Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.919
Filtrar
1.
Molecules ; 26(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201296

RESUMO

Osteosarcoma (OSA) is the most common malignant bone neoplasia in humans and dogs. In dogs, treatment consists of surgery in combination with chemotherapy (mostly carboplatin and/or doxorubicin (Dox)). Chemotherapy is often rendered ineffective by multidrug resistance. Previous studies have revealed that Dox conjugated with 4 nm glutathione-stabilized gold nanoparticles (Au-GSH-Dox) enhanced the anti-tumor activity and cytotoxicity of Dox in Dox-resistant feline fibrosarcoma cell lines exhibiting high P-glycoprotein (P-gp) activity. The present study investigated the influence of Au-GSH-Dox on the canine OSA cell line D17 and its relationship with P-gp activity. A human Dox-sensitive OSA cell line, U2OS, served as the negative control. Au-GSH-Dox, compared to free Dox, presented a greater cytotoxic effect on D17 (IC50 values for Au-GSH-Dox and Dox were 7.9 µg/mL and 15.2 µg/mL, respectively) but not on the U2OS cell line. All concentrations of Au-GSH (ranging from 10 to 1000 µg/mL) were non-toxic in both cell lines. Inhibition of the D17 cell line with 100 µM verapamil resulted in an increase in free Dox but not in intracellular Au-GSH-Dox. The results indicate that Au-GSH-Dox may act as an effective drug in canine OSA by bypassing P-gp.


Assuntos
Doxorrubicina/química , Doxorrubicina/farmacologia , Glutationa/química , Ouro/química , Nanopartículas Metálicas/química , Osteossarcoma/tratamento farmacológico , Adolescente , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Criança , Cães , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos
2.
Molecules ; 26(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203966

RESUMO

Nanoparticle-reinforced polymer-based materials effectively combine the functional properties of polymers and unique characteristic features of NPs. Biopolymers have attained great attention, with perspective multifunctional and high-performance nanocomposites exhibiting a low environmental impact with unique properties, being abundantly available, renewable, and eco-friendly. Nanocomposites of biopolymers are termed green biocomposites. Different biocomposites are reported with numerous inorganic nanofillers, which include selenium. Selenium is a micronutrient that can potentially be used in the prevention and treatment of diseases and has been extensively studied for its biological activity. SeNPs have attracted increasing attention due to their high bioavailability, low toxicity, and novel therapeutic properties. One of the best routes to take advantage of SeNPs' properties is by mixing these NPs with polymers to obtain nanocomposites with functionalities associated with the NPs together with the main characteristics of the polymer matrix. These nanocomposite materials have markedly improved properties achieved at low SeNP concentrations. Composites based on polysaccharides, including fungal beta-glucans, are bioactive, biocompatible, biodegradable, and have exhibited an innovative potential. Mushrooms meet certain obvious requirements for the green entity applied to the SeNP manufacturing. Fungal-matrixed selenium nanoparticles are a new promising biocomposite material. This review aims to give a summary of what is known by now about the mycosynthesized selenium polymeric nanocomposites with the impact on fungal-assisted manufactured ones, the mechanisms of the involved processes at the chemical reaction level, and problems and challenges posed in this area.


Assuntos
Biopolímeros/química , Nanopartículas Metálicas/química , Selênio/química , Materiais Biocompatíveis/química , Disponibilidade Biológica , Fungos , Nanocompostos/química , Nanopartículas/química , Selênio/metabolismo
3.
Molecules ; 26(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204666

RESUMO

The rise of antimicrobial resistance to antibiotics (AMR) as a healthcare crisis has led to a tremendous social and economic impact, whose damage poses a significant threat to future generations. Current treatments either are less effective or result in further acquired resistance. At the same time, several new antimicrobial discovery approaches are expensive, slow, and relatively poorly equipped for translation into the clinical world. Therefore, the use of nanomaterials is presented as a suitable solution. In particular, this review discusses selenium nanoparticles (SeNPs) as one of the most promising therapeutic agents based in the nanoscale to treat infections effectively. This work summarizes the latest advances in the synthesis of SeNPs and their progress as antimicrobial agents using traditional and biogenic approaches. While physiochemical methods produce consistent nanostructures, along with shortened processing procedures and potential for functionalization of designs, green or biogenic synthesis represents a quick, inexpensive, efficient, and eco-friendly approach with more promise for tunability and versatility. In the end, the clinical translation of SeNPs faces various obstacles, including uncertain in vivo safety profiles and mechanisms of action and unclear regulatory frameworks. Nonetheless, the promise possessed by these metalloid nanostructures, along with other nanoparticles in treating bacterial infections and slowing down the AMR crisis, are worth exploring.


