Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46.082
Filtrar
1.
Cells ; 9(9)2020 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899484

RESUMO

Hybrid nanoparticles from lipidic and polymeric components were assembled to serve as vehicles for the transfection of messenger RNA (mRNA) using different portions of the cationic lipid DOTAP (1,2-Dioleoyl-3-trimethylammonium-propane) and the cationic biopolymer protamine as model systems. Two different sequential assembly approaches in comparison with a direct single-step protocol were applied, and molecular organization in correlation with biological activity of the resulting nanoparticle systems was investigated. Differences in the structure of the nanoparticles were revealed by thorough physicochemical characterization including small angle neutron scattering (SANS), small angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM). All hybrid systems, combining lipid and polymer, displayed significantly increased transfection in comparison to lipid/mRNA and polymer/mRNA particles alone. For the hybrid nanoparticles, characteristic differences regarding the internal organization, release characteristics, and activity were determined depending on the assembly route. The systems with the highest transfection efficacy were characterized by a heterogenous internal organization, accompanied by facilitated release. Such a system could be best obtained by the single step protocol, starting with a lipid and polymer mixture for nanoparticle formation.


Assuntos
Biopolímeros/química , Lipídeos/química , Nanopartículas/química , RNA Mensageiro/metabolismo , Transfecção/métodos , Animais , Linhagem Celular , Ácidos Graxos Monoinsaturados/química , Feminino , Heparina/química , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Imagem Óptica , Tamanho da Partícula , Compostos de Amônio Quaternário/química , RNA Mensageiro/química
2.
Pharm Res ; 37(10): 196, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32944844

RESUMO

PURPOSE: Hypoxia-inducible factor (HIF) is one of the critical components of the tumor microenvironment that is involved in tumor development. HIF-1α functionally and physically interacts with CDK1, 2, and 5 and stimulates the cell cycle progression and Cyclin-Dependent Kinase (CDK) expression. Therefore, hypoxic tumor microenvironment and CDK overexpression lead to increased cell cycle progression and tumor expansion. Therefore, we decided to suppress cancer cell expansion by blocking HIF-1α and CDK molecules. METHODS: In the present study, we used the carboxylated graphene oxide (CGO) conjugated with trimethyl chitosan (TMC) and hyaluronate (HA) nanoparticles (NPs) loaded with HIF-1α-siRNA and Dinaciclib, the CDK inhibitor, for silencing HIF-1α and blockade of CDKs in CD44-expressing cancer cells and evaluated the impact of combination therapy on proliferation, metastasis, apoptosis, and tumor growth. RESULTS: The results indicated that the manufactured NPs had conceivable physicochemical properties, high cellular uptake, and low toxicity. Moreover, combination therapy of cancer cells using CGO-TMC-HA NPs loaded with HIF-1α siRNA and Dinaciclib (SCH 727965) significantly suppressed the CDKs/HIF-1α and consequently, decreased the proliferation, migration, angiogenesis, and colony formation in tumor cells. CONCLUSIONS: These results indicate the ability of CGO-TMC-HA NPs for dual drug/gene delivery in cancer treatment. Furthermore, the simultaneous inhibition of CDKs/HIF-1α can be considered as a novel anti-cancer treatment strategy; however, further research is needed to confirm this treatment in vivo. Graphical Abstract The suppression of HIF-1α and CDKs inhibits cancer growth. HIF-1α is overexpressed by the cells present in the tumor microenvironment. The hypoxic environment elevates mitochondrial ROS production and increases p38 MAP kinase, JAK/STAT, ERK, JNK, and Akt/PI3K signaling, resulting in cyclin accumulation and aberrant cell cycle progression. Furthermore, the overexpression of HIF-1α/CDK results in increased expression of genes such as BCL2, Bcl-xl, Ki-67, TGFß, VEGF, FGF, MMP2, MMP9, and, HIF-1α and consequently raise the survival, proliferation, angiogenesis, metastasis, and invasion of tumor cells. In conclusion, HIF-1α-siRNA/Dinaciclib-loaded CGO-TMC-HA NPs can inhibit the tumor expansion by blockage of CDKs and HIF-1α (JAK: Janus kinase, STAT: Signal transducer and activator of transcription, MAPK: mitogen-activated protein kinase, ERK: extracellular signal-regulated kinase, JNK: c-Jun N-terminal kinase, PI3K: phosphatidylinositol 3-kinase).


