RESUMO
Integrating agricultural, chemical, and technological knowledge is crucial for developing bio-nanotechnologies to improve agricultural production. This study explores the innovative use of biopolymeric coatings, based on sodium alginate and sodium alginate + Laponite® (nanoclay), containing biostimulants (tryptophol and thymol) or not, on garlic cloves. These coatings were analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR-ATR), and scanning electron microscopy (SEM). Greenhouse bioassays showed improvements in garlic shoot plant biomass with both treatments: sodium alginate biopolymer and sodium alginate biopolymer plus Laponite®. In the field experiment, garlic plants treated with sodium alginate, in combination with conventional pesticide treatments, resulted in better quality garlic bulbs, where larger garlics were harvested in this treatment, reducing commercial losses. In tropical garlic crops, obtaining plants with greater initial vigor is essential. Our results highlight the potential of these bio-nanotechnological strategies to enhance garlic propagation, ensuring environmental protection and food security.
Assuntos
Alho , Alho/química , Biopolímeros/química , Alginatos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Microscopia Eletrônica de Varredura , Nanotecnologia/métodosRESUMO
Nanotechnology has brought about significant progress through the use of goods based on nanomaterials. However, concerns remain about the accumulation of these materials in the environment and their potential toxicity to living organisms. Plants have the ability to take in nanomaterials (NMs), which can cause changes in their physiology and morphology. On the other hand, nanoparticles (NPs) have been used to increase plant development and control pests in agriculture by including them into agrochemicals. The challenges of the interaction, internalization, and accumulation of NMs within plant tissues are enormous, mainly because of the various characteristics of NMs and the absence of reliable analytical tools. As our knowledge of the interactions between NMs and plant cells expands, we are able to create novel NMs that are tailored, targeted, and designed to be safe, thus minimizing the environmental consequences of nanomaterials. This review provides a thorough examination and comparison of the main microscopy techniques, spectroscopic methods, and far-field super-resolution methodologies used to examine nanomaterials within the cell walls of plants.
Assuntos
Nanopartículas , Plantas , Nanopartículas/toxicidade , Plantas/metabolismo , Plantas/efeitos dos fármacos , Nanotecnologia/métodosRESUMO
High-sensitivity nanoflow liquid chromatography (nLC) is seldom employed in untargeted metabolomics because current sample preparation techniques are inefficient at preventing nanocapillary column performance degradation. Here, we describe an nLC-based tandem mass spectrometry workflow that enables seamless joint analysis and integration of metabolomics (including lipidomics) and proteomics from the same samples without instrument duplication. This workflow is based on a robust solid-phase micro-extraction step for routine sample cleanup and bioactive molecule enrichment. Our method, termed proteomic and nanoflow metabolomic analysis (PANAMA), improves compound resolution and detection sensitivity without compromising the depth of coverage as compared with existing widely used analytical procedures. Notably, PANAMA can be applied to a broad array of specimens, including biofluids, cell lines, and tissue samples. It generates high-quality, information-rich metabolite-protein datasets while bypassing the need for specialized instrumentation.
Assuntos
Metabolômica , Proteômica , Espectrometria de Massas em Tandem , Proteômica/métodos , Metabolômica/métodos , Cromatografia Líquida , Humanos , Espectrometria de Massas em Tandem/métodos , Animais , Nanotecnologia/métodos , Espectrometria de Massa com Cromatografia LíquidaRESUMO
Artificial intelligence has revolutionized many sectors with unparalleled predictive capabilities supported by machine learning (ML). So far, this tool has not been able to provide the same level of development in pharmaceutical nanotechnology. This review discusses the current data science methodologies related to polymeric drug-loaded nanoparticle production from an innovative multidisciplinary perspective while considering the strictest data science practices. Several methodological and data interpretation flaws were identified by analyzing the few qualified ML studies. Most issues lie in following appropriate analysis steps, such as cross-validation, balancing data, or testing alternative models. Thus, better-planned studies following the recommended data science analysis steps along with adequate numbers of experiments would change the current landscape, allowing the exploration of the full potential of ML.
[Box: see text].