Assuntos
Farmacorresistência Bacteriana/efeitos dos fármacos , Selênio/química , Selênio/farmacologia , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana/fisiologia , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Nanoestruturas/uso terapêutico , Selênio/metabolismo
4.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199667

RESUMO

Nanoparticles (NPs) with a high atomic number (Z) are promising radiosensitizers for cancer therapy. However, the dependence of their efficacy on irradiation conditions is still unclear. In the present work, 11 different metal and metal oxide NPs (from Cu (ZCu = 29) to Bi2O3 (ZBi = 83)) were studied in terms of their ability to enhance the absorbed dose in combination with 237 X-ray spectra generated at a 30-300 kVp voltage using various filtration systems and anode materials. Among the studied high-Z NP materials, gold was the absolute leader by a dose enhancement factor (DEF; up to 2.51), while HfO2 and Ta2O5 were the most versatile because of the largest high-DEF region in coordinates U (voltage) and Eeff (effective energy). Several impacts of the X-ray spectral composition have been noted, as follows: (1) there are radiation sources that correspond to extremely low DEFs for all of the studied NPs, (2) NPs with a lower Z in some cases can equal or overcome by the DEF value the high-Z NPs, and (3) the change in the X-ray spectrum caused by a beam passing through the matter can significantly affect the DEF. All of these findings indicate the important role of carefully planning radiation exposure in the presence of high-Z NPs.


Assuntos
Cobre/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Neoplasias/radioterapia , Radiossensibilizantes/uso terapêutico , Bismuto/química , Bismuto/uso terapêutico , Cobre/química , Relação Dose-Resposta a Droga , Humanos , Nanopartículas Metálicas/química , Método de Monte Carlo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Óxidos/química , Óxidos/uso terapêutico , Radiossensibilizantes/química , Dosagem Radioterapêutica
5.
Molecules ; 26(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206375

RESUMO

This research aimed to enhance the antibacterial activity of silver nanoparticles (AgNPs) synthesized from silver nitrate (AgNO3) using aloe vera extract. It was performed by means of incorporating AgNPs on an activated carbon nanoparticle (ACNPs) under ultrasonic agitation (40 kHz, 2 × 50 watt) for 30 min in an aqueous colloidal medium. The successful AgNPs synthesis was clarified with both Ultraviolet-Visible (UV-Vis) and Fourier Transform Infrared (FTIR) spectrophotometers. The successful AgNPs-ACNPs incorporation and its particle size analysis was performed using Transmission Electron Microscope (TEM). The brown color suspension generation and UV-Vis's spectra maximum wavelength at around 480 nm confirmed the existence of AgNPs. The particle sizes of the produced AgNPs were about 5 to 10 nm in the majority number, which collectively surrounded the aloe vera extract secondary metabolites formed core-shell like nanostructure of 8.20 ± 2.05 nm in average size, while ACNPs themselves were about 20.10 ± 1.52 nm in average size formed particles cluster, and 48.00 ± 8.37 nm in average size as stacking of other particles. The antibacterial activity of the synthesized AgNPs and AgNPs-immobilized ACNPs was 57.58% and 63.64%, respectively (for E. coli); 61.25%, and 93.49%, respectively (for S. aureus). In addition, when the AgNPs-immobilized ACNPs material was coated on the cotton and polyester fabrics, the antibacterial activity of the materials changed, becoming 19.23% (cotton; E. coli), 31.73% (polyester; E. coli), 13.36% (cotton; S. aureus), 21.15% (polyester; S. aureus).