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Experimentais/terapia , Compostos de Piridínio/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Quitosana/química , Grafite/química , Ácido Hialurônico/química , Camundongos , Nanopartículas/química , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Compostos de Piridínio/química , Compostos de Piridínio/farmacocinética , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacocinética
3.
Nat Commun ; 11(1): 4616, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934229

RESUMO

Para-nematic phases, induced by unwinding chiral helices, spontaneously relax to a chiral ground state through phase ordering dynamics that are of great interest and crucial for applications such as stimuli-responsive and biomimetic engineering. In this work, we characterize the cholesteric phase relaxation behaviors of ß-lactoglobulin amyloid fibrils and cellulose nanocrystals confined into cylindrical capillaries, uncovering two different equilibration pathways. The integration of experimental measurements and theoretical predictions reveals the starkly distinct underlying mechanism behind the relaxation dynamics of ß-lactoglobulin amyloid fibrils, characterized by slow equilibration achieved through consecutive sigmoidal-like steps, and of cellulose nanocrystals, characterized by fast equilibration obtained through smooth relaxation dynamics. Particularly, the specific relaxation behaviors are shown to emerge from the order parameter of the unwound cholesteric medium, which depends on chirality and elasticity. The experimental findings are supported by direct numerical simulations, allowing to establish hard-to-measure viscoelastic properties without applying magnetic or electric fields.


Assuntos
Lactoglobulinas/química , Cristais Líquidos/química , Amiloide/química , Coloides/química , Elasticidade , Cinética , Nanopartículas/química , Transição de Fase , Temperatura
4.
PLoS Pathog ; 16(9): e1008827, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32886721

RESUMO

Global burden of cervical cancer, the most common cause of mortality caused by human papillomavirus (HPV), is expected to increase during the next decade, mainly because current alternatives for HPV vaccination and cervical cancer screening programs are costly to be established in low-and-middle income countries. Recently, we described the development of the broadly protective, thermostable vaccine antigen Trx-8mer-OVX313 based on the insertion of eight different minor capsid protein L2 neutralization epitopes into a thioredoxin scaffold from the hyperthermophilic archaeon Pyrococcus furiosus and conversion of the resulting antigen into a nanoparticle format (median radius ~9 nm) upon fusion with the heptamerizing OVX313 module. Here we evaluated whether the engineered thioredoxin scaffold, in addition to humoral immune responses, can induce CD8+ T-cell responses upon incorporation of MHC-I-restricted epitopes. By systematically examining the contribution of individual antigen modules, we demonstrated that B-cell and T-cell epitopes can be combined into a single antigen construct without compromising either immunogenicity. While CD8+ T-cell epitopes had no influence on B-cell responses, the L2 polytope (8mer) and OVX313-mediated heptamerization of the final antigen significantly increased CD8+ T-cell responses. In a proof-of-concept experiment, we found that vaccinated mice remained tumor-free even after two consecutive tumor challenges, while unvaccinated mice developed tumors. A cost-effective, broadly protective vaccine with both prophylactic and therapeutic properties represents a promising option to overcome the challenges associated with prevention and treatment of HPV-caused diseases.


Assuntos
Antígenos de Neoplasias , Antígenos Virais , Proteínas Arqueais , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer , Imunidade Celular/efeitos dos fármacos , Nanopartículas , Papillomaviridae , Vacinas contra Papillomavirus , Pyrococcus furiosus/química , Tiorredoxinas , Neoplasias do Colo do Útero/imunologia , Animais , Antígenos de Neoplasias/química , Antígenos de Neoplasias/farmacologia , Antígenos Virais/química , Antígenos Virais/farmacologia , Proteínas Arqueais/química , Proteínas Arqueais/farmacologia , Linfócitos T CD8-Positivos/patologia , Vacinas Anticâncer/química , Vacinas Anticâncer/farmacologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/farmacologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/farmacologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/uso terapêutico , Papillomaviridae/química , Papillomaviridae/imunologia , Vacinas contra Papillomavirus/química , Vacinas contra Papillomavirus/farmacologia , Tiorredoxinas/química , Tiorredoxinas/farmacologia , Neoplasias do Colo do Útero/virologia
5.
Nat Commun ; 11(1): 4615, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934241

RESUMO

Integration of the unique advantages of the fields of drug discovery and drug delivery is invaluable for the advancement of drug development. Here we propose a self-delivering one-component new-chemical-entity nanomedicine (ONN) strategy to improve cancer therapy through incorporation of the self-assembly principle into drug design. A lysosomotropic detergent (MSDH) and an autophagy inhibitor (Lys05) are hybridised to develop bisaminoquinoline derivatives that can intrinsically form nanoassemblies. The selected BAQ12 and BAQ13 ONNs are highly effective in inducing lysosomal disruption, lysosomal dysfunction and autophagy blockade and exhibit 30-fold higher antiproliferative activity than hydroxychloroquine used in clinical trials. These single-drug nanoparticles demonstrate excellent pharmacokinetic and toxicological profiles and dramatic antitumour efficacy in vivo. In addition, they are able to encapsulate and deliver additional drugs to tumour sites and are thus promising agents for autophagy inhibition-based combination therapy. Given their transdisciplinary advantages, these BAQ ONNs have enormous potential to improve cancer therapy.