Assuntos
Inteligência Artificial , Ciência de Dados , Aprendizado de Máquina , Nanopartículas , Nanopartículas/química , Humanos , Ciência de Dados/métodos , Nanotecnologia/métodos , Polímeros/químicaRESUMO
Objective: To evaluate the influence of opacity and the layering technique on the fluorescence of different composite resins. Materials and Methods: Two opacities (enamel and dentin) and the layering technique (enamel + dentin) of the composite resins: Filtek® Z350 and Palfique LX5 were evaluated in vitro. Composite resin discs were fabricated using a preformed matrix of 10 mm diameter and 0.5 mm thick for the single opacity groups and 10 mm thick for the layering technique groups, using 2 layers of 0.5 mm thickness of each opacity (n = 5). Specimens were analyzed using the Raman spectroscopy method. Data were analyzed using the Kruskall-wallis and Mann-Whitney U tests. Results: When evaluating the intensity of fluorescence, no statistically significant difference was found when comparing the layering technique and enamel opacity (p2> 0.05) and an increase in the dentin opacity value for both brands of composite resin. Regarding wavelength, no statistically significant difference was found when comparing the layering technique with enamel opacity and dentin opacity for both Filtek® Z350 and Palfique LX5® composite resins (p2 > 0.05). Conclusions: The fluorescence intensity of the layering technique is similar to enamel opacity for both composite resins. Likewise, the wavelength of the layering technique is similar to the enamel opacity and dentin opacity for both brands.
Objetive: Evaluar la influencia de la opacidad y de la técnica de estratificación en la fluorescencia de diferentes resinas compuestas. Materiales y Métodos: Se evaluó in vitro 2 opacidades (Esmalte y Dentina) y la técnica de estratificación (Esmalte + Dentina) de las resinas compuestas: Filtek® Z350 y Palfique LX5. Se fabricaron discos de resina compuesta, utilizando una matriz preformada de 10 mm de diámetro y 0,5 mm de grosor para los grupos de opacidad única y 10 mm de grosor para los grupos de técnica estratificada, utilizando 2 capas de 0,5 mm de cada opacidad (n = 5). Los especímenes se analizaron mediante el método de Espectroscopía Raman. Los datos se analizaron utilizando la prueba de Kruskall-wallis y Prueba U de Mann Whitney. Resultado: Al evaluar la intensidad de fluorescencia no se encontró diferencia estadísticamente significativa entre los pares: Técnica estratificada versus Opacidad Esmalte para ambas marcas de resina compuesta Filtek® Z350 y para Palfique LX5® (p2 > 0,05). Para longitud de onda no se encontró diferencia estadísticamente significativa entre los pares: Técnica estratificada versus Opacidad Esmalte y Técnica estratificada VS Opacidad Dentina para ambas resinas compuesta Filtek® Z350 y Palfique LX5® (p2> 0,05). Conclusión: La intensidad de fluorescencia de la técnica estratificada es similar a la opacidad Esmalte para ambas resinas compuestas. De igual manera la longitud de onda de la técnica estratificada es similar a la opacidad Esmalte y opacidad Dentina para ambas marcas.
Assuntos
Humanos , Resinas Compostas/química , Nanotecnologia/métodos , Análise Espectral , Técnicas In VitroRESUMO
This review provides the current state of knowledge regarding the use of nutritional nanocompounds on exercise performance. The reviewed studies used the following nanocompounds: resveratrol-loaded lipid nanoparticles, folic acid into layered hydroxide nanoparticle, redox-active nanoparticles with nitroxide radicals, and iron into liposomes. Most of these nutritional nanocompounds seem to improve performance in endurance exercise compared to the active compound in the non-nanoencapsulated form and/or placebo. Nutritional nanocompounds also induced the following physiological and metabolic alterations: 1) improved antioxidant activity and reduced oxidative stress; 2) reduction in inflammation status; 3) maintenance of muscle integrity; 4) improvement in mitochondrial function and quality; 5) enhanced glucose levels during exercise; 6) higher muscle and hepatic glycogen levels; and 7) increased serum and liver iron content. However, all the reviewed studies were conducted in animals (mice and rats). In conclusion, nutritional nanocompounds are a promising approach to improving exercise performance. As the studies using nutritional nanocompounds were all conducted in animals, further studies in humans are necessary to better understand the application of nutritional nanocompounds in sport and exercise science.
Assuntos
Condicionamento Físico Animal , Animais , Condicionamento Físico Animal/fisiologia , Nanotecnologia , Nanopartículas , Exercício Físico/fisiologia , Ratos , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Resveratrol/farmacologia , Resveratrol/administração & dosagem , CamundongosRESUMO
Single nanochannels show unique transport properties due to nanoconfinement. It has been demonstrated that at submillimolar concentrations of divalent cations, a nanoprecipitation reaction can occur in nanochannels. Although several reports have shown, described, and modeled the nanoprecipitation process, no further advantages have been taken from this phenomenon. Here, we show that the nanoprecipitation reaction can be incorporated into enzyme-modified nanochannels to enhance the performance of small-molecule biosensors via in situ amplification reactions. Contrary to the working principle of previous enzymatic nanofluidic biosensors, the nanofluidic biosensor described in this work operates on the basis of concerted functions: pH-shifting enzymatic activity and nanoprecipitation. We show that the simple addition of Ca2+ and Mg2+ ions in the working analyte solution containing urea can lower the detection limit from the nanometer to the subnanometer regime and modulate the dynamic linear range. This approach enables the implementation of more sensitive real-time nanofluidic detection methods without increasing the complexity of the nanofluidic platform or the sensing approach. We envision that the integration of concerted functions in nanofluidic architectures will play a key role in expanding the use of these nanoscale devices for analytical purposes.