Assuntos
Antibacterianos , Carvão Vegetal , Escherichia coli/crescimento & desenvolvimento , Química Verde , Nanopartículas Metálicas/química , Prata , Staphylococcus aureus/crescimento & desenvolvimento , Têxteis , Aloe/química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Carvão Vegetal/química , Carvão Vegetal/farmacologia , Extratos Vegetais/química , Prata/química , Prata/farmacologia
6.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204328

RESUMO

The use of experimental relations to approximate the efficient thermophysical properties of a nanofluid (NF) with Cu nanoparticles (NPs) and hybrid nanofluid (HNF) with Cu-SWCNT NPs and subsequently model the two-dimensional pulsatile Casson fluid flow under the impact of the magnetic field and thermal radiation is a novelty of the current study. Heat and mass transfer analysis of the pulsatile flow of non-Newtonian Casson HNF via a Darcy-Forchheimer porous channel with compliant walls is presented. Such a problem offers a prospective model to study the blood flow via stenosed arteries. A finite-difference flow solver is used to numerically solve the system obtained using the vorticity stream function formulation on the time-dependent governing equations. The behavior of Cu-based NF and Cu-SWCNT-based HNF on the wall shear stress (WSS), velocity, temperature, and concentration profiles are analyzed graphically. The influence of the Casson parameter, radiation parameter, Hartmann number, Darcy number, Soret number, Reynolds number, Strouhal number, and Peclet number on the flow profiles are analyzed. Furthermore, the influence of the flow parameters on the non-dimensional numbers such as the skin friction coefficient, Nusselt number, and Sherwood number is also discussed. These quantities escalate as the Reynolds number is enhanced and reduce by escalating the porosity parameter. The Peclet number shows a high impact on the microorganism's density in a blood NF. The HNF has been shown to have superior thermal properties to the traditional one. These results could help in devising hydraulic treatments for blood flow in highly stenosed arteries, biomechanical system design, and industrial plants in which flow pulsation is essential.


Assuntos
Cobre , Hemodinâmica , Hidrodinâmica , Nanopartículas Metálicas , Modelos Cardiovasculares , Fluxo Pulsátil , Algoritmos , Artérias/patologia , Artérias/fisiopatologia , Circulação Sanguínea , Constrição Patológica , Cobre/química , Humanos , Nanopartículas Metálicas/química , Porosidade , Suspensões
7.
Molecules ; 26(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200653

RESUMO

Cushioning and antibacterial packaging are the requirements of the storage and transportation of fruits and vegetables, which are essential for reducing the irreversible quality loss during the process. Herein, the composite of carboxymethyl nanocellulose, glycerin, and acrylamide derivatives acted as the shell and chitosan/AgNPs were immobilized in the core by using coaxial 3D-printing technology. Thus, the 3D-printed cushioning-antibacterial dual-function packaging aerogel with a shell-core structure (CNGA/C-AgNPs) was obtained. The CNGA/C-AgNPs packaging aerogel had good cushioning and resilience performance, and the average compression resilience rate was more than 90%. Although AgNPs was slowly released, CNGA/C-AgNPs packaging aerogel had an obvious antibacterial effect on E. coli and S. aureus. Moreover, the CNGA/C-AgNPs packaging aerogel was biodegradable. Due to the customization capabilities of 3D-printing technology, the prepared packaging aerogel can be adapted to more application scenarios by accurately designing and regulating the microstructure of aerogels, which provides a new idea for the development of food intelligent packaging.


Assuntos
Antibacterianos/química , Celulose/química , Embalagem de Alimentos/métodos , Géis/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Quitosana/química , Escherichia coli/efeitos dos fármacos , Impressão Tridimensional , Prata/química , Staphylococcus aureus/efeitos dos fármacos
8.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208594

RESUMO

This article describes the synthesis and characterization of ß-cyclodextrin-based nano-sponges (NS) inclusion compounds (IC) with the anti-tumor drugs melphalan (MPH) and cytoxan (CYT), and the addition of gold nanoparticles (AuNPs) onto both systems, for the potential release of the drugs by means of laser irradiation. The NS-MPH and NS-CYT inclusion compounds were characterized using scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), UV-Vis, and proton nuclear magnetic resonance (1H-NMR). Thus, the inclusion of MPH and CYT inside the cavities of NSs was confirmed. The association of AuNPs with the ICs was confirmed by SEM, EDS, TEM, and UV-Vis. Drug release studies using NSs synthesized with different molar ratios of ß-cyclodextrin and diphenylcarbonate (1:4 and 1:8) demonstrated that the ability of NSs to entrap and release the drug molecules depends on the crosslinking between the cyclodextrin monomers. Finally, irradiation assays using a continuous laser of 532 nm showed that photothermal drug release of both MPH and CYT from the cavities of NSs via plasmonic heating of AuNPs is possible.