Assuntos
Aminoquinolinas/química , Antineoplásicos/química , Sistemas de Liberação de Medicamentos/métodos , Lisossomos/efeitos dos fármacos , Nanomedicina/métodos , Neoplasias/tratamento farmacológico , Aminoquinolinas/administração & dosagem , Aminoquinolinas/farmacocinética , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/instrumentação , Humanos , Nanomedicina/instrumentação , Nanopartículas/química , Neoplasias/fisiopatologia , Ratos , Ratos Sprague-Dawley
6.
Chemosphere ; 254: 126909, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957299

RESUMO

Soil contamination by heavy metals (HMs) is an environmental problem, and nanoremediation by using zero-valent iron nanoparticles (nZVI) has attracted increasing interest. We used ecotoxicological test and global transcriptome analysis with DNA microarrays to assess the suitability of C. elegans as a useful bioindicator to evaluate such strategy of nanoremediation in a highly polluted soil with Pb, Cd and Zn. The HMs produced devastating effect on C. elegans. nZVI treatment reversed this deleterious effect up to day 30 after application, but the reduction in the relative toxicity of HMs was lower at day 120. We stablished gene expression profile in C. elegans exposed to the polluted soil, treated and untreated with nZVI. The percentage of differentially expressed genes after treatment decreases with exposure time. After application of nZVI we found decreased toxicity, but increased biosynthesis of defensive enzymes responsive to oxidative stress. At day 14, when a decrease in toxicity has occurred, genes related to specific heavy metal detoxification mechanisms or to response to metal stress, were down regulated: gst-genes, encoding for glutathione-S-transferase, htm-1 (heavy metal tolerance factor), and pgp-5 and pgp-7, related to stress response to metals. At day 120, we found increased HMs toxicity compared to day 14, whereas the transcriptional oxidative and metal-induced responses were attenuated. These findings indicate that the profiled gene expression in C. elegans may be considered as an indicator of stress response that allows a reliable evaluation of the nanoremediation strategy.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Ferro/química , Metais Pesados/toxicidade , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Transcrição Genética/efeitos dos fármacos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Ecotoxicologia , Nanopartículas Metálicas , Metais Pesados/análise , Estresse Oxidativo/genética , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Toxicogenética
7.
Soft Matter ; 16(36): 8310-8324, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32909024

RESUMO

Much of the science underpinning the global response to the COVID-19 pandemic lies in the soft matter domain. Coronaviruses are composite particles with a core of nucleic acids complexed to proteins surrounded by a protein-studded lipid bilayer shell. A dominant route for transmission is via air-borne aerosols and droplets. Viral interaction with polymeric body fluids, particularly mucus, and cell membranes controls their infectivity, while their interaction with skin and artificial surfaces underpins cleaning and disinfection and the efficacy of masks and other personal protective equipment. The global response to COVID-19 has highlighted gaps in the soft matter knowledge base. We survey these gaps, especially as pertaining to the transmission of the disease, and suggest questions that can (and need to) be tackled, both in response to COVID-19 and to better prepare for future viral pandemics.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Desinfecção , Humanos , Muco/virologia , Nanopartículas/química , Pandemias , Equipamento de Proteção Individual , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Propriedades de Superfície
8.
Nat Commun ; 11(1): 4535, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913217

RESUMO

The current understanding of the biological identity that nanoparticles may acquire in a given biological milieu is mostly inferred from the hard component of the protein corona (HC). The composition of soft corona (SC) proteins and their biological relevance have remained elusive due to the lack of analytical separation methods. Here, we identify a set of specific corona proteins with weak interactions at silica and polystyrene nanoparticles by using an in situ click-chemistry reaction. We show that these SC proteins are present also in the HC, but are specifically enriched after the capture, suggesting that the main distinction between HC and SC is the differential binding strength of the same proteins. Interestingly, the weakly interacting proteins are revealed as modulators of nanoparticle-cell association mainly through their dynamic nature. We therefore highlight that weak interactions of proteins at nanoparticles should be considered when evaluating nano-bio interfaces.


