Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.043
Filtrar
1.
Opt Express ; 31(7): 11788-11803, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37155805

RESUMO

Histamine is a biologically active molecule that serves as a reliable predictor of the quality of fish. In this work, authors have developed a novel humanoid-shaped tapered optical fiber (HTOF) biosensor based on the localized surface plasmon resonance (LSPR) phenomenon to detect varying histamine concentrations. In this experiment, a novel and distinctive tapering structure has been developed using a combiner manufacturing system and contemporary processing technologies. Graphene oxide (GO)/multi-walled carbon nanotubes (MWCNTs) are immobilized on the HTOF probe surface to increase the biocompatibility of biosensor. In this instance, GO/MWCNTs are deployed first, then gold nanoparticles (AuNPs). Consequently, the GO/MWCNTs help to give abundant space for the immobilization of nanoparticles (AuNPs in this case) as well as increase surface area for the attachment of biomolecules to the fiber surface. By immobilizing AuNPs on the surface of the probe, the evanescent field can stimulate the AuNPs and excite the LSPR phenomena for sensing the histamine. The surface of the sensing probe is functionalized with diamine oxidase enzyme in order to enhance the histamine sensor's particular selectivity. The proposed sensor is demonstrated experimentally to have a sensitivity of 5.5 nm/mM and a detection limit of 59.45 µM in the linear detection range of 0-1000 µM. In addition, the probe's reusability, reproducibility, stability, and selectivity are tested; the results of these indices show that the probe has a high application potential for detecting histamine levels in marine products.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos de Carbono , Animais , Nanotubos de Carbono/química , Ouro/química , Histamina , Fibras Ópticas , Reprodutibilidade dos Testes , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos
2.
Int J Nanomedicine ; 18: 2295-2305, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37163141

RESUMO

Background: The wide use of antibiotics has created challenges related to antibiotic-resistant bacteria, which have been increasingly found in recent decades. Antibiotic resistance has led to limited choices of antibiotics. Multiple old antimicrobial agents have high antimicrobial properties toward bacteria, but they unfortunately also possess high toxicity toward humans. For instance, silver (Ag) compounds were frequently used to treat tetanus and rheumatism in the 19th century and to treat colds and gonorrhea in the early 20th century. However, the high toxicity of Ag has limited its clinical use. Purpose: We aimed to reformulate Ag to reduce its toxicity toward human cells like osteoblasts and to optimize its antimicrobial properties. Results: Ag, an old antimicrobial agent, was reformulated by hybriding nanomaterials of different dimensions, and silver nanoparticles (AgNPs) of controllable sizes (95-200 nm) and varying shapes (cube, snowflake, and sphere) were synthesized on carbon nanotubes (CNTs). The obtained AgNP-CNT nanohybrids presented significantly higher killing efficacy against Staphylococcus aureus (S. aureus) compared to AgNPs at the same molar concentration and showed synergism in killing S. aureus at 0.2 and 0.4 mM. AgNPs presented significant osteoblast toxicity; in contrast, AgNP-CNT nanohybrids demonstrated significantly enhanced osteoblast viability at 0.04-0.8 mM. The killing of S. aureus by AgNP-CNT nanohybrids was fast, occurring within 15 min. Conclusion: Ag was successfully reformulated and Ag nanohybrids with various AgNP shapes on CNTs were synthesized. The nanohybrids presented significantly enhanced antimicrobial properties and significantly higher osteoblast cell viability compared to AgNPs, showing promise as an innovative antimicrobial nanomaterial for a broad range of biomedical applications.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanotubos de Carbono , Humanos , Staphylococcus aureus , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/química , Testes de Sensibilidade Microbiana
3.
Nat Commun ; 14(1): 2662, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160961

RESUMO

The hollow and tubular structure of single-walled carbon nanotubes (SWCNTs) makes them ideal candidates for making nanopores. However, the heterogeneity of SWCNTs hinders the fabrication of robust and reproducible carbon-based nanopore sensors. Here we develop a modified density gradient ultracentrifugation approach to separate ultrashort (≈5-10 nm) SWCNTs with a narrow conductance range and construct high-resolution nanopore sensors with those tubes inserted in lipid bilayers. By conducting ionic current recordings and fluorescent imaging of Ca2+ flux through different nanopores, we prove that the ion mobilities in SWCNT nanopores are 3-5 times higher than the bulk mobility. Furthermore, we employ SWCNT nanopores to discriminate homologue or isomeric proteinogenic amino acids, which are challenging tasks for other nanopore sensors. These successes, coupled with the building of SWCNT nanopore arrays, may constitute a crucial part of the recently burgeoning protein sequencing technologies.