Assuntos
Técnicas Biossensoriais , NanotecnologiaRESUMO
The increasing global population is driving the development of alternative sources of food and energy, as well as better or new alternatives for health and environmental care, which represent key challenges in the field of biotechnology. Microalgae represent a very important source material to produce several high-value-added bioproducts. Due to the rapid changes in the modern world, there is a need to build new materials for use, including those in the nanometer size, although these developments may be chronological but often do not occur at a time. In the last few years, a new frontier has opened up at the interface of biotechnology and nanotechnology. This new frontier could help microalgae-based nanomaterials to possess new functions and abilities. Processes for the green synthesis of nanomaterials are being investigated, and the availability of biological resources such as microalgae is continuously being examined. The present review provides a concise overview of the recent advances in the synthesis, characterization, and applications of nanoparticles formed using a wide range of microalgae-based biosynthesis processes. Highlighting their innovative and sustainable potential in current research, our study contributes towards the in-depth understanding and provides latest updates on the alternatives offered by microalgae in the synthesis of nanomaterials.
Assuntos
Microalgas , Nanopartículas , Nanoestruturas , Biotecnologia , NanotecnologiaRESUMO
Gene therapy is one of the most advanced therapies in current medicine. In particular, interference RNA-based therapy by small interfering RNA (siRNA) has gained attention in recent years as it is a highly versatile, selective and specific therapy. In dermatological conditions, topical delivery of siRNA offers numerous therapeutic advantages, mainly by inhibiting the expression of target transcripts directly in the skin. However, crossing the stratum corneum and overcoming intracellular barriers is an inherent challenge. Substantial efforts by scientists have moved towards the use of multimodal and multifunctional nanoparticles to overcome these barriers and achieve greater bioavailability in their site of action, the cytoplasm. In this review the most innovative strategies based on nanoparticle and physical methods are presented, as well as the design principles and the main factors that contribute to the performance of these systems. This review also highlights the synergistic contributions of medicine, nanotechnology, and molecular biology to advancing translational research into siRNA-based therapeutics for skin diseases.
Assuntos
Nanopartículas , Dermatopatias , Humanos , RNA Interferente Pequeno , Interferência de RNA , Terapia Genética/métodos , Preparações Farmacêuticas , Dermatopatias/tratamento farmacológico , NanotecnologiaRESUMO
Nitric oxide (NO) is a versatile signaling molecule that plays a crucial role in regulating postharvest fruit quality. The utilization of NO donors to elevate endogenous NO levels and induce NO-mediated responses represents a promising strategy for extending fruit shelf-life after harvest. However, the effectiveness of NO treatment is influenced by various factors, including formulation and application methods. In this review, we investigate the impact of NO supply on different fruits, aiming to prolong postharvest shelf-life and enhance fruit quality. Furthermore, we delve into the underlying mechanisms of NO action, particularly its interactions with ethylene and reactive oxygen species (ROS). Excitingly, we also highlight the emerging field of nanotechnology in postharvest applications, discussing the use of nanoparticles as a novel approach for achieving sustained release of NO and enhancing its effects. By harnessing the potential of nanotechnology, our review is a starting point to help identify gaps and future directions in this important, emerging field.
Assuntos
Frutas , Óxido Nítrico , Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/farmacologia , Transdução de Sinais , NanotecnologiaRESUMO
In recent decades, a sweeping technological wave has reshaped the global economic landscape. Fueled by the unceasing forces of digital innovation and venture capital investment, this transformative machine has left a significant mark across numerous economic sectors. More recently, the emergence of 'deep tech' start-ups, focusing on areas such as artificial intelligence, nanotechnology, and biotechnology, has infused a fresh wave of innovation into various sectors, including the pharmaceutical and cosmetic industry. This review explores the significance of innovation within the cosmetics sector, with a particular emphasis on delivery systems. It assesses the crucial process of bridging the gap between research and the market, particularly in the translation of nanotechnology into tangible real-world applications. With the rise of nanotechnology-based beauty ingredients, we can anticipate groundbreaking advancements that promise to surpass consumer expectations, ushering in a new era of unparalleled innovation in beauty products.