Assuntos
Nanopartículas/química , Coroa de Proteína/química , Química Click , Reagentes para Ligações Cruzadas/química , Células Endoteliais , Humanos , Poliestirenos/química , Ligação Proteica , Coroa de Proteína/análise , Dióxido de Silício/química , Células THP-1
9.
Adv Healthc Mater ; 9(19): e2000979, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32885616

RESUMO

Researchers, engineers, and medical doctors are made aware of the severity of the COVID-19 infection and act quickly against the coronavirus SARS-CoV-2 using a large variety of tools. In this review, a panoply of nanoscience and nanotechnology approaches show how these disciplines can help the medical, technical, and scientific communities to fight the pandemic, highlighting the development of nanomaterials for detection, sanitation, therapies, and vaccines. SARS-CoV-2, which can be regarded as a functional core-shell nanoparticle (NP), can interact with diverse materials in its vicinity and remains attached for variable times while preserving its bioactivity. These studies are critical for the appropriate use of controlled disinfection systems. Other nanotechnological approaches are also decisive for the development of improved novel testing and diagnosis kits of coronavirus that are urgently required. Therapeutics are based on nanotechnology strategies as well and focus on antiviral drug design and on new nanoarchitectured vaccines. A brief overview on patented work is presented that emphasizes nanotechnology applied to coronaviruses. Finally, some comments are made on patents of the initial technological responses to COVID-19 that have already been put in practice.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Nanotecnologia/métodos , Pandemias , Pneumonia Viral , Antivirais/administração & dosagem , Betacoronavirus/química , Betacoronavirus/ultraestrutura , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Desinfecção/métodos , Humanos , Nanopartículas/química , Nanopartículas/ultraestrutura , Nanoestruturas/química , Nanotecnologia/legislação & jurisprudência , Pandemias/prevenção & controle , Patentes como Assunto , Pneumonia Viral/diagnóstico , Pneumonia Viral/prevenção & controle , Pneumonia Viral/terapia , Propriedades de Superfície , Vacinas Virais/administração & dosagem
10.
Nat Commun ; 11(1): 4836, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973157

RESUMO

From viruses to nanoparticles, constructs functionalized with multiple ligands display peculiar binding properties that only arise from multivalent effects. Using statistical mechanical modelling, we describe here how multivalency can be exploited to achieve what we dub range selectivity, that is, binding only to targets bearing a number of receptors within a specified range. We use our model to characterise the region in parameter space where one can expect range selective targeting to occur, and provide experimental support for this phenomenon. Overall, range selectivity represents a potential path to increase the targeting selectivity of multivalent constructs.


Assuntos
Entropia , Ligantes , Nanopartículas/química , Fenômenos Biofísicos , Modelos Teóricos , Tamanho da Partícula
11.
Int J Nanomedicine ; 15: 5783-5802, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32821101

RESUMO

Nanoparticles (NPs) are highly potent tools for the diagnosis of diseases and specific delivery of therapeutic agents. Their development and application are scientifically and industrially important. The engineering of NPs and the modulation of their in vivo behavior have been extensively studied, and significant achievements have been made in the past decades. However, in vivo applications of NPs are often limited by several difficulties, including inflammatory responses and cellular toxicity, unexpected distribution and clearance from the body, and insufficient delivery to a specific target. These unfavorable phenomena may largely be related to the in vivo protein-NP interaction, termed "protein corona." The layer of adsorbed proteins on the surface of NPs affects the biological behavior of NPs and changes their functionality, occasionally resulting in loss-of-function or gain-of-function. The formation of a protein corona is an intricate process involving complex kinetics and dynamics between the two interacting entities. Structural changes in corona proteins have been reported in many cases after their adsorption on the surfaces of NPs that strongly influence the functions of NPs. Thus, understanding of the conformational changes and unfolding process of proteins is very important to accelerate the biomedical applications of NPs. Here, we describe several protein corona characteristics and specifically focus on the conformational fluctuations in corona proteins induced by NPs.