Assuntos
Nanoporos , Nanotubos de Carbono , Aminoácidos , Sequência de Aminoácidos , Corantes
4.
Biosensors (Basel) ; 13(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37185491

RESUMO

Biosensors are analytical tools that can be used as simple, real-time, and effective devices in clinical diagnosis, food analysis, and environmental monitoring. Nanoscale functional materials possess unique properties such as a large surface-to-volume ratio, making them useful for biomedical diagnostic purposes. Nanoengineering has resulted in the increased use of nanoscale functional materials in biosensors. Various types of nanostructures i.e., 0D, 1D, 2D, and 3D, have been intensively employed to enhance biosensor selectivity, limit of detection, sensitivity, and speed of response time to display results. In particular, carbon nanotubes and nanofibers have been extensively employed in electrochemical biosensors, which have become an interdisciplinary frontier between material science and viral disease detection. This review provides an overview of the current research activities in nanofiber-based electrochemical biosensors for diagnostic purposes. The clinical applications of these nanobiosensors are also highlighted, along with a discussion of the future directions for these materials in diagnostics. The aim of this review is to stimulate a broader interest in developing nanofiber-based electrochemical biosensors and improving their applications in disease diagnosis. In this review, we summarize some of the most recent advances achieved in point of care (PoC) electrochemical biosensor applications, focusing on new materials and modifiers enabling biorecognition that have led to improved sensitivity, specificity, stability, and response time.


Assuntos
Técnicas Biossensoriais , Nanofibras , Nanoestruturas , Nanotubos de Carbono , Técnicas Eletroquímicas/métodos , Nanoestruturas/química , Técnicas Biossensoriais/métodos
5.
Biosensors (Basel) ; 13(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37185528

RESUMO

Electrochemical sensors consisting of screen-printed electrodes (SPEs) are recurrent devices in the recent literature for applications in different fields of interest and contribute to the expanding electroanalytical chemistry field. This is due to inherent characteristics that can be better (or only) achieved with the use of SPEs, including miniaturization, cost reduction, lower sample consumption, compatibility with portable equipment, and disposability. SPEs are also quite versatile; they can be manufactured using different formulations of conductive inks and substrates, and are of varied designs. Naturally, the analytical performance of SPEs is directly affected by the quality of the material used for printing and modifying the electrodes. In this sense, the most varied carbon nanomaterials have been explored for the preparation and modification of SPEs, providing devices with an enhanced electrochemical response and greater sensitivity, in addition to functionalized surfaces that can immobilize biological agents for the manufacture of biosensors. Considering the relevance and timeliness of the topic, this review aimed to provide an overview of the current scenario of the use of carbonaceous nanomaterials in the context of making electrochemical SPE sensors, from which different approaches will be presented, exploring materials traditionally investigated in electrochemistry, such as graphene, carbon nanotubes, carbon black, and those more recently investigated for this (carbon quantum dots, graphitic carbon nitride, and biochar). Perspectives on the use and expansion of these devices are also considered.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Eletrodos , Eletroquímica , Técnicas Eletroquímicas
6.
Biosensors (Basel) ; 13(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37185561

