictory requirements for nanoparticles to pass through biological barriers. To overcome biological barriers, researchers have been developing nanomedicines with transformable physicochemical properties in recent years. Physicochemical transformability enables nanomedicines to responsively switch their physicochemical properties, including size, shape, surface charge, etc., thus enabling them to cross a series of biological barriers and achieve maximum delivery efficiency. In this review, we summarize recent developments in nanomedicines with transformable physicochemical properties. First, the biological dilemmas faced by nanomedicines are analyzed. Furthermore, the design and synthesis of nanomaterials with transformable physicochemical properties in terms of size, charge, and shape are summarized. Other switchable physicochemical parameters such as mobility, roughness and mechanical properties, which have been sought after most recently, are also discussed. Finally, the prospects and challenges for nanomedicines with transformable physicochemical properties are highlighted.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias , Humanos , Nanopartículas/química , Nanomedicina , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico
14.
ACS Appl Mater Interfaces ; 15(35): 41271-41286, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37622208

RESUMO

The ordered and directed functionalization of targeting elements on the surface of nanomaterials for precise tumor therapy remains a challenge. To address the above problem, herein, we adopted a materials-based synthetic biotechnology strategy to fabricate a bioengineered fusion protein of materials-binding peptides and targeting elements, which can serve as a "molecular glue" to achieve a directional and organized assembly of targeting biological macromolecules on the surface of nanocarriers. The hypoxia microenvironment of solid tumors inspired the rapid development of starvation/chemosynergistic therapy; however, the unsatisfied spatiotemporal specific performance hindered its further development in precise tumor therapy. As a proof of concept, a bioengineered fusion protein containing a dendritic mesoporous silicon (DMSN)-binding peptide, and a tumor-targeted and acidity-decomposable ferritin heavy chain 1 (FTH1), was constructed by fusion expression and further assembled on the surface of DMSN companying with the insertion of hypoxia-activated prodrug tirapazamine (TPZ) and glucose oxidase (GOX) to establish a nanoreactor for precise starvation/chemosynergistic tumor therapy. In this context, the as-prepared therapeutic nanoreactors revealed obvious tumor-specific accumulation and an endocytosis effect. Next, the acidic tumor microenvironment triggered the structural collapse of FTH1 and the subsequent release of GOX and TPZ, in which GOX-mediated catalysis cut off the nutrition supply to realize starvation therapy based on the consumption of endogenous glucose and further provided an exacerbated hypoxia environment for TPZ in situ activation to initiate tumor chemotherapy. More significantly, the presence of "molecular glue" elevated the tumor-targeting capacity of nanoreactors and further enhanced the starvation/chemosynergistic therapeutic effect remarkably, suggesting that such a strategy provided a solution for the functionality of nanomaterials and facilitated the design of novel targeting nanomedicines. Overall, this study highlights materials-binding peptides as a new type of "molecular glue" and opens new avenues for designing and exploring active biological materials for biological functions and applications.


Assuntos
Engenharia Biomédica , Neoplasias , Humanos , Biotecnologia , Glucose Oxidase , Hipóxia , Nanomedicina , Microambiente Tumoral
15.
Chem Commun (Camb) ; 59(74): 11081-11084, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37641812

RESUMO

Liver disease remains a global health challenge, with its incidence steadily increasing worldwide. Herein, zwitterionic mesoporous engineering was developed for the identification of different liver diseases including liver cirrhosis and liver cancer. Based on this engineering, a total of 2633 m/z signals were observed to be enriched. Notably, three key peptides were identified and showed high accuracy and precision for distinguishing the healthy and disease states, propelling the field of nanomedicine toward genuine personalized medicine.


Assuntos
Cirrose Hepática , Neoplasias Hepáticas , Humanos , Engenharia , Nanomedicina , Peptídeos
16.
ACS Nano ; 17(17): 16308-16325, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37643407

RESUMO

Owing to their uniform and tunable particle size, pore size, and shape, along with their modular surface chemistry and biocompatibility, mesoporous silica nanoparticles (MSNs) have found extensive applications as nanocarriers to deliver therapeutic, diagnostic and combined "theranostic" cargos to cells and tissues. Although thoroughly investigated, MSN have garnered FDA approval for only one MSN system via oral administration. One possible reason is that there is no recognized, reproducible, and widely adopted MSN synthetic protocol, meaning not all MSNs are created equal in the laboratory nor in the eyes of the FDA. This manuscript provides the sol-gel and MSN research communities a reproducible, fully characterized synthetic protocol to synthesize MSNs and corresponding lipid-coated MSN delivery vehicles with predetermined particle size, pore size, and drug loading and release characteristics. By carefully articulating the step-by-step synthetic procedures and highlighting critical points and troubleshooting, augmented with videos and schematics, this Article will help researchers entering this rapidly expanding field to yield reliable results.


Assuntos
Nanomedicina , Nanopartículas , RNA Interferente Pequeno , RNA Mensageiro , Lipídeos
17.
Nat Commun ; 14(1): 4771, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553327

RESUMO

Despite significant advances in immune checkpoint blockade (ICB), immunosuppression mediated by tumor-associated myeloid cells (TAMCs) poses a major barrier to cancer immunotherapy. In addition, while immunogenic cell death (ICD) provides a viable approach to inducing anti-tumor immune response, it remains unknown how to effectively trigger ICD while addressing immunosuppressive TAMCs. Here, we show that SC144, a gp130 inhibitor that blocks the IL-6/gp130/STAT3 pathway, induces ICD of tumor cells and polarizes macrophages to M1-phenotype in vitro. However, as SC144 also induces killing of CD8+ T-cells, we sought to deliver SC144 selectively to tumor cells and TAMCs. Toward this goal, we have developed hyaluronic acid-bilirubin nanoparticles (HABN) that accumulate in CD44hi tumor cells and TAMCs. Systemic administration of SC144 loaded in HABN (SC144@HABN) induces apoptosis and ICD of tumor cells, increases the ratio of M1-like to M2-like macrophages, and decreases the frequency of myeloid-derived suppressor cells and CD4+ regulatory T-cells, while promoting anti-tumor CD8+ T-cells. Moreover, SC144@HABN combined with anti-PD-L1 ICB efficiently eliminates MC38 tumors and ICB-resistant 4T1 tumors. Overall, our work demonstrates a therapeutic strategy based on coordinated ICD induction and TAMC modulation and highlights the potential of combination chemoimmunotherapy.


Assuntos
Ácido Hialurônico , Neoplasias , Humanos , Ácido Hialurônico/farmacologia , Linfócitos T CD8-Positivos/metabolismo , Nanomedicina , Bilirrubina , Receptor gp130 de Citocina , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Imunoterapia , Microambiente Tumoral , Linhagem Celular Tumoral
18.
Angew Chem Int Ed Engl ; 62(39): e202308950, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37553293

RESUMO

Protein coronas are present extensively at the bio-nano interface due to the natural adsorption of proteins onto nanomaterials in biological fluids. Aside from the robust property of nanoparticles, the dynamics of the protein corona shell largely define their chemical identity by altering interface properties. However, the soft coronas are normally complex and rapidly changing. To real-time monitor the entire formation, we report here a self-regulated electrochemiluminescence (ECL) microscopy based on the interaction of the Ru(bpy)3 3+ with the nanoparticle surface. Thus, the heterogeneity of the protein corona is in situ observed in single nanoparticle "cores" before and after loading drugs in nanomedicine carriers. The label-free, optical stable and dynamic ECL microscopy minimize misinterpretations caused by the variation of nanoparticle size and polydispersity. Accordingly, the synergetic actions of proteins and nanoparticles properties are uncovered by chemically engineered protein corona. After comparing the protein corona formation kinetics in different complex systems and different nanomedicine carriers, the universality and accuracy of this technique were well demonstrated via the protein corona formation kinetics curves regulated by competitive adsorption of Ru(bpy)3 3+ and multiple proteins on surface of various carriers. The work is of great significance for studying bio-nano interface in drug delivery and targeted cancer treatment.


Assuntos
Nanopartículas , Coroa de Proteína , Coroa de Proteína/química , Microscopia , Nanomedicina/métodos , Cinética , Proteínas/química , Nanopartículas/química
19.
J Nanobiotechnology ; 21(1): 292, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620846

RESUMO

Lymph nodes play a pivotal role in tumor progression as key components of the lymphatic system. However, the unique physiological structure of lymph nodes has traditionally constrained the drug delivery efficiency. Excitingly, nanomedicines have shown tremendous advantages in lymph node-specific delivery, enabling distinct recognition and diagnosis of lymph nodes, and hence laying the foundation for efficient tumor therapies. In this review, we comprehensively discuss the key factors affecting the specific enrichment of nanomedicines in lymph nodes, and systematically summarize nanomedicines for precise lymph node drug delivery and therapeutic application, including the lymphatic diagnosis and treatment nanodrugs and lymph node specific imaging and identification system. Notably, we delve into the critical challenges and considerations currently facing lymphatic nanomedicines, and futher propose effective strategies to address these issues. This review encapsulates recent findings, clinical applications, and future prospects for designing effective nanocarriers for lymphatic system targeting, with potential implications for improving cancer treatment strategies.


Assuntos
Nanomedicina , Neoplasias , Humanos , Sistema Linfático , Linfonodos/diagnóstico por imagem , Diagnóstico por Imagem , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
20.
Biomaterials ; 301: 122269, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37573840

RESUMO

Chemotherapy-conjugated immunotherapy in clinical oncology conceptually resembles the combined effects of cytoreduction and immunostimulation in membrane targeted cell killings mediated by pore-forming proteins or host defense peptides. Of the similar concept, targeting cancer cell membrane using membrane active peptides is a hopeful therapeutic modality but had long been hindered from in vivo application. Here we report an enabling strategy of pre-opsonizing a membrane penetrating Ir-complexed octa-arginine peptide (iPep) with serum albumin via intrinsic amphipathicity-driven bimodal interactions into nanoparticles (NP). We found that NP triggered stress-mediated 4T1 cell oncosis which induced potent immunological activation, surpassing several well-known immunogenic medicines. Vested with albumin-enhanced in vivo tumor targeting specificity and pharmacokinetic properties, NP showed combined chemo to immunotherapies of s. c. tumors in mice, with decreased percentages of MDSC, Treg, M2-like macrophage and improved infiltration of CTLs in tumor site, caused complete regression of 4T1 and CT26 tumors, outperforming clinical medicines. In a challenging orthotopic breast cancer model, boost i. v. injections of NP acted as in situ tumor vaccine that drastically enhanced 4T1-specific cellular and humoral immunities to reverse disease progression. Thus, with combined effects of direct cytoreduction, immune activation and tumor vaccine, iPep-NP presents the promise and potential of a new modality of cancer medicine.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Camundongos , Animais , Vacinas Anticâncer/uso terapêutico , Nanomedicina , Neoplasias/tratamento farmacológico , Imunoterapia , Albuminas/uso terapêutico , Linhagem Celular Tumoral , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...