Assuntos
Nanopartículas/química , Conformação Proteica , Coroa de Proteína/química , Humanos , Tamanho da Partícula , Ligação Proteica , Propriedades de Superfície
12.
Int J Nanomedicine ; 15: 4779-4791, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32753866

RESUMO

Background: Considering the timeline required for the development of novel antimicrobial drugs, increased attention should be given to repurposing old drugs and improving antimicrobial efficacy, particularly for chronic infections associated with biofilms. Methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) are common causes of biofilm-associated infections but produce different biofilm matrices. MSSA biofilm cells are typically embedded in an extracellular polysaccharide matrix, whereas MRSA biofilms comprise predominantly of surface proteins and extracellular DNA (eDNA). Nanoparticles (NPs) have the potential to enhance the delivery of antimicrobial agents into biofilms. However, the mechanisms which influence the interactions between NPs and the biofilm matrix are not yet fully understood. Methods: To investigate the influence of NPs surface chemistry on vancomycin (VAN) encapsulation and NP entrapment in MRSA and MSSA biofilms, mesoporous silica nanoparticles (MSNs) with different surface functionalization (bare-B, amine-D, carboxyl-C, aromatic-A) were synthesised using an adapted Stöber method. The antibacterial efficacy of VAN-loaded MSNs was assessed against MRSA and MSSA biofilms. Results: The two negatively charged MSNs (MSN-B and MSN-C) showed a higher VAN loading in comparison to the positively charged MSNs (MSN-D and MSN-A). Cellular binding with MSN suspensions (0.25 mg mL-1) correlated with the reduced viability of both MSSA and MRSA biofilm cells. This allowed the administration of low MSNs concentrations while maintaining a high local concentration of the antibiotic surrounding the bacterial cells. Conclusion: Our data suggest that by tailoring the surface functionalization of MSNs, enhanced bacterial cell targeting can be achieved, leading to a novel treatment strategy for biofilm infections.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes , Staphylococcus aureus Resistente à Meticilina/fisiologia , Nanopartículas/química , Biofilmes/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/ultraestrutura , Testes de Sensibilidade Microbiana , Nanopartículas/ultraestrutura , Espectroscopia de Prótons por Ressonância Magnética , Dióxido de Silício/química , Vancomicina/farmacologia
13.
Int J Nanomedicine ; 15: 4825-4845, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32753868

RESUMO

Background: Nanosized drug delivery systems (NDDSs) have shown excellent prospects in tumor therapy. However, insufficient penetration of NDDSs has significantly impeded their development due to physiological instability and low passive penetration efficiency. Methods: Herein, we prepared a core cross-linked pullulan-modified nanosized system, fabricated by visible-light-induced diselenide bond cross-linked method for transporting ß-Lapachone and doxorubicin prodrug (boronate-DOX, BDOX), to improve the physiological stability of the NDDSs for efficient passive accumulation in tumor blood vessels (ß-Lapachone/BDOX-CCS). Additionally, ultrasound (US) was utilized to transfer ß-Lapachone/BDOX-CCS around the tumor vessel in a relay style to penetrate the tumor interstitium. Subsequently, ß-Lapachone enhanced ROS levels by overexpressing NQO1, resulting in the transformation of BDOX into DOX. DOX, together with abundant levels of ROS, achieved synergistic tumor therapy. Results: In vivo experiments demonstrated that ultrasound (US) + cross-linked nanosized drug delivery systems (ß-Lapachone/BDOX-CCS) group showed ten times higher DOX accumulation in the tumor interstitium than the non-cross-linked (ß-Lapachone/BDOX-NCS) group. Conclusion: Thus, this strategy could be a promising method to achieve deep penetration of NDDSs into the tumor.


Assuntos
Doxorrubicina/uso terapêutico , Nanopartículas/química , Naftoquinonas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Ultrassonografia , Animais , Ácidos Borônicos/química , Permeabilidade Capilar/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Reagentes para Ligações Cruzadas/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Endocitose/efeitos dos fármacos , Feminino , Glucanos/química , Células Hep G2 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Naftoquinonas/farmacocinética , Tamanho da Partícula , Pró-Fármacos/farmacocinética , Espécies Reativas de Oxigênio/metabolismo , Distribuição Tecidual/efeitos dos fármacos
14.
Int J Nanomedicine ; 15: 4877-4898, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32753869

RESUMO

Background: Although dynamics and uses of modified nanoparticles (NPs) as orally administered macromolecular drugs have been researched for many years, measures of molecule stability and aspects related to important transport-related mechanisms which have been assessed in vivo remain as relatively under characterized. Thus, our aim was to develop a novel type of oral-based delivery system for insulin and to overcome barriers to studying the stability, transport mechanisms, and efficacy in vivo of the delivery system. Methods: NPs we developed and tested were composed of insulin (INS), dicyandiamide-modified chitosan (DCDA-CS), cell-penetrating octaarginine (r8), and hydrophilic hyaluronic acid (HA) and were physically constructed by electrostatic self-assembly techniques. Results: Compared to free-insulin, levels of HA-DCDA-CS-r8-INS NPs were retained at more desirable measures of biological activity in our study. Further, our assessments of the mechanisms for NPs suggested that there were high measures of cellular uptake that mainly achieved through active transport via lipid rafts and the macropinocytosis pathway. Furthermore, investigations of NPs indicated their involvement in caveolae-mediated transport and in the DCDA-CS-mediated paracellular pathway, which contributed to increasing the efficiency of sequential transportation from the apical to basolateral areas. Accordingly, high efficiency of absorption of NPs in situ for intestinal loop models was realized. Consequently, there was a strong induction of a hypoglycemic effect in diabetic rats of NPs via orally based administrations when compared with measures related to free insulin. Conclusion: Overall, the dynamics underlying and influenced by HA-DCDA-CS-r8-INS may hold great promise for stability of insulin and could help overcome interference by the epithelial barrier, and thus showing a great potential to improve the efficacy of orally related treatments.