RESUMO

Herein, we report results of the studies relating to the development of an impedimetric, magnetic bead-assisted supersandwich DNA hybridization assay for ultrasensitive detection of Neisseria gonorrhoeae, the causative agent of a sexually transmitted infection (STI), gonorrhea. First, a conductive ink was formulated by homogenously dispersing carboxylated multiwalled carbon nanotubes (cMWCNTs) in a stable emulsion of terpineol and an aqueous suspension of carboxymethyl cellulose (CMC). The ink, labeled C5, was coated onto paper substrates to fabricate C5@paper conductive electrodes. Thereafter, a magnetic bead (MB)-assisted supersandwich DNA hybridization assay was optimized against the porA pseudogene of N. gonorrhoeae. For this purpose, a pair of specific 5' aminated capture probes (SCP) and supersandwich detector probes (SDP) was designed, which allowed the enrichment of target gonorrheal DNA sequence from a milieu of substances. The SD probe was designed such that instead of 1:1 binding, it allowed the binding of more than one T strand, leading to a 'ladder-like' DNA supersandwich structure. The MB-assisted supersandwich assay was integrated into the C5@paper electrodes for electrochemical analysis. The C5@paper electrodes were found to be highly conductive by a four-probe conductivity method (maximum conductivity of 10.1 S·cm-1). Further, the biosensing assay displayed a wide linear range of 100 aM-100 nM (109 orders of magnitude) with an excellent sensitivity of 22.6 kΩ·(log[concentration])-1. The clinical applicability of the biosensing assay was assessed by detecting genomic DNA extracted from N. gonorrhoeae in the presence of DNA from different non-gonorrheal bacterial species. In conclusion, this study demonstrates a highly sensitive, cost-effective, and label-free paper-based device for STI diagnostics. The ink formulation prepared for the study was found to be highly thixotropic, which indicates that the paper electrodes can be screen-printed in a reproducible and scalable manner.


Assuntos
Técnicas Biossensoriais , Gonorreia , Nanotubos de Carbono , Humanos , Neisseria gonorrhoeae/genética , Nanotubos de Carbono/química , Tinta , DNA/análise , Gonorreia/diagnóstico , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos
7.
Biosensors (Basel) ; 13(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37185565

RESUMO

In this study, a screen-printed electrode (SPE) modified with gold-nanoparticle-decorated reduced graphene oxide-carbon nanotubes (rGO-AuNPs/CNT/SPE) was used for the determination of estradiol (E2). The AuNPs were produced through an eco-friendly method utilising plant extract, eliminating the need for severe chemicals, and remove the requirements of sophisticated fabrication methods and tedious procedures. In addition, rGO-AuNP serves as a dispersant for the CNT to improve the dispersion stability of CNTs. The composite material, rGO-AuNPs/CNT, underwent characterisation through scanning electron microscopy (SEM), ultraviolet-visible absorption spectroscopy (UV-vis), Fourier-transform infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The electrochemical performance of the modified SPE for estradiol oxidation was characterised using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The rGO-AuNPs/CNT/SPE exhibited a notable improvement compared to bare/SPE and GO-CNT/SPE, as evidenced by the relative peak currents. Additionally, we employed a baseline correction algorithm to accurately adjust the sensor response while eliminating extraneous background components that are typically present in voltammetric experiments. The optimised estradiol sensor offers linear sensitivity from 0.05-1.00 µM, with a detection limit of 3 nM based on three times the standard deviation (3δ). Notably, this sensing approach yields stable, repeatable, and reproducible outcomes. Assessment of drinking water samples indicated an average recovery rate of 97.5% for samples enriched with E2 at concentrations as low as 0.5 µM%, accompanied by only a modest coefficient of variation (%CV) value of 2.7%.


Assuntos
Grafite , Nanopartículas Metálicas , Nanotubos de Carbono , Nanotubos de Carbono/química , Ouro/química , Nanopartículas Metálicas/química , Estradiol , Grafite/química , Eletrodos , Técnicas Eletroquímicas/métodos
8.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175627