Assuntos
Inteligência Artificial , Cosméticos , Humanos , Preparações Farmacêuticas , NanotecnologiaRESUMO
Previous domestic and foreign studies have shown the significant effect of Talaromyces flavus on growth inhibition of some important plant pathogens including Verticillium dahliae, Fusarium oxysporum f. sp. lycopersici and Fusarium oxysporum f. sp. cucumerinum. In Iran, it is necessary to produce new formulations of this fungus based on modern technologies given the importance of attracting companies producing biological control agents and transferring the technical knowledge of mass production of formulations of these agents to them. In the present study, based on the method presented in the Pesticide Research Department of the Iranian Plant Protection Research Institute, two types of T. flavus formulations in the form of nano-capsules containing Talaromyces flavus with two forms of powder and suspension were prepared using nanotechnology. In the next step, during the greenhouse examination, the efficiency of each of these new formulations in concentrations of one to five per thousand for soil addition method and concentration of five per thousand for seed impregnation method (six treatments for each of the two new formulations) was compared with the registered formulation of Talaromin in two methods of seed impregnation and soil addition with healthy control and infected control to control cotton Verticillium wilt disease, in the form of a randomized complete block design with 16 treatments and 5 replications. After statistical analysis of the data obtained by Duncan's Multiple Range Test by MS TAT C software, the results showed that in terms of disease severity among treatments with the previous formulation (Talaromin) with each of the methods of soil addition and seed impregnation, there was no statistically significant difference between nano-suspension with each of the concentrations of one, four and five per thousand by the soil addition method and nano-powder with each of the concentrations of two and three per thousand by soil addition method, and the mentioned treatments were included in one statistical group in terms of disease severity with healthy control.
Estudos anteriores nacionais e internacionais mostraram o efeito significativo de Talaromyces flavus na inibição do crescimento de alguns importantes patógenos de plantas, incluindo Verticillium dahliae, Fusarium oxysporum f. sp. lycopersici e Fusarium oxysporum f. sp. cucumerinum. No Irã, é necessário produzir novas formulações desse fungo com base em tecnologias modernas, dada a importância de atrair empresas produtoras de agentes de controle biológico e transferir para elas o conhecimento técnico de produção em massa das formulações desses agentes. No presente estudo, com base no método apresentado no Departamento de Pesquisa de Pesticidas, do Instituto Iraniano de Pesquisa em Proteção de Plantas, dois tipos de formulações de T. flavus, na forma de nanocápsulas contendo T. flavus com duas formas de pó e suspensão, foram preparados usando nanotecnologia. Na etapa seguinte, durante o exame em casa de vegetação, a eficiência de cada uma dessas novas formulações em concentrações de um a cinco por mil para o método de adição de solo e de cinco por mil para o método de impregnação de sementes (seis tratamentos para cada uma das duas novas formulações) foi comparada com a formulação registrada de Talaromin em dois métodos de impregnação de sementes e adição de solo com controle sadio e controle infectado para controle da murcha de Verticillium do algodoeiro, na forma de delineamento em blocos completos casualizados com 16 tratamentos e 5 repetições. Após análise estatística dos dados obtidos pelo Duncan's Multiple Range Test por meio do software MS TAT C, os resultados mostraram que, em termos de severidade da doença entre os tratamentos com a formulação anterior (Talaromin), com cada um dos métodos de adição de solo e impregnação de sementes, não houve diferença estatisticamente significativa entre a nanossuspensão com cada uma das concentrações de um, quatro e cinco por mil pelo método de adição de solo e entre o nanopó com cada uma das concentrações de dois e três por mil pelo método de adição de solo, e os tratamentos mencionados foram incluídos em um grupo estatístico em termos de gravidade da doença com controle saudável.