Assuntos
Quitosana/química , Ácido Hialurônico/química , Insulina/administração & dosagem , Nanopartículas Multifuncionais/química , Nanopartículas/química , Administração Oral , Animais , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Morte Celular/efeitos dos fármacos , Quitosana/síntese química , Diabetes Mellitus Experimental/tratamento farmacológico , Impedância Elétrica , Endocitose/efeitos dos fármacos , Guanidinas/síntese química , Guanidinas/química , Humanos , Ácido Hialurônico/síntese química , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Insulina/uso terapêutico , Absorção Intestinal/efeitos dos fármacos , Masculino , Muco/metabolismo , Nanopartículas/ultraestrutura , Ratos , Solubilidade , Suínos
15.
Crit Rev Ther Drug Carrier Syst ; 37(3): 205-227, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32749138

RESUMO

In this review, we describe the advances in oral drug delivery approaches for taxanes for successful therapeutic outcome. Taxanes (paclitaxel and docetaxel) have unwanted pharmacokinetic profiles when they are given in their current dosage forms. Taxanes have low bioavailability, are extensively metabolized by CYP3A, and have a high affinity for P-glycoprotein. Regardless of dosage schedule, the overall docetaxel or paclitaxel dose that a patient can tolerate at a given interval remains similar. Currently, there are no commercially available oral taxane nanoformulations, and there are still several challenges to overcome. Nano-based formulations may offer the best solutions to problems involving the safety and effectiveness of taxane delivery. Thus, further research is necessary before such taxane nanoformulations can be manufactured for clinical use.


Assuntos
Docetaxel/administração & dosagem , Paclitaxel/administração & dosagem , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Ensaios Clínicos como Assunto , Docetaxel/química , Docetaxel/farmacocinética , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Humanos , Lipídeos/administração & dosagem , Lipídeos/química , Micelas , Nanopartículas/administração & dosagem , Nanopartículas/química , Paclitaxel/química , Paclitaxel/farmacocinética
16.
Nat Commun ; 11(1): 4249, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843618

RESUMO

Aberrant cell cycle machinery and loss of the CDKN2A tumor suppressor locus make CDK4/6 a potential target in pancreatic ductal adenocarcinoma (PDAC). However, a vast majority of PDAC cases do not harbor a durable response to monotherapy of CDK4/6 inhibitor. Utilizing remote loading to co-encapsulate CDK4/6 inhibitor palbociclib (PAL) and an autophagy inhibitor hydroxychloroquine (HCQ), we demonstrate a ratiometrically designed mesoporous silica nanoformulation with synergistic efficacy in subcutaneous and orthotopic PDAC mouse models. The synergism is attributed to the effective intratumoral buildup of PAL/HCQ, which otherwise exhibit distinctly different circulatory and biodistribution profile. PAL/HCQ co-delivery nanoparticles lead to the most effective shrinkage of PDAC compared to various controls, including free drug mixture. Immunohistochemistry reveals that PAL/HCQ co-delivery nanoparticles trigger anti-apoptotic pathway after repetitive intravenous administrations in mice. When combined with a Bcl inhibitor, the performance of co-delivery nanoparticles is further improved, leading to a long-lasting anti-PDAC effect in vivo.