RESUMO

Colorectal cancer (CRC) is the third most common cancer worldwide, and metastatic CRC is a fatal disease. The CRC-affected tissues show several molecular markers that could be used as a fresh strategy to create newer methods of treating the condition. The liver and the peritoneum are where metastasis occurs most frequently. Once the tumor has metastasized to the liver, peritoneal carcinomatosis is frequently regarded as the disease's final stage. However, nearly 50% of CRC patients with peritoneal carcinomatosis do not have liver metastases. New diagnostic and therapeutic approaches must be developed due to the disease's poor response to present treatment choices in advanced stages and the necessity of an accurate diagnosis in the early stages. Many unique and amazing nanomaterials with promise for both diagnosis and treatment may be found in nanotechnology. Numerous nanomaterials and nanoformulations, including carbon nanotubes, dendrimers, liposomes, silica nanoparticles, gold nanoparticles, metal-organic frameworks, core-shell polymeric nano-formulations, and nano-emulsion systems, among others, can be used for targeted anticancer drug delivery and diagnostic purposes in CRC. Theranostic approaches combined with nanomedicine have been proposed as a revolutionary approach to improve CRC detection and treatment. This review highlights recent studies, potential, and challenges for the development of nanoplatforms for the detection and treatment of CRC.


Assuntos
Neoplasias Colorretais , Nanopartículas Metálicas , Nanopartículas , Nanotubos de Carbono , Neoplasias Peritoneais , Humanos , Nanomedicina/métodos , Medicina de Precisão , Ouro , Nanopartículas/uso terapêutico , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/tratamento farmacológico , Nanomedicina Teranóstica , Sistemas de Liberação de Medicamentos/métodos
9.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176006

RESUMO

In this work, we present an analysis of the antibacterial activity of TiS3 nanostructures in water and 0.9% NaCl solution suspensions. TiS3 nanoribbons 1-10 µm long, 100-300 nm wide, and less than 100 nm thick were produced by the direct reaction of pure titanium powder with elemental sulphur in a quartz tube sealed under vacuum. For the toxicity test of a bioluminescent strain of E. coli we used concentrations from 1 to 0.0001 g L-1 and also studied fresh suspensions and suspensions left for 24 h. The strongest toxic effect was observed in freshly prepared water solutions where the luminescence of bacteria decreased by more than 75%. When saline solution was substituted for water or when the solutions were stored for 24 h it resulted in a considerable decrease in the TiS3 antibacterial effect. The toxicity of TiS3 in water exceeded the toxicity of the reference TiO2 nanoparticles, though when saline solution was used instead of water the opposite results were observed. In addition, we did not find a relationship between the antibacterial activity of water suspensions of nanoribbons and the stability of their colloidal systems, which indicates an insignificant contribution to the toxicity of aggregation processes. In 0.9% NaCl solution suspensions, toxicity increased in proportion to the increase in the zeta potential. We suppose that the noted specificity of toxicity is associated with the emission of hydrogen sulphide molecules from the surface of nanoribbons, which, depending on the concentration, can either decrease or increase oxidative stress, which is considered the key mechanism of nanomaterial cytotoxicity. However, the exact underlying mechanisms need further investigation. Thus, we have shown an important role of the dispersion medium and the period of storage in the antibacterial activity of TiS3 nanoribbons. Our results could be used in nanotoxicological studies of other two-dimensional nanomaterials, and for the development of novel antibacterial substances and other biomedical applications of this two-dimensional material.


Assuntos
Nanotubos de Carbono , Titânio , Titânio/toxicidade , Titânio/química , Escherichia coli , Solução Salina , Suspensões , Antibacterianos/farmacologia , Antibacterianos/química , Água/química
10.
Nanotoxicology ; 17(3): 270-288, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37126100

RESUMO

Carbon nanotubes (CNTs) are nanomaterials presenting an occupational inhalation risk during production or handling. The International Agency for Research on Cancer classified one CNT, Mitsui-7 (MWNT-7), as 'possibly carcinogenic to humans'. In recognition of their similarities, a proposal has been submitted to the risk assessment committee of ECHA to classify all fibers with 'Fibre Paradigm' (FP)-compatible dimensions as carcinogenic. However, there is a lack of clarity surrounding the toxicity of fibers that do not fit the FP criteria. In this study, we compared the effects of the FP-compatible Mitsui-7, to those of NM-403, a CNT that is too short and thin to fit the paradigm. Female Sprague Dawley rats deficient for p53 (GMO) and wild type (WT) rats were exposed to the two CNTs (0.25 mg/rat/week) by intratracheal instillation. Animals (GMO and WT) were exposed weekly for four consecutive weeks and were sacrificed 3 days or 8 months after the last instillation. Exposure to both CNTs induced acute lung inflammation. However, persistent inflammation at 8 months was only observed in the lungs of rats exposed to NM-403. In addition to the persistent inflammation, NM-403 stimulated hyperplasic changes in rat lungs, and no adenomas or carcinomas were detected. The degree and extent of hyperplasia was significantly more pronounced in GMO rats. These results suggest that CNT not meeting the FP criteria can cause persistent inflammation and hyperplasia. Consequently, their health effects should be carefully assessed.