Assuntos
Controle Biológico de Vetores , Verticillium , Nanotecnologia , Talaromyces/patogenicidade , Fungos , Nanocápsulas/administração & dosagemRESUMO
Alzheimer's disease (AD) is a well-known chronic neurodegenerative disorder that leads to the progressive death of brain cells, resulting in memory loss and the loss of other critical body functions. In March 2019, one of the major pharmaceutical companies and its partners announced that currently, there is no drug to cure AD, and all clinical trials of the new ones have been cancelled, leaving many people without hope. However, despite the clear message and startling reality, the research continued. Finally, in the last two years, the Food and Drug Administration (FDA) approved the first-ever medications to treat Alzheimer's, aducanumab and lecanemab. Despite researchers' support of this decision, there are serious concerns about their effectiveness and safety. The validation of aducanumab by the Centers for Medicare and Medicaid Services is still pending, and lecanemab was authorized without considering data from the phase III trials. Furthermore, numerous reports suggest that patients have died when undergoing extended treatment. While there is evidence that aducanumab and lecanemab may provide some relief to those suffering from AD, their impact remains a topic of ongoing research and debate within the medical community. The fact is that even though there are considerable efforts regarding pharmacological treatment, no definitive cure for AD has been found yet. Nevertheless, it is strongly believed that modern nanotechnology holds promising solutions and effective clinical strategies for the development of diagnostic tools and treatments for AD. This review summarizes the major hallmarks of AD, its etiological mechanisms, and challenges. It explores existing diagnostic and therapeutic methods and the potential of nanotechnology-based approaches for recognizing and monitoring patients at risk of irreversible neuronal degeneration. Overall, it provides a broad overview for those interested in the evolving areas of clinical neuroscience, AD, and related nanotechnology. With further research and development, nanotechnology-based approaches may offer new solutions and hope for millions of people affected by this devastating disease.
Assuntos
Doença de Alzheimer , Idoso , Humanos , Estados Unidos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Medicare , Encéfalo , NanotecnologiaRESUMO
Nanotechnology has played a prominent role in biomedical engineering, offering innovative approaches to numerous treatments. Notable advances have been observed in the development of medical devices, contributing to the advancement of modern medicine. This article briefly discusses key applications of nanotechnology in tissue engineering, controlled drug release systems, biosensors and monitoring, and imaging and diagnosis. The particular emphasis on this theme will result in a better understanding, selection, and technical approach to nanomaterials for biomedical purposes, including biological risks, security, and biocompatibility criteria.
Assuntos
Sistemas de Liberação de Medicamentos , Nanoestruturas , Sistemas de Liberação de Medicamentos/métodos , Nanotecnologia/métodos , Engenharia Biomédica/métodos , Engenharia Tecidual/métodosRESUMO
La resorción ósea alveolar suele dar lugar a que las inserciones de la mucosa interfieran para la construcción, estabilidad y retención de una prótesis removible, una opción que permite modificar este tejido se obtiene por medio de una vestibuloplastia. Actualmente se puede favorecer la cicatrización de heridas utilizando láser de alta potencia aplicado a procedimientos quirúrgicos orales. Se realiza reporte de caso en paciente femenino a la que se realizó procedimiento de vestibuloplastia con láser de Er,Cr:YSGG, utilizando de forma postoperatoria gel de quitosano en nanotransportador biomolécula EPX. Se observa una cicatrización rápida y favorable al combinar ambas terapéuticas, además al utilizar productos con quitosano se disminuye el riesgo de la necrosis de fibroblastos gingivales humanos como recientemente se reportó en el uso de colutorios de clorhexidina (AU)
Alveolar bone resorption often results in mucosal insertions interfering with the construction, stability and retention of a removable prosthesis, an option to modify this tissue is obtained by means of vestibuloplasty. Currently, wound healing can be promoted by using high power laser applied to oral surgical procedures. A case report of a female patient who underwent a vestibuloplasty procedure with laser Er,Cr:YSGG, using chitosan gel with EPX biomolecule nanocarriers postoperatively. A fast and favorable healing is observed when combining both therapeutics, besides, when using products with chitosan, the risk of necrosis of human gingival fibroblasts is reduced, as recently reported in the use of chlorhexidine mouthwashes (AU)
Assuntos
Humanos , Feminino , Pessoa de Meia-Idade , Cicatrização , Nanotecnologia/métodos , Terapia a Laser/métodos , Lasers de Estado Sólido , QuitosanaRESUMO
Osteoarthritis is considered a degenerative joint disease that is characterised by inflammation, chronic pain, and functional limitation. The increasing development of nanotechnology in drug delivery systems has provided new ideas and methods for osteoarthritis therapy. This review aimed to evaluate patents that have developed innovations, therapeutic strategies, and alternatives using nanotechnology in osteoarthritis treatment. The results show patents deposited from 2015 to November 2021 in the online databases European Patent Office and World Intellectual Property Organisation. A total of 651 patents were identified for preliminary assessment and 16 were selected for full reading and discussion. The evaluated patents are focused on the intraarticular route, oral route, and topical route for osteoarthritis treatment. The intraarticular route presented a higher patent number, followed by the oral and topical routes, respectively. The development of new technologies allows us to envision a promising and positive future in osteoarthritis treatment.