Assuntos
Autofagia/efeitos dos fármacos , Carcinoma Ductal Pancreático/tratamento farmacológico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Sistemas de Liberação de Medicamentos , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sinergismo Farmacológico , Humanos , Hidroxicloroquina/administração & dosagem , Hidroxicloroquina/química , Hidroxicloroquina/farmacologia , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Piperazinas/administração & dosagem , Piperazinas/química , Piperazinas/farmacologia , Piridinas/administração & dosagem , Piridinas/química , Piridinas/farmacologia , Dióxido de Silício/administração & dosagem , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Resultado do Tratamento
17.
Int J Nanomedicine ; 15: 4793-4810, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764921

RESUMO

Background: Platinum resistance is a major challenge in the management of ovarian cancer. Even low levels of acquired resistance at the cellular level lead to impaired response to cisplatin. In ovarian cancer intraperitoneal therapy, nanoparticle formulation can improve the cisplatin's pharmacokinetics and safety profile. Purpose: This work aimed to investigate the chemo-sensitivity of ovarian cancer SKOV3 cells upon short-term (72h) single treatment of cisplatin and cisplatin-loaded biodegradable nanoparticles (Cis-NP). The aim was then to determine the therapeutic properties of Cis-NP in vivo using a SKOV3-luc cells' xenograft model in mice. Methods: Cell cytotoxicity was assessed after the exposure of the cell culture to cisplatin or Cis-NP. The effect of treatments on EMT and CSC-like phenotype was studied by analyzing a panel of markers by flow cytometry. Intracellular platinum concentration was determined by inductively coupled plasma mass spectrometry (ICS-MS), and gene expression was evaluated by RNAseq analysis. The efficacy of intraperitoneal chemotherapy was evaluated in a SKOV3-luc cells' xenograft model in mice, through a combination of bioluminescence imaging, histological, and immunohistochemical analyses. Results: We observed in vitro that short-term treatment of cisplatin has a critical role in determining the potential induction of chemoresistance, and a nanotechnology-based drug delivery system can modulate it. The RNAseq analysis underlines a protective effect of nanoparticle system according to their ability to down-regulate several genes involved in chemoresistance, cell proliferation, and apoptosis. The highest intracellular platinum concentration obtained with Cis-NP treatment significantly improved the efficacy. Consistent with in vitro results, we found that Cis-NP treatment in vivo can significantly reduce tumor burden and aggressiveness compared to the free drug. Conclusion: Nanoparticle-mediated cisplatin delivery may serve as an intracellular depot impacting the cisplatin pharmacodynamic performance at cellular levels. These features may contribute to improving the drawbacks of conventional intraperitoneal therapy, and therefore will require further investigations in vivo.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Portadores de Fármacos/química , Espaço Intracelular/metabolismo , Nanomedicina/métodos , Nanopartículas/química , Neoplasias Ovarianas/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/química , Cisplatino/metabolismo , Cisplatino/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Int J Nanomedicine ; 15: 4899-4918, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764924

RESUMO

Purpose: The use of chemotherapeutic agents to combat cancer is accompanied by high toxicity due to their inability to discriminate between cancer and normal cells. Therefore, cancer therapy research has focused on the targeted delivery of drugs to cancer cells. Here, we report an in vitro study of folate-poly(ethylene glycol)-poly(propylene succinate) nanoparticles (FA-PPSu-PEG-NPs) as a vehicle for targeted delivery of the anticancer drug paclitaxel in breast and cervical cancer cell lines. Methods: Paclitaxel-loaded-FA-PPSu-PEG-NPs characterization was performed by in vitro drug release studies and cytotoxicity assays. The NPs cellular uptake and internalization mechanism were monitored by live-cell imaging in different cancer cell lines. Expression of folate receptor-α (FOLR1) was examined in these cell lines, and specific FOLR1-mediated entry of the FA-PPSu-PEG-NPs was investigated by free folic acid competition. Using inhibitors for other endocytic pathways, alternative, non-FOLR1 dependent routes for NPs uptake were also examined. Results: Drug release experiments of Paclitaxel-loaded PPSu-PEG-NPs indicated a prolonged release of Paclitaxel over several days. Cytotoxicity of Paclitaxel-loaded PPSu-PEG-NPs was similar to free drug, as monitored in cancer cell lines. Live imaging of cells treated with either free Paclitaxel or Paclitaxel-loaded PPSu-PEG-NPs demonstrated tubulin-specific cell cycle arrest, with similar kinetics. Folate-conjugated NPs (FA-PPSu-PEG-NPs) targeted the FOLR1 receptor, as shown by free folic acid competition of the FA-PPSu-PEG-NPs cellular uptake in some of the cell lines tested. However, due to the differential expression of FOLR1 in the cancer cell lines, as well as the intrinsic differences between the different endocytic pathways utilized by different cell types, other mechanisms of nanoparticle cellular entry were also used, revealing that dynamin-dependent endocytosis and macropinocytosis pathways mediate, at least partially, cellular entry of the FA-PPSu-PEG NPs. Conclusion: Our data provide evidence that Paclitaxel-loaded-FA-PPSu-PEG-NPs can be used for targeted delivery of the drug, FA-PPSu-PEG-NPs can be used as vehicles for other anticancer drugs and their cellular uptake is mediated through a combination of FOLR1 receptor-specific endocytosis, and macropinocytosis. The exploration of the different cellular uptake mechanisms could improve treatment efficacy or allow a decrease in dosage of anticancer drugs.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Ácido Fólico/química , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Receptor 1 de Folato/metabolismo , Ácido Fólico/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Paclitaxel/química , Paclitaxel/farmacologia
19.
Int J Nanomedicine ; 15: 5097-5111, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764939