Assuntos
Nanotubos de Carbono , Humanos , Ratos , Feminino , Animais , Nanotubos de Carbono/toxicidade , Proteína Supressora de Tumor p53/genética , Hiperplasia/patologia , Ratos Sprague-Dawley , Pulmão , Inflamação , Exposição por Inalação
11.
ACS Appl Mater Interfaces ; 15(18): 21866-21876, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37128896

RESUMO

Blood coagulation is a critical defense mechanism against bleeding that results in the conversion of liquid blood into a solid clot through a complicated cascade, which involves multiple clotting factors. One of the final steps in the coagulation pathway is the conversion of fibrinogen to insoluble fibrin mediated by thrombin. Because coagulation disorders can be life-threatening, the development of novel methods for monitoring the coagulation cascade dynamics is of high importance. Here, we use near-infrared (NIR)-fluorescent single-walled carbon nanotubes (SWCNTs) to image and monitor fibrin clotting in real time. Following the binding of fibrinogen to a tailored SWCNT platform, thrombin transforms the fibrinogen into fibrin monomers, which start to polymerize. The SWCNTs are incorporated within the clot and can be clearly visualized in the NIR-fluorescent channel, where the signal-to-noise ratio is improved compared to bright-field imaging in the visible range. Moreover, the diffusion of individual SWCNTs within the fibrin clot gradually slows down after the addition of thrombin, manifesting a coagulation rate that depends on both fibrinogen and thrombin concentrations. Our platform can open new opportunities for coagulation disorder diagnostics and allow for real-time monitoring of the coagulation cascade with a NIR optical signal output in the biological transparency window.


Assuntos
Hemostáticos , Nanotubos de Carbono , Trombose , Humanos , Trombina/metabolismo , Coagulação Sanguínea , Fibrina/metabolismo , Fibrinogênio/metabolismo , Hemostáticos/farmacologia
12.
Proc Natl Acad Sci U S A ; 120(20): e2218739120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155879

RESUMO

Carbon-based nanomaterials (CNMs) have recently been found in humans raising a great concern over their adverse roles in the hosts. However, our knowledge of the in vivo behavior and fate of CNMs, especially their biological processes elicited by the gut microbiota, remains poor. Here, we uncovered the integration of CNMs (single-walled carbon nanotubes and graphene oxide) into the endogenous carbon flow through degradation and fermentation, mediated by the gut microbiota of mice using isotope tracing and gene sequencing. As a newly available carbon source for the gut microbiota, microbial fermentation leads to the incorporation of inorganic carbon from the CNMs into organic butyrate through the pyruvate pathway. Furthermore, the butyrate-producing bacteria are identified to show a preference for the CNMs as their favorable source, and excessive butyrate derived from microbial CNMs fermentation further impacts on the function (proliferation and differentiation) of intestinal stem cells in mouse and intestinal organoid models. Collectively, our results unlock the unknown fermentation processes of CNMs in the gut of hosts and underscore an urgent need for assessing the transformation of CNMs and their health risk via the gut-centric physiological and anatomical pathways.


Assuntos
Microbioma Gastrointestinal , Nanoestruturas , Nanotubos de Carbono , Humanos , Animais , Camundongos , Microbioma Gastrointestinal/fisiologia , Nanotubos de Carbono/efeitos adversos , Fermentação , Butiratos/metabolismo
13.
Sci Rep ; 13(1): 7999, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198239

RESUMO

A practical technique was applied to fabricate CuO nanostructures for use as the electrocatalyst. The green synthesis of cupric oxide nanoparticles (CuO NPs) via co-precipitation is described in this paper using an aqueous extract of Origanum majorana as both reductant and stabilizer, accompanied by characterization via XRD, SEM, and FTIR. The XRD pattern revealed no impurities, whereas SEM revealed low agglomerated spherical particles. CuO nanoparticles and multi wall carbon nanotubes (MWCNTs) have been used to create a modified carbon paste electrode. Voltammetric methods were used to analyze Tramadol using CuONPs/MWCNT as a working electrode. The produced nanocomposite showed high selectivity for Tramadol analysis with peak potentials of ~ 230 mV and ~ 700 mV and Excellent linear calibration curves for Tramadol ranging from 0.08 to 500.0 µM with a correlation coefficient of 0.9997 and detection limits of 0.025. Also, the CuO NPs/MWCNT/CPE sensor shows an an appreciable sensitivity of 0.0773 µA/µM to tramadol. For the first time the B3LYP/LanL2DZ, quantum method was used to compute DFT to determine nanocomposites' connected energy and bandgap energy. Eventually, CuO NPs/CNT was shown to be effective in detecting Tramadol in actual samples, with a recovery rate ranging from 96 to 104.3%.


Assuntos
Nanocompostos , Nanotubos de Carbono , Tramadol , Nanotubos de Carbono/química , Nanocompostos/química , Eletrodos , Técnicas Eletroquímicas/métodos
14.
Pharmazie ; 78(5): 31-36, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37189268

RESUMO

The purpose of this study was to combine carbon nanotube with ethosomes in order to obtain hybrid nanocarriers for transdermal delivery of ketoprofen (KP). KP-loaded functionalized single-walled carbon nanotube (f-SWCNTs) composite ethosomes (f-SWCNTs-KP-ES) were designed and were verified by a series of characterizations. The particle size of the preparation is less than 400 nm. DSC and XRD experiments showed that KP existed in an amorphous state after it was adsorbed and loaded on f-SWCNTs. TEM experiments showed that the structure of SWCNTs remained intact after oxidation and modification by PEI. FTIR results showed that PEI were successfully modified on the surface of SWCNT-COOH, and KP was successfully loaded on f-SWCNTs. In vitro release characteristics showed that the preparation had sustained release behavior and conformed to the first-order kinetic equation model. In addition, f-SWCNTs-KP-ES gel were prepared and in vitro skin permeation and in vivo pharmacokinetics were studied. The results showed that f-SWCNTs-KP-ES gel could enhance the skin permeation rate of KP and increase the drug retention of drugs in the skin. The characterization results consistently showed f-SWCNTs is a promising drug carrier. The hybrid nanocarrier prepared by the combination of f-SWCNTs and ethosomes can enhance the transdermal absorption of drugs and improve the bioavailability of drugs, which has a certain significance for the development of advanced hybrid nano-preparations.


Assuntos
Cetoprofeno , Nanotubos de Carbono , Cetoprofeno/química , Cetoprofeno/farmacocinética , Nanotubos de Carbono/química , Administração Cutânea , Pele/metabolismo , Absorção Cutânea
15.
Nanotechnology ; 34(31)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37130512

RESUMO

Continuous monitoring of arterial pulse has great significance for detecting the early onset of cardiovascular disease and assessing health status, while needs pressure sensors with high sensitivity and signal-to-noise ratio (SNR) to accurately capture more health information concealed in pulse waves. Field effect transistors (FETs) combined with the piezoelectric film is an ultrahigh sensitive pressure sensor category, especially when the FET works in the subthreshold regime, where the signal enhancement effect on the piezoelectric response is the most effective. However, controlling the work regime of FET needs extra external bias assistance which will interfere with the piezoelectric response signal and complicate the test system thus making the scheme difficult to implement. Here, we described a gate dielectric modulation strategy to match the subthreshold region of the FET with the piezoelectric output voltage without external gate bias, finally enhancing the sensitivity of the pressure sensor. A carbon nanotube field effect transistor and polyvinylidene fluoride (PVDF) together form the pressure sensor with a high sensitivity of 7 × 10-1kPa-1for a pressure range of 0.038-0.467 kPa and 6.86 × 10-2kPa-1for a pressure range of 0.467-15.5 kPa, SNR, and the ability to continuously monitor pulse in real-time. Additionally, the sensor enables high-resolution detection of weak pulse signals under large static pressure.


Assuntos
Nanotubos de Carbono , Humanos
16.
Mikrochim Acta ; 190(6): 214, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171612

RESUMO

A new ultrasensitive sandwich-type electrochemical immunosensor has been successfully constructed to quantitatively detect carcinoembryonic antigen (CEA) using blackberry-like mesoporous bismuth-based nanospheres NaBiOF (NBOF NSs) inlaid with Pt nanodots (NDs) (BiPt NSs) as the antibody capture and signal-amplifying probe. The growth of Pt NDs inside the holes of NBOF NSs formed the nanozyme inlay outside NBOF NSs, greatly increasing the specific surface area and exposure of the catalytic active sites by minimizing the particle size of the Pt to nanodot scale. Such a blackberry-shaped heterojunction structure of BiPt NSs was well-suited to antibody capture and improved the catalytic performance of BiPt NSs in reducing H2O2, amplifying the signal, and yielding highly sensitive detection of CEA. The use of Au nanoparticle-modified multi-walled carbon nanotubes (Au@MWCNTs) as the electrode substrates significantly enhanced the electron transfer behavior over the electrode surface, further increasing the conductivity and sensitivity of the immunosensor. Remarkably, good compatibility with human body fluid was achieved using the newly developed BiPt-based immunosensor resulting from the favorable biocompatibility and stability of both BiPt NSs and Au@MWCNTs. Benefiting from the double signal amplification strategy and the high biocompatibility, the immunosensor responded linearly to CEA in a wide range from 50 fg/mL to 100 ng/ml with an extremely low detection limit of 3.52 fg/mL (S/N = 3). The excellent detection properties of this new immunosensor were evidenced by the satisfactory selectivity, reproducibility, and stability obtained, as well as the reliable and precise determination  of CEA in actual human blood samples. This work provides a new strategy for the early clinical diagnosis of cancer. Novel blackberry-like mesoporous NaBiOF nanospheres with Pt nanodot inlay were successfully usedto construct a sandwich-type electrochemical immunosensor for the ultra-sensitive detection ofcarcinoembryonic antigen in human blood plasma based on a remarkable signal amplification strategy.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos de Carbono , Humanos , Antígeno Carcinoembrionário , Ouro/química , Técnicas Biossensoriais/métodos , Nanotubos de Carbono/química , Peróxido de Hidrogênio/química , Reprodutibilidade dos Testes , Nanopartículas Metálicas/química , Anticorpos Imobilizados/química , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Anticorpos
18.
Mikrochim Acta ; 190(6): 231, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37209139

RESUMO

A cataluminescence (CTL) method has been developed for the rapid determination of acetic acid in enzyme products. The NiMn LDH/CNT/GO was synthesized based on the nanohybridization of NiMn layered double hydroxide (NiMn LDH), carbon nanotubes (CNTs), and graphene oxide (GO). The composite has excellent CTL activity against acetic acid. It could be ascribed to the larger specific surface area and more exposure to active sites. NiMn LDH/CNT/GO is used as a catalyst in the CTL method based on its special structure and advantages. There is a linear relationship between CTL response and the acetic acid concentration in the range 0.31-12.00 mg·L-1 with the detection limit of 0.10 mg·L-1. The developed method is rapid and takes only about 13 s. The method is applied to the determination of acetic acid in enzyme samples with little sample preparation. The result of the CTL method shows good agreement with that of the gas chromatography method. The proposed CTL method possesses promising potential in the quality monitoring of enzymes.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Ácido Acético , Hidróxidos/química
19.
Int J Nanomedicine ; 18: 2465-2484, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37192896

RESUMO

Background: The wide application of multi-walled carbon nanotubes (MWCNTs) in various fields has raised enormous concerns regarding their safety for humans. However, studies on the toxicity of MWCNTs to the eye are rare and potential molecular mechanisms are completely lacking. This study was to evaluate the adverse effects and toxic mechanisms of MWCNTs on human ocular cells. Methods: Human retinal pigment epithelial cells (ARPE-19) were treated with pristine MWCNTs (7-11 nm) (0, 25, 50, 100 or 200 µg/mL) for 24 hours. MWCNTs uptake into ARPE-19 cells was examined using transmission electron microscopy (TEM). The cytotoxicity was evaluated by CCK-8 assay. The death cells were detected by Annexin V-FITC/PI assay. RNA profiles in MWCNT-exposed and non-exposed cells (n = 3) were analyzed using RNA-sequencing. The differentially expressed genes (DEGs) were identified through the DESeq2 method and hub of which were filtered by weighted gene co-expression, protein-protein interaction (PPI) and lncRNA-mRNA co-expression network analyses. The mRNA and protein expression levels of crucial genes were verified using quantitative polymerase chain reaction (qPCR), colorimetric analysis, ELISA and Western blotting. The toxicity and mechanisms of MWCNTs were also validated in human corneal epithelial cells (HCE-T). Results: TEM analysis indicated the internalization of MWCNTs into ARPE-19 cells to cause cell damage. Compared with untreated ARPE-19 cells, those exposed to MWCNTs exhibited significantly decreased cell viabilities in a dose-dependent manner. The percentages of apoptotic (early, Annexin V positive; late, Annexin V and PI positive) and necrotic (PI positive) cells were significantly increased after exposure to IC50 concentration (100 µg/mL). A total of 703 genes were identified as DEGs; 254 and 56 of them were, respectively, included in darkorange2 and brown1 modules that were significantly associated with MWCNT exposure. Inflammation-related genes (including CXCL8, MMP1, CASP3, FOS, CXCL2 and IL11) were screened as hub genes by calculating the topological characteristics of genes in the PPI network. Two dysregulated long non-coding RNAs (LUCAT1 and SCAT8) were shown to regulate these inflammation-related genes in the co-expression network. The mRNA levels of all eight genes were confirmed to be upregulated, while caspase-3 activity and the release of CXCL8, MMP1, CXCL2, IL11 and FOS proteins were demonstrated to be increased in MWCNT-treated ARPE-19 cells. MWCNTs exposure also can induce cytotoxicity and increase the caspase-3 activity and the expression of LUCAT1, MMP1, CXCL2, and IL11 mRNA and protein in HCE-T cells. Conclusion: Our study provides promising biomarkers for monitoring MWCNT-induced eye disorders and targets for developing preventive and therapeutic strategies.


Assuntos
Nanotubos de Carbono , Humanos , Nanotubos de Carbono/toxicidade , Metaloproteinase 1 da Matriz , Anexina A5 , Caspase 3 , Interleucina-11 , Inflamação/induzido quimicamente , Inflamação/genética , RNA Mensageiro/genética , RNA
20.
Chem Biol Interact ; 379: 110517, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37149208

RESUMO

Nowadays, carbon-based materials owing to great interest in biomedical science/biotechnology and applied for effective diagnosis and treatment of disease. To enhance the effectiveness of carbon nanotubes (CNTs)/graphene-based materials for bio-medical science/technology applications, different kinds of surface modification/functionalization were developed for the attachment of metal oxides nanostructures, biomolecules and polymers. The attachment of pharmaceutical agents with CNTs/graphene, make it a favorable candidate in research field of bio-medical science/technology applications. Surface modified/functionalized CNTs and graphene derivatives materials integrated with pharmaceutical agents has been developed for the purpose of cancer therapy, antibacterial action, pathogens bio detection, drug and gene delivery. Surface modification or functionalization of CNT/graphene materials provides good platform for pharmaceutical agents attachment with improved surface Raman scattering, fluorescence and its quenching capability. Graphene-based biosensing and bioimaging technologies are widely applied to identify numerous trace level analytes. These fluorescent and electrochemical sensors are utilized primarily for detecting organic, inorganic, and biomolecules. In this article, we highlights and summarized overview of the current research progress concerned on the CNTs/graphene-based materials as a new generation materials for detection and treatment of diseases.


Assuntos
Grafite , Nanoestruturas , Nanotubos de Carbono , Nanotubos de Carbono/química , Grafite/química , Biotecnologia/métodos , Nanoestruturas/química , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...