Assuntos
Ciclodextrinas , Ciclofosfamida/administração & dosagem , Portadores de Fármacos , Ouro , Melfalan/administração & dosagem , Nanopartículas Metálicas , Técnicas de Química Sintética , Ciclodextrinas/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos/efeitos da radiação , Ouro/química , Luz , Espectroscopia de Ressonância Magnética , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Temperatura , Termogravimetria , Tocoferóis , Difração de Raios X
9.
Molecules ; 26(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064173

RESUMO

Cancer theranostics is a new concept of medical approach that attempts to combine in a unique nanoplatform diagnosis, monitoring and therapy so as to provide eradication of a solid tumor in a non-invasive fashion. There are many available solutions to tackle cancer using theranostic agents such as photothermal therapy (PTT) and photodynamic therapy (PDT) under the guidance of imaging techniques (e.g., magnetic resonance-MRI, photoacoustic-PA or computed tomography-CT imaging). Additionally, there are several potential theranostic nanoplatforms able to combine diagnosis and therapy at once, such as gold nanoparticles (GNPs), graphene oxide (GO), superparamagnetic iron oxide nanoparticles (SPIONs) and carbon nanodots (CDs). Currently, surface functionalization of these nanoplatforms is an extremely useful protocol for effectively tuning their structures, interface features and physicochemical properties. This approach is much more reliable and amenable to fine adjustment, reaching both physicochemical and regulatory requirements as a function of the specific field of application. Here, we summarize and compare the most promising metal- and carbon-based theranostic tools reported as potential candidates in precision cancer theranostics. We focused our review on the latest developments in surface functionalization strategies for these nanosystems, or hybrid nanocomposites consisting of their combination, and discuss their main characteristics and potential applications in precision cancer medicine.


Assuntos
Carbono/química , Nanopartículas Metálicas/química , Neoplasias/terapia , Nanomedicina Teranóstica , Linhagem Celular Tumoral , Grafite/química , Humanos , Medicina de Precisão
10.
Nat Protoc ; 16(7): 3522-3546, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34089021

RESUMO

Cellular heterogeneity is pervasive and of paramount importance in biology. Single-cell analysis techniques are indispensable for understanding the heterogeneity and functions of cells. Low-copy-number proteins (fewer than 1,000 molecules per cell) perform multiple crucial functions such as gene expression, cellular metabolism and cell signaling. The expression level of low-copy-number proteins of individual cells provides key information for the in-depth understanding of biological processes and diseases. However, the quantitative analysis of low-copy-number proteins in a single cell still remains challenging. To overcome this, we developed an approach called single-cell plasmonic immunosandwich assay (scPISA) for the quantitative measurement of low-copy-number proteins in single living cells. scPISA combines in vivo microextraction for specific enrichment of target proteins from cells and a state-of-the-art technique called plasmon-enhanced Raman scattering for ultrasensitive detection of low-copy-number proteins. Plasmon-enhanced Raman scattering detection relies on the plasmonic coupling effect (hot-spot) between silver-based plasmonic nanotags and a gold-based extraction microprobe, which dramatically enhances the signal intensity of the surface-enhanced Raman scattering of the nanotags and thereby enables sensitivity at the single-molecule level. scPISA is a straightforward and minimally invasive technique, taking only ~6-15 min (from in vivo extraction to Raman spectrum readout). It is generally applicable to all freely floating intracellular proteins provided that appropriate antibodies or alternatives (for example, molecularly imprinted polymers or aptamers) are available. The entire protocol takes ~4-7 d to complete, including material fabrication, single-cell manipulation, protein labeling, signal acquisition and data analysis.


Assuntos
Dosagem de Genes , Imunoensaio/métodos , Proteínas/metabolismo , Análise de Célula Única , Anticorpos/metabolismo , Calibragem , Linhagem Celular Tumoral , Sobrevivência Celular , Análise de Dados , Ouro/química , Humanos , Proteínas Imobilizadas/metabolismo , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Coloração e Rotulagem
11.
Nat Commun ; 12(1): 3393, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099712

RESUMO

The iron gall ink-triggered chemical corrosion of hand-written documents is a big threat to Western cultural heritages, which was demonstrated to result from the iron gall (GA-Fe) chelate-promoted reactive oxygen species generation. Such a phenomenon has inspired us to apply the pro-oxidative mechanism of GA-Fe to anticancer therapy. In this work, we construct a composite cancer nanomedicine by loading gallate into a Fe-engineered mesoporous silica nanocarrier, which can degrade in acidic tumor to release the doped Fe3+ and the loaded gallate, forming GA-Fe nanocomplex in situ. The nanocomplex with a highly reductive ligand field can promote oxygen reduction reactions generating hydrogen peroxide. Moreover, the resultant two-electron oxidation form of GA-Fe is an excellent Fenton-like agent that can catalyze hydrogen peroxide decomposition into hydroxyl radical, finally triggering severe oxidative damage to tumors. Such a therapeutic approach by intratumoral synthesis of GA-Fe nano-metalchelate may be instructive to future anticancer researches.


Assuntos
Antineoplásicos/administração & dosagem , Ácido Gálico/administração & dosagem , Ferro/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Catálise , Complexos de Coordenação/administração & dosagem , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Portadores de Fármacos/química , Feminino , Ácido Gálico/química , Ácido Gálico/metabolismo , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Radical Hidroxila/química , Radical Hidroxila/metabolismo , Injeções Intravenosas , Ferro/química , Ferro/metabolismo , Ligantes , Nanopartículas Metálicas/química , Camundongos , Neoplasias/patologia , Oxirredução , Oxigênio/metabolismo , Dióxido de Silício/química , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Int J Nanomedicine ; 16: 3789-3802, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34103915

RESUMO

Introduction: It has been reported that low-molecular-weight hyaluronic acid (LMWHA) exhibits a potentially beneficial effect on cancer therapy through targeting of CD44 receptors on tumor cell surfaces. However, its applicability towards tumor detection is still unclear. In this regard, LMWHA-conjugated iron (Fe3O4) nanoparticles (LMWHA-IONPs) were prepared in order to evaluate its application for enhancing the T2* weighted MRI imaging sensitivity for tumor detection. Methods: LMWHA and Fe3O4 NPs were produced using γ-ray irradiation and chemical co-precipitation methods, respectively. First, LMWHA-conjugated FITC was prepared to confirm the ability of LMWHA to target U87MG cells using fluorescence microscopy. The hydrodynamic size distribution and dispersion of the IONPs and prepared LMWHA-IONPs were analyzed using dynamic light scattering (DLS). In addition, cell viability assays were performed to examine the biocompatibility of LMWHA and LMWHA-IONPs toward U87MG human glioblastoma and NIH3T3 fibroblast cell lines. The ability of LMWHA-IONPs to target tumor cells was confirmed by detecting iron (Fe) ion content using the thiocyanate method. Finally, time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging and in vitro magnetic resonance imaging (MRI) were performed to confirm the contrast enhancement effect of LMWHA-IONPs. Results: Florescence analysis results showed that LMWHA-FITC successfully targeted the surfaces of both tested cell types. The ability of LMWHA to target U87MG cells was higher than for NIH3T3 cells. Cell viability experiments showed that the fabricated LMWHA-IONPs possessed good biocompatibility for both cell lines. After co-culturing test cells with the LMWHA-IONPs, detected Fe ion content in the U87MG cells was much higher than that of the NIH3T3 cells in both thiocyanate assays and TOF-SIMs images. Finally, the addition of LMWHA-IONPs to the U87MG cells resulted in an obvious improvement in T2* weighted MR image contrast compared to control NIH3T3 cells. Discussion: Overall, the present results suggest that LMWHA-IONPs fabricated in this study provide an effective MRI contrast agent for improving the diagnosis of early stage glioblastoma in MRI examinations.


Assuntos
Raios gama , Glioblastoma/diagnóstico por imagem , Ácido Hialurônico/química , Ferro/química , Imageamento por Ressonância Magnética , Nanopartículas Metálicas/química , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/patologia , Humanos , Ácido Hialurônico/ultraestrutura , Nanopartículas Metálicas/ultraestrutura , Camundongos , Peso Molecular , Células NIH 3T3 , Ácido Oleico/química , Tamanho da Partícula
13.
Int J Mol Sci ; 22(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063704

RESUMO

Carnivorous plants are exemplary natural sources of secondary metabolites with biological activity. However, the therapeutic antimicrobial potential of these compounds is limited due to intrinsic resistance of selected bacterial pathogens, among which Pseudomonas aeruginosa represents an extreme example. The objective of the study was to overcome the intrinsic resistance of P. aeruginosa by combining silver nanoparticles (AgNPs) with secondary metabolites from selected carnivorous plant species. We employed the broth microdilution method, the checkerboard titration technique and comprehensive phytochemical analyses to define interactions between nanoparticles and active compounds from carnivorous plants. It has been confirmed that P. aeruginosa is resistant to a broad range of secondary metabolites from carnivorous plants, i.e., naphthoquinones, flavonoids, phenolic acids (MBC = 512 µg mL-1) and only weakly sensitive to their mixtures, i.e., extracts and extracts' fractions. However, it was shown that the antimicrobial activity of extracts and fractions with a significant level of naphthoquinone (plumbagin) was significantly enhanced by AgNPs. Our studies clearly demonstrated a crucial role of naphthoquinones in AgNPs and extract interaction, as well as depicted the potential of AgNPs to restore the bactericidal activity of naphthoquinones towards P. aeruginosa. Our findings indicate the significant potential of nanoparticles to modulate the activity of selected secondary metabolites and revisit their antimicrobial potential towards human pathogenic bacteria.


Assuntos
Planta Carnívora/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/efeitos adversos , Antibacterianos/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Naftoquinonas/efeitos adversos , Naftoquinonas/química , Naftoquinonas/farmacologia , Extratos Vegetais/química , Pseudomonas aeruginosa/patogenicidade , Metabolismo Secundário/efeitos dos fármacos , Prata/química , Espectrofotometria Ultravioleta
14.
Int J Mol Sci ; 22(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063731

RESUMO

Bone homeostasis plays a major role in supporting and protecting various organs as well as a body structure by maintaining the balance of activities of the osteoblasts and osteoclasts. Unbalanced differentiation and functions of these cells result in various skeletal diseases, such as osteoporosis, osteopetrosis, and Paget's disease. Although various synthetic nanomaterials have been developed for bone imaging and therapy through the chemical conjugation, they are associated with serious drawbacks, including heterogeneity and random orientation, in turn resulting in low efficiency. Here, we report the synthesis of bone-targeting ferritin nanoparticles for bone imaging. Ferritin, which is a globular protein composed of 24 subunits, was employed as a carrier molecule. Bone-targeting peptides that have been reported to specifically bind to osteoblast and hydroxyapatite were genetically fused to the N-terminus of the heavy subunit of human ferritin in such a way that the peptides faced outwards. Ferritin nanoparticles with fused bone-targeting peptides were also conjugated with fluorescent dyes to assess their binding ability using osteoblast imaging and a hydroxyapatite binding assay; the results showed their specific binding with osteoblasts and hydroxyapatite. Using in vivo analysis, a specific fluorescent signal from the lower limb was observed, demonstrating a highly selective affinity of the modified nanoparticles for the bone tissue. These promising results indicate a specific binding ability of the nanoscale targeting system to the bone tissue, which might potentially be used for bone disease therapy in future clinical applications.


Assuntos
Ferritinas/genética , Nanopartículas Metálicas/química , Osteoblastos/efeitos dos fármacos , Peptídeos/genética , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/ultraestrutura , Diferenciação Celular/efeitos dos fármacos , Durapatita/química , Ferritinas/química , Ferritinas/farmacologia , Humanos , Imagem Molecular , Osteoblastos/ultraestrutura , Osteoclastos/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia
15.
Int J Mol Sci ; 22(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065496

RESUMO

The most critical group of all includes multidrug resistant bacteria that pose a particular threat in hospitals, as they can cause severe and often deadly infections. Modern medicine still faces the difficult task of developing new agents for the effective control of bacterial-based diseases. The targeted administration of nanoparticles can enhance the efficiency of conventional pharmaceutical agents. However, the interpretation of interfaces' interactions between nanoparticles and biological systems still remains a challenge for researchers. In fact, the current research presents a strategy for using ZnO NPs immobilization with ampicillin and tetracycline. Firstly, the study provides the mechanism of the ampicillin and tetracycline binding on the surface of ZnO NPs. Secondly, it examines the effect of non-immobilized ZnO NPs, immobilized with ampicillin (ZnONPs/AMP) and tetracycline (ZnONPs/TET), on the cells' metabolism and morphology, based on the protein and lipid profiles. A sorption kinetics study showed that the antibiotics binding on the surface of ZnONPs depend on their structure. The efficiency of the process was definitely higher in the case of ampicillin. In addition, flow cytometry results showed that immobilized nanoparticles present a different mechanism of action. Moreover, according to the MALDI approach, the antibacterial activity mechanism of the investigated ZnO complexes is mainly based on the destruction of cell membrane integrity by lipids and proteins, which is necessary for proper cell function. Additionally, it was noticed that some of the identified changes indicate the activation of defense mechanisms by cells, leading to a decrease in the permeability of a cell's external barriers or the synthesis of repair proteins.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Nanopartículas Metálicas/química , Nanocompostos/química , Zinco/química , Testes de Sensibilidade Microbiana/métodos , Óxido de Zinco/química
16.
Molecules ; 26(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065267

RESUMO

BACKGROUND: Nanotechnology application has widespread use in many products. Copper nanoparticles (CuNPs) are widely used in industrial applications. The present study was conducted to investigate the effect of the ethanolic saffron extract (ESE) as a natural antioxidant on the hepatotoxicity induced by CuNPs in male mice. METHODS: The characterization of CuNPs was determined using ultraviolet-visible absorption spectroscopy, particle size analysis, zeta potential, Fourier-transform infrared spectroscopy, and electron microscope. The effect of saffron on the hepatotoxicity induced by CuNPs in mice was evaluated by evaluating the survival rate of the mice, oxidative stress, antioxidant capacity, DNA evaluation, as well as its effect on the histology and transmission electron microscope of the liver. RESULTS: The results revealed that all parameters were affected in a dose-dependent manner by CuNPs. These effects have been improved when the treatment of CuNPs is combined with ethanolic saffron extract. CONCLUSIONS: We can conclude that saffron and its bioactive crocin portion can prevent CuNP-induced oxidative liver damage. This substance should be useful as a new pharmacological tool for oxidative stress prevention.


Assuntos
Cobre/química , Crocus/química , Fígado/efeitos dos fármacos , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Animais , Relação Dose-Resposta a Droga , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Estresse Oxidativo/efeitos dos fármacos , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Molecules ; 26(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065879

RESUMO

The modification of medical devices is an area that has attracted a lot of attention in recent years; particularly, those developments which search to modify existing devices to render them antimicrobial. Most of these modifications involve at least two stages (modification of the base material with a polymer graft and immobilization of an antimicrobial agent) which are both time-consuming and complicate synthetic procedures; therefore, as an improvement, this project sought to produce antimicrobial silicone (PDMS) in a single step. Using gamma radiation as both an energy source for polymerization initiation and as a source of reducing agents in solution, PDMS was simultaneously grafted with acrylic acid and ethylene glycol dimethacrylate (AAc:EGDMA) while producing antimicrobial silver nanoparticles (AgNPs) onto the surface of the material. To obtain reproducible materials, experimental variables such as the effect of the dose, the intensity of radiation, and the concentration of the silver salt were evaluated, finding the optimal reaction conditions to obtain materials with valuable properties. The characterization of the material was performed using electronic microscopy and spectroscopic techniques such as 13C-CPMAS-SS-NMR and FTIR. Finally, these materials demonstrated good antimicrobial activity against S. aureus while retaining good cell viabilities (above 90%) for fibroblasts BALB/3T3.


Assuntos
Acrilatos/química , Antibacterianos/química , Materiais Biocompatíveis/química , Raios gama , Nanopartículas Metálicas/química , Polimerização/efeitos da radiação , Silicones/química , Prata/química , Animais , Células 3T3 BALB , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Metacrilatos/química , Camundongos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
18.
Carbohydr Polym ; 268: 118259, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34127229

RESUMO

Nitrocellulose (NC) membrane can have value-added applications for lateral flow assay (LFA)-based diagnostic tools, which has great potential for the detection of pathogens, such as COVID-19, in different environments. However, poor sensitivity of the NC membrane based LFA limits its further application in many cases. Herein, we developed a facile method for LFA sensitivity enhancement, by incorporating two-sugar barrier into LFAs: one between the conjugation pad and the test line, and the other between the test line and the control line. ORF1ab nucleic acid of COVID-19 was used as the model target to demonstrate the concept on the HF120 membrane. Results show that at optimum conditions, the two sugar barrier LFAs have a detection limit of 0.5 nM, which is compared to that of 2.5 nM for the control LFA, achieving a 5-fold sensitivity increase. This low cost, easy-to-fabricate and easy-to-integrate LFA method may have potential applications in other cellulose paper-based platforms.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , Colódio/química , RNA Mensageiro/análise , Açúcares/química , Proteínas Virais/genética , Teste de Ácido Nucleico para COVID-19/instrumentação , DNA/química , Sondas de DNA/química , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Poliproteínas/genética , SARS-CoV-2/química , Sensibilidade e Especificidade
19.
Int J Mol Sci ; 22(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062799

RESUMO

In recent years, researchers have focused on developing simple and efficient methods based on electrochemical biosensors to determine hydroxycinnamic acids from various real samples (wine, beer, propolis, tea, and coffee). Enzymatic biosensors represent a promising, low-cost technology for the direct monitoring of these biologically important compounds, which implies a fast response and simple sample processing procedures. The present review aims at highlighting the structural features of this class of compounds and the importance of hydroxycinnamic acids for the human body, as well as presenting a series of enzymatic biosensors commonly used to quantify these phenolic compounds. Enzyme immobilization techniques on support electrodes are very important for their stability and for obtaining adequate results. The following sections of this review will briefly describe some of the laccase (Lac) and tyrosinase (Tyr) biosensors used for determining the main hydroxycinnamic acids of interest in the food or cosmetics industry. Considering relevant studies in the field, the fact has been noticed that there is a greater number of studies on laccase-based biosensors as compared to those based on tyrosinase for the detection of hydroxycinnamic acids. Significant progress has been made in relation to using the synergy of nanomaterials and nanocomposites for more stable and efficient enzyme immobilization. These nanomaterials are mainly carbon- and/or polymer-based nanostructures and metallic nanoparticles which provide a suitable environment for maintaining the biocatalytic activity of the enzyme and for increasing the rate of electron transport.


Assuntos
Técnicas Biossensoriais , Ácidos Cumáricos/isolamento & purificação , Lacase/isolamento & purificação , Monofenol Mono-Oxigenase/isolamento & purificação , Carbono/química , Ácidos Cumáricos/química , Técnicas Eletroquímicas , Enzimas Imobilizadas/química , Humanos , Lacase/química , Nanopartículas Metálicas/química , Monofenol Mono-Oxigenase/química
20.
Carbohydr Polym ; 268: 118259, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1242891

RESUMO

Nitrocellulose (NC) membrane can have value-added applications for lateral flow assay (LFA)-based diagnostic tools, which has great potential for the detection of pathogens, such as COVID-19, in different environments. However, poor sensitivity of the NC membrane based LFA limits its further application in many cases. Herein, we developed a facile method for LFA sensitivity enhancement, by incorporating two-sugar barrier into LFAs: one between the conjugation pad and the test line, and the other between the test line and the control line. ORF1ab nucleic acid of COVID-19 was used as the model target to demonstrate the concept on the HF120 membrane. Results show that at optimum conditions, the two sugar barrier LFAs have a detection limit of 0.5 nM, which is compared to that of 2.5 nM for the control LFA, achieving a 5-fold sensitivity increase. This low cost, easy-to-fabricate and easy-to-integrate LFA method may have potential applications in other cellulose paper-based platforms.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , Colódio/química , RNA Mensageiro/análise , Açúcares/química , Proteínas Virais/genética , Teste de Ácido Nucleico para COVID-19/instrumentação , DNA/química , Sondas de DNA/química , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Poliproteínas/genética , SARS-CoV-2/química , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...