RESUMO

Introduction: In this in-vitro study, we designed a 3D printed composite of zinc oxide (ZnO) nanoparticles (NPs) with photocatalytic activities encapsulated within hydrogel (alginate) constructs, for antibacterial purposes applicable towards wound healing. We primarily sought to confirm the mechanical properties and cell compatibility of these ZnO NP infused scaffolds. Methods: The antibacterial property of the ZnO NPs was confirmed by hydroxyl radical generation using ultraviolet (U.V.) photocatalysis. Titanium dioxide (TiO2), a well-known antibacterial compound, was used as a positive control (1% w/v) for the ZnO NP-based alginate constructs and their antibacterial efficacies compared. Among the ZnO group, 3D printed gels containing 0.5% and 1% w/v of ZnO were analyzed and compared with manually casted samples via SEM, swelling evaluation, and rheological analysis. Envisioning an in-vivo application for the 3D printed ZnO NP-based alginates, we studied their antibacterial properties by bacterial broth testing, cytocompatibility via live/dead assay, and moisture retention capabilities utilizing a humidity sensor. Results: 3D printed constructs revealed significantly greater pore sizes and enhanced structural stability compared to manually casted samples. For all samples, the addition of ZnO or TiO2 resulted in significantly stiffer gels in comparison with the alginate control. Bacterial resistance testing on Staphylococcus epidermidis indicated the addition of ZnO NPs to the gels decreased bacterial growth when compared to the alginate only gels. Cell viability of STO-fibroblasts was not adversely affected by the addition of ZnO NPs to the alginate gels. Furthermore, the addition of increasing doses of ZnO NPs to the alginate demonstrated increased humidity retention in gels. Discussion: The customization of 3D printed alginates containing antibacterial ZnO NPs leads to an alternative that allows accessible mobility of molecular exchange required for improving chronic wound healing. This scaffold can provide a cost-effective and durable antibacterial treatment option.


Assuntos
Alginatos/química , Alginatos/farmacologia , Hidrogéis/química , Nanopartículas/química , Cicatrização/efeitos dos fármacos , Óxido de Zinco/química , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/citologia
20.
Nat Commun ; 11(1): 3858, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737343

RESUMO

Checkpoint blockade therapy has provided noteworthy benefits in multiple cancers in recent years; however, its clinical benefits remain confined to 10-40% of patients with extremely high costs. Here, we design an ultrafast, low-temperature, and universal self-assembly route to integrate immunology-associated large molecules into metal-organic-framework (MOF)-gated mesoporous silica (MS) as cancer vaccines. Core MS nanoparticles, acting as an intrinsic immunopotentiator, provide the niche, void, and space to accommodate antigens, soluble immunopotentiators, and so on, whereas the MOF gatekeeper protects the interiors from robust and off-target release. A combination of MOF-gated MS cancer vaccines with systemic programmed cell death 1 (PD-1) blockade therapy generates synergistic effects that potentiate antitumour immunity and reduce the effective dose of an anti-PD-1 antibody to as low as 1/10 of that for PD-1 blockade monotherapy in E.G7-OVA tumour-bearing mice, with eliciting the robust adaptive OVA-specific CD8+ T-cell responses, reversing the immunosuppressive pathway and inducing durable tumour suppression.


Assuntos
Anticorpos Neutralizantes/farmacologia , Vacinas Anticâncer/farmacologia , Linfoma/terapia , Estruturas Metalorgânicas/farmacologia , Nanopartículas/administração & dosagem , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Antígenos de Neoplasias/administração & dosagem , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/química , Citotoxicidade Imunológica , Composição de Medicamentos , Feminino , Humanos , Imunidade Inata/efeitos dos fármacos , Imunoterapia/métodos , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Linfoma/imunologia , Linfoma/mortalidade , Linfoma/patologia , Estruturas Metalorgânicas/síntese química , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Receptor de Morte Celular Programada 1/imunologia , Dióxido de Silício/química , Análise de Sobrevida , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA