Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.901
Filtrar
1.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203727

RESUMO

Glioblastoma multiforme (GBM) is the most common and fatal primary brain tumor, is highly resistant to conventional radiation and chemotherapy, and is not amenable to effective surgical resection. The present review summarizes recent advances in our understanding of the molecular mechanisms of therapeutic resistance of GBM to already known drugs, the molecular characteristics of glioblastoma cells, and the barriers in the brain that underlie drug resistance. We also discuss the progress that has been made in the development of new targeted drugs for glioblastoma, as well as advances in drug delivery across the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB).


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Animais , Barreira Hematoencefálica/patologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Evasão da Resposta Imune
2.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206051

RESUMO

Tumors arising in the context of Lynch Syndrome or constitutional mismatch repair deficiency are hypermutated and have a good response towards immune-checkpoint inhibitors (ICIs), including α-PD-L1 antibodies. However, in most cases, resistance mechanisms evolve. To improve outcomes and prevent resistance development, combination approaches are warranted. Herein, we applied a combined regimen with an α-PD-L1 antibody and gemcitabine in a preclinical tumor model to activate endogenous antitumor immune responses. Mlh1-/- mice with established gastrointestinal tumors received the α-PD-L1 antibody (clone 6E11; 2.5 mg/kg bw, i.v., q2wx3) and gemcitabine (100 mg/kg bw, i.p., q4wx3) in mono- or combination therapy. Survival and tumor growth were recorded. Immunological changes in the blood were routinely examined via multi-color flow cytometry and complemented by ex vivo frameshift mutation analysis to identify alterations in Mlh1-/--tumor-associated target genes. The combined therapy of α-PD-L1 and gemcitabine prolonged median overall survival of Mlh1-/- mice from four weeks in the untreated control group to 12 weeks, accompanied by therapy-induced tumor growth inhibition, as measured by [18F]-FDG PET/CT. Plasma cytokine levels of IL13, TNFα, and MIP1ß were increased and also higher than in mice receiving either monotherapy. Circulating splenic and intratumoral myeloid-derived suppressor cells (MDSCs), as well as M2 macrophages, were markedly reduced. Besides, residual tumor specimens from combi-treated mice had increased numbers of infiltrating cytotoxic T-cells. Frameshift mutations in APC, Tmem60, and Casc3 were no longer detectable upon treatment, likely because of the successful eradication of single mutated cell clones. By contrast, novel mutations appeared. Collectively, we herein confirm the safe application of combined chemo-immunotherapy by long-term tumor growth control to prevent the development of resistance mechanisms.


Assuntos
Antígeno B7-H1/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Colorretais Hereditárias sem Polipose/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Proteína 1 Homóloga a MutL/genética , Síndromes Neoplásicas Hereditárias/tratamento farmacológico , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Quimiocina CCL4/sangue , Neoplasias Colorretais/sangue , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais Hereditárias sem Polipose/sangue , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/imunologia , Reparo de Erro de Pareamento de DNA/genética , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Interleucina-13/sangue , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Camundongos , Células Supressoras Mieloides , Síndromes Neoplásicas Hereditárias/sangue , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/imunologia , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/patologia , Fator de Necrose Tumoral alfa/sangue
3.
Molecules ; 26(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206482

RESUMO

Gliomas and glioblastomas are very aggressive forms of brain tumors, prone to the development of a multitude of resistance mechanisms to therapeutic treatments, including cytoprotective autophagy. In this work, we investigated the role and mechanism of action of the combination of a ruthenacarborane derivative with 8-hydroxyquinoline (8-HQ), linked via an ester bond (complex 2), in rat astrocytoma C6 and human glioma U251 cells, in comparison with the two compounds alone, i.e., the free carboxylic acid (complex 1) and 8-HQ, and their non-covalent combination ([1 + 8-HQ], in 1:1 molar ratio). We found that only complex 2 was able to significantly affect cellular viability in glioma U251 cells (IC50 11.4 µM) via inhibition of the autophagic machinery, most likely acting at the early stages of the autophagic cascade. Contrary to 8-HQ alone, complex 2 was also able to impair cellular viability under conditions of glucose deprivation. We thus suggest different mechanisms of action of ruthenacarborane complex 2 than purely organic quinoline-based drugs, making complex 2 a very attractive candidate for evading the known resistances of brain tumors to chloroquine-based therapies.


Assuntos
Antineoplásicos , Astrocitoma , Neoplasias Encefálicas , Complexos de Coordenação , Quinolinas , Rutênio , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Astrocitoma/tratamento farmacológico , Astrocitoma/metabolismo , Astrocitoma/patologia , Morte Celular Autofágica , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Humanos , Quinolinas/química , Quinolinas/farmacologia , Ratos , Rutênio/química , Rutênio/farmacologia
4.
Molecules ; 26(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205043

RESUMO

Glioblastoma (GBM) is the most common and most deadly primary malignant brain tumor. Current therapies are not effective, the average survival of GBM patients after diagnosis being limited to few months. Therefore, the discovery of new treatments for this highly aggressive brain cancer is urgently needed. Chalcones are synthetic and naturally occurring compounds that have been widely investigated as anticancer agents. In this work, three chalcone derivatives were tested regarding their inhibitory activity and selectivity towards GBM cell lines (human and mouse) and a non-cancerous mouse brain cell line. The chalcone 1 showed the most potent and selective cytotoxic effects in the GBM cell lines, being further investigated regarding its ability to reduce critical hallmark features of GBM and to induce apoptosis and cell cycle arrest. This derivative showed to successfully reduce the invasion and proliferation capacity of tumor cells, both key targets for cancer treatment. Moreover, to overcome potential systemic side effects and its poor water solubility, this compound was encapsulated into liposomes. Therapeutic concentrations were incorporated retaining the potent in vitro growth inhibitory effect of the selected compound. In conclusion, our results demonstrated that this new formulation can be a promising starting point for the discovery of new and more effective drug treatments for GBM.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/metabolismo , Ciclo Celular/efeitos dos fármacos , Chalconas/farmacologia , Glioblastoma/metabolismo , Animais , Antineoplásicos/química , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chalconas/química , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Humanos , Lipossomos , Camundongos , Estrutura Molecular , Invasividade Neoplásica
5.
Anticancer Res ; 41(7): 3337-3341, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34230129

RESUMO

BACKGROUND/AIM: Glioblastoma, also known as glioblastoma multiforme (GBM), is the most aggressive type of primary brain tumor and a cornerstone in its treatment is radiotherapy (RT). However, RT for GBM is largely ineffective at clinically safe doses, thus, the study of radiosensitizers is of great significance. MATERIALS AND METHODS: With accumulating evidence for the anticancer effect of compounds from cranberry, this study was designed to investigate if cranberry extract (CE) sensitizes GBM to RT in the widely used human glioblastoma cell line U87. We utilized clonogenic survival assays, cell proliferation assays, and caspase-3 activity kits. Potential proliferative and apoptotic molecular mechanisms were evaluated by reverse transcription-polymerase chain reaction. RESULTS: We found that CE alone had little effect on the survival of U87 cells. However, RT supplemented by CE significantly inhibited proliferation and promoted apoptosis of U87 cells when compared with RT alone. The proliferation-inhibitory effect of RT/CE might be attributable to the up-regulation of p21, along with the down-regulation of cyclin B and cyclin-dependent kinase 4. This pro-apoptotic effect might additionally be attributable to the down-regulation of survivin. CONCLUSION: These results warrant further study of the potential radiosensitizing capacity of CE in glioblastoma and other cancer types.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Extratos Vegetais/farmacologia , Radiossensibilizantes/farmacologia , Vaccinium macrocarpon/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Regulação para Cima/efeitos dos fármacos
6.
Gan To Kagaku Ryoho ; 48(7): 963-965, 2021 Jul.
Artigo em Japonês | MEDLINE | ID: mdl-34267037

RESUMO

The prognosis of patients with brain metastasis is very poor. Very few cases of combined treatment with nivolumab(240 mg/body, day 1, q2w, a programmed cell death-1[PD-1]inhibitor)and gamma knife radiosurgery(GKR)(27 Gy/3 Fr) for gastric cancer patients with brain metastasis have been reported. Here, we discuss the case of a 55-year-old man with HER2-positive poorly differentiated gastric adenocarcinoma with multiple bone and intra-abdominal lymph node metastases. After 25 courses of SOX(oxaliplatin 100 mg/m2, day 1, q3w plus S-1 120 mg/day, day 1-14, po, q3w)plus trastuzumab( 6 mg/kg, q3w)treatment, brain metastasis was detected. Subsequently, combined treatment with GKR and nivolumab(8 courses, anti-PD-1 monotherapy)was initiated. Both intra-abdominal and brain lesions decreased in response to this treatment, showing that combined therapy with nivolumab and GKR could be effective for treating gastric cancer patients with brain metastasis.


Assuntos
Adenocarcinoma , Neoplasias Encefálicas , Radiocirurgia , Neoplasias Gástricas , Adenocarcinoma/cirurgia , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Nivolumabe/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/cirurgia
7.
Nat Commun ; 12(1): 4228, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244484

RESUMO

Homozygous deletion of methylthioadenosine phosphorylase (MTAP) in cancers such as glioblastoma represents a potentially targetable vulnerability. Homozygous MTAP-deleted cell lines in culture show elevation of MTAP's substrate metabolite, methylthioadenosine (MTA). High levels of MTA inhibit protein arginine methyltransferase 5 (PRMT5), which sensitizes MTAP-deleted cells to PRMT5 and methionine adenosyltransferase 2A (MAT2A) inhibition. While this concept has been extensively corroborated in vitro, the clinical relevance relies on exhibiting significant MTA accumulation in human glioblastoma. In this work, using comprehensive metabolomic profiling, we show that MTA secreted by MTAP-deleted cells in vitro results in high levels of extracellular MTA. We further demonstrate that homozygous MTAP-deleted primary glioblastoma tumors do not significantly accumulate MTA in vivo due to metabolism of MTA by MTAP-expressing stroma. These findings highlight metabolic discrepancies between in vitro models and primary human tumors that must be considered when developing strategies for precision therapies targeting glioblastoma with homozygous MTAP deletion.


Assuntos
Neoplasias Encefálicas/genética , Encéfalo/patologia , Desoxiadenosinas/metabolismo , Glioblastoma/genética , Purina-Núcleosídeo Fosforilase/deficiência , Tionucleosídeos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Encéfalo/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/metabolismo , Desoxiadenosinas/análise , Feminino , Secções Congeladas , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Homozigoto , Humanos , Metabolômica , Metionina Adenosiltransferase/metabolismo , Terapia de Alvo Molecular/métodos , Medicina de Precisão/métodos , Proteína-Arginina N-Metiltransferases/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Deleção de Sequência , Tionucleosídeos/análise , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nat Commun ; 12(1): 3424, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103524

RESUMO

Immunologically-cold tumors including glioblastoma (GBM) are refractory to checkpoint blockade therapy, largely due to extensive infiltration of immunosuppressive macrophages (Mϕs). Consistent with a pro-tumor role of IL-6 in alternative Mϕs polarization, we here show that targeting IL-6 by genetic ablation or pharmacological inhibition moderately improves T-cell infiltration into GBM and enhances mouse survival; however, IL-6 inhibition does not synergize PD-1 and CTLA-4 checkpoint blockade. Interestingly, anti-IL-6 therapy reduces CD40 expression in GBM-associated Mϕs. We identify a Stat3/HIF-1α-mediated axis, through which IL-6 executes an anti-tumor role to induce CD40 expression in Mϕs. Combination of IL-6 inhibition with CD40 stimulation reverses Mϕ-mediated tumor immunosuppression, sensitizes tumors to checkpoint blockade, and extends animal survival in two syngeneic GBM models, particularly inducing complete regression of GL261 tumors after checkpoint blockade. Thus, antibody cocktail-based immunotherapy that combines checkpoint blockade with dual-targeting of IL-6 and CD40 may offer exciting opportunities for GBM and other solid tumors.


Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Antígenos CD40/metabolismo , Glioblastoma/imunologia , Glioblastoma/terapia , Imunoterapia , Interleucina-6/metabolismo , Animais , Neoplasias Encefálicas/tratamento farmacológico , Deleção de Genes , Glioblastoma/tratamento farmacológico , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunossupressão , Ativação Linfocitária/efeitos dos fármacos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Testes de Neutralização , Fator de Transcrição STAT3/metabolismo , Análise de Sobrevida
9.
Int J Mol Sci ; 22(9)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063168

RESUMO

Gliomas are the most common and challenging malignancies of the central nervous system (CNS), due to their infiltrative nature, tendency to recurrence, and poor response to treatments. Indeed, despite the advances in neurosurgical techniques and in radiation therapy, the modest effects of therapy are still challenging. Moreover, tumor recurrence is associated with the onset of therapy resistance; it is therefore critical to identify effective and well-tolerated pharmacological approaches capable of inducing durable responses in the appropriate patient groups. Molecular alterations of the RTK/PI3K/Akt/mTOR signaling pathway are typical hallmarks of glioma, and several clinical trials targeting one or more players of this axis have been launched, showing disappointing results so far, due to the scarce BBB permeability of certain compounds or to the occurrence of resistance/tolerance mechanisms. However, as RTK/PI3K/mTOR is one of the pivotal pathways regulating cell growth and survival in cancer biology, targeting still remains a strong rationale for developing strategies against gliomas. Future rigorous clinical studies, aimed at addressing the tumor heterogeneity, the interaction with the microenvironment, as well as diverse posology adjustments, are needed-which might unravel the therapeutic efficacy and response prediction of an RTK/PI3K/mTOR-based approach.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/enzimologia , Glioma/tratamento farmacológico , Glioma/enzimologia , Terapia de Alvo Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Humanos , Transdução de Sinais
10.
Breast Cancer Res Treat ; 188(2): 415-425, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34109515

RESUMO

PURPOSE: Sorafenib has demonstrated anti-tumor efficacy and radiosensitizing activity preclinically and in breast cancer. We examined sorafenib in combination with whole brain radiotherapy (WBRT) and explored the [18F] 3'deoxy-3'-fluorothymidine (FLT)-PET as a novel brain imaging modality in breast cancer brain metastases. METHODS: A phase I trial of WBRT + sorafenib was conducted using a 3 + 3 design with safety-expansion cohort. Sorafenib was given daily at the start of WBRT for 21 days. The primary endpoints were to determine a maximum tolerated dose (MTD) and to evaluate safety and toxicity. The secondary endpoint was CNS progression-free survival (CNS-PFS). MacDonald Criteria were used for response assessment with a correlative serial FLT-PET imaging study. RESULTS: 13 pts were evaluable for dose-limiting toxicity (DLT). DLTs were grade 4 increased lipase at 200 mg (n = 1) and grade 3 rash at 400 mg (n = 3). The MTD was 200 mg. The overall response rate was 71%. Median CNS-PFS was 12.8 months (95%CI: 6.7-NR). A total of 15 pts (10 WBRT + sorafenib and 5 WBRT) were enrolled in the FLT-PET study: baseline (n = 15), 7-10 days post WBRT (FU1, n = 14), and an additional 12 week (n = 9). A decline in average SUVmax of ≥ 25% was seen in 9/10 (90%) of WBRT + sorafenib patients and 2/4 (50%) of WBRT only patients. CONCLUSIONS: Concurrent WBRT and sorafenib appear safe at 200 mg daily dose with clinical activity. CNS response was favorable compared to historical controls. This combination should be considered for further efficacy evaluation. FLT-PET may be useful as an early response imaging tool for brain metastases. TRIAL AND CLINICAL REGISTRY: Trial registration numbers and dates: NCT01724606 (November 12, 2012) and NCT01621906 (June 18, 2012).


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Neuroimagem , Tomografia por Emissão de Pósitrons , Sorafenibe
11.
Medicine (Baltimore) ; 100(26): e26449, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34190169

RESUMO

RATIONALE: Anaplastic lymphoma kinase (ALK) inhibitors have been approved for patients with ALK-rearrangement lung cancer. The effect is superior to the standard first-line therapy of pemetrexed plus platinum-based chemotherapy. However, ALK inhibitors are associated with rare and sometimes fatal adverse events. Organizing pneumonitis (OP) is a rare and serious adverse event usually caused by ceritinib, and it is easily misdiagnosed as infectious pneumonia, metastasis, or cancer progression. PATIENT CONCERNS: A 56-year-old female presented with chest tightness and dyspnea for more than 10 days. She was previously healthy with no significant medical history. Workup including chest computed tomography (CT), pathological examination of a biopsy specimen, and next-generation sequencing was consistent with a diagnosis of IVA ALK-rearrangement lung adenocarcinoma. She was treated with pemetrexed plus platinum-based chemotherapy and crizotinib concurrently, followed by maintenance therapy with crizotinib alone and she had an almost complete response. However, about 26 months after beginning treatment she developed multiple brain metastases. Crizotinib was discontinued and she was begun on ceritinib. After about 3 months the brain metastases had almost complete response. After 5 months of ceritinib, however, multiple patchy lesions appeared in the bilateral upper lungs. DIAGNOSES: Treatment with antibiotics had no effect and blood and sputum cultures are negative. A CT-guided biopsy of the upper lung was performed, and pathological hematoxylin-eosin staining and immunohistochemical studies were consistent with OP. INTERVENTIONS: Ceritinib was discontinued, she was begun on prednisone 0.5 mg/kg orally every day, and regular follow-up is necessary. OUTCOMES: CT of the chest 2 and 4 weeks after beginning prednisone showed the lung lesions to be gradually resolving, and she was continued on prednisone for 2 months and gradually reduced the dose of prednisone every 2 weeks. No related adverse events were occurred in patient. LESSONS: OP must be differentiated from infectious pneumonia, metastasis, or cancer progression. The mechanism of OP is still unknown and needs further research. Biopsy plays a role in making a diagnosis of OP. In our patient, discontinuing ceritinib and treating her with prednisone resulted in a good outcome.


Assuntos
Adenocarcinoma de Pulmão , Quinase do Linfoma Anaplásico , Pneumonia em Organização Criptogênica , Neoplasias Pulmonares , Prednisona/administração & dosagem , Pirimidinas , Sulfonas , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/fisiopatologia , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Quinase do Linfoma Anaplásico/genética , Antineoplásicos/uso terapêutico , Biópsia/métodos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Crizotinibe/uso terapêutico , Pneumonia em Organização Criptogênica/induzido quimicamente , Pneumonia em Organização Criptogênica/patologia , Pneumonia em Organização Criptogênica/terapia , Substituição de Medicamentos , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/efeitos adversos , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/fisiopatologia , Pessoa de Meia-Idade , Pemetrexede/uso terapêutico , Pirimidinas/administração & dosagem , Pirimidinas/efeitos adversos , Sulfonas/administração & dosagem , Sulfonas/efeitos adversos , Tomografia Computadorizada por Raios X/métodos , Resultado do Tratamento
12.
Crit Rev Oncol Hematol ; 163: 103390, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34090998

RESUMO

The introduction of checkpoint inhibitors (ICIs) in renal cell carcinoma (RCC) treatment landscape, resulted in improvements in overall survival (OS) in metastatic patients. Brain metastases (BMs) are a specific metastatic site of interest representing a predictive factor of poor prognosis. Patients with BMs were usually excluded from prospective clinical trials in the past. Despite recent evidence suggest the efficacy and safety of ICIs, the BMs treatment remains a challenge; the immunotherapy responsiveness seems to be multifactorial and dependent on several factors, such as the genetic intratumor heterogeneity and the immunosuppressive role of the brain tumor microenvironment. This review, starting from the immunological background in RCC BMs, provide an overview of the upcoming evidence from clinical trials, address the issues related to the neuroradiological immunotherapy response evaluation and, with a look to the future, describes how the epigenetic modulation of immune evasion could represent a background for new therapeutic strategies.


Assuntos
Neoplasias Encefálicas , Carcinoma de Células Renais , Neoplasias Renais , Neoplasias Encefálicas/tratamento farmacológico , Carcinoma de Células Renais/tratamento farmacológico , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias Renais/tratamento farmacológico , Estudos Prospectivos , Microambiente Tumoral
13.
J Clin Neurosci ; 89: 144-150, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34119258

RESUMO

Gliomas are a heterogeneous group of primary brain cancers with poor survival despite multimodality therapy that includes surgery, radiation and chemotherapy. Numerous clinical trials have investigated systemic therapies in glioma, but have largely been negative. Multiple factors have contributed to the lack of progress including tumour heterogeneity, the tumour micro-environment and presence of the blood-brain barrier, as well as extrinsic factors relating to trial design, such as the lack of a contemporaneous biopsy at the time of treatment. A number of strategies have been proposed to progress new agents into the clinic. Here, we review the progress of perioperative, including phase 0 and 'window of opportunity', studies and provide recommendations for trial design in the development of new agents for glioma. The incorporation of pre- and post-treatment biopsies in glioma early phase trials will provide valuable pharmacokinetic and pharmacodynamic data and also determine the target or biomarker effect, which will guide further development of new agents. Perioperative 'window of opportunity' studies must use drugs with a recommended-phase-2-dose, known safety profile and adequate blood-brain barrier penetration. Drugs shown to have on-target effects in perioperative trials can then be evaluated further in a larger cohort of patients in an adaptive trial to increase the efficiency of drug development.


Assuntos
Neoplasias Encefálicas/patologia , Ensaios Clínicos como Assunto/métodos , Glioma/patologia , Assistência Perioperatória/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biópsia , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/cirurgia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/cirurgia , Terapia Combinada/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Glioma/tratamento farmacológico , Glioma/cirurgia , Humanos , Assistência Perioperatória/tendências , Microambiente Tumoral/fisiologia
14.
Molecules ; 26(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062758

RESUMO

Crataegus contains numerous health-promoting compounds that are also proposed to have anti-cancer properties. Herein, we aimed at a contemporaneous evaluation of the effects of polyphenol-rich extracts of berries, leaves, and flowers of six Crataegus species on the viability and invasive potential on the highly aggressive human glioblastoma U87MG cell line. The treatment with the extracts evoked cytotoxic effects, with the strongest in the berry extracts. All extracts not only promoted the apoptosis-related cleavage of poly (ADP-ribose) polymerase 1 (PARP1) but also substantially inhibited the activity of pro-survival kinases, focal adhesion kinase (FAK), and protein kinase B (PKB; also known as Akt), thus indicating the suppression of proliferative and invasive potentials of the examined glioblastoma cells. The qualitative and quantitative characterization of the extracts' content was also performed and revealed that amongst 37 polyphenolic compounds identified in the examined Crataegus extracts, the majority (29) was detected in berries; the leaf and flower extracts, exerting milder cytotoxic effects, contained only 14 and 13 compounds, respectively. The highest polyphenol content was found in the berries of C. laevigata x rhipidophylla x monogyna, in which flavan-3-ols and phenolic acids predominated. Our results demonstrated that a high content of polyphenolic compounds correlated with the extract cytotoxicity, and especially berries were a valuable source of compounds with anti-cancer potential. This might be a promising option for the development of an effective therapeutic strategy against highly malignant glioblastomas in the future.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Crataegus/metabolismo , Flores/metabolismo , Glioblastoma/tratamento farmacológico , Extratos Vegetais/farmacologia , Folhas de Planta/metabolismo , Polifenóis/química , Citoesqueleto de Actina/metabolismo , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Hidroxibenzoatos/química , Microscopia Confocal , Invasividade Neoplásica , Neoplasias/metabolismo
15.
Cell Mol Life Sci ; 78(14): 5587-5604, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34100981

RESUMO

To clarify whether differential compartmentalization of Survivin impacts temozolomide (TMZ)-triggered end points, we established a well-defined glioblastoma cell model in vitro (LN229 and A172) and in vivo, distinguishing between its nuclear and cytoplasmic localization. Expression of nuclear export sequence (NES)-mutated Survivin (SurvNESmut-GFP) led to impaired colony formation upon TMZ. This was not due to enhanced cell death but rather due to increased senescence. Nuclear-trapped Survivin reduced homologous recombination (HR)-mediated double-strand break (DSB) repair, as evaluated by γH2AX foci formation and qPCR-based HR assay leading to pronounced induction of chromosome aberrations. Opposite, clones, expressing free-shuttling cytoplasmic but not nuclear-trapped Survivin, could repair TMZ-induced DSBs and evaded senescence. Mass spectrometry-based interactomics revealed, however, no direct interaction of Survivin with any of the repair factors. The improved TMZ-triggered HR activity in Surv-GFP was associated with enhanced mRNA and stabilized RAD51 protein expression, opposite to diminished RAD51 expression in SurvNESmut cells. Notably, cytoplasmic Survivin could significantly compensate for the viability under RAD51 knockdown. Differential Survivin localization also resulted in distinctive TMZ-triggered transcriptional pathways, associated with senescence and chromosome instability as shown by global transcriptome analysis. Orthotopic LN229 xenografts, expressing SurvNESmut exhibited diminished growth and increased DNA damage upon TMZ, as manifested by PCNA and γH2AX foci expression, respectively, in brain tissue sections. Consequently, those mice lived longer. Although tumors of high-grade glioma patients expressed majorly nuclear Survivin, they exhibited rarely NES mutations which did not correlate with survival. Based on our in vitro and xenograft data, Survivin nuclear trapping would facilitate glioma response to TMZ.


Assuntos
Núcleo Celular/metabolismo , Senescência Celular , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Recombinação Homóloga , Survivina/metabolismo , Temozolomida/farmacologia , Animais , Antineoplásicos Alquilantes/farmacologia , Apoptose , Biomarcadores Tumorais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Núcleo Celular/genética , Proliferação de Células , Dano ao DNA , Reparo do DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Survivina/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
No Shinkei Geka ; 49(3): 588-596, 2021 May.
Artigo em Japonês | MEDLINE | ID: mdl-34092564

RESUMO

Chemotherapeutic treatment of malignant gliomas is extremely challenging. Tumor accumulation of systemically-administrated chemotherapy is always hindered by the blood-brain barrier(BBB). Although temozolomide administered orally or intravenously represents the standard of care for malignant gliomas, its efficacy is unsatisfactory. Local chemotherapy bypasses the BBB and, therefore, achieves a high drug concentration at the site the drug is administered. Carmustine wafers are clinically available local chemotherapeutic agents. However, their efficacy is limited because of limited drug penetration into the tumor. Combined with the highly chemoresistant features of glioma itself, ongoing chemotherapy is far from satisfactory in terms of efficacy. This review covers several important issues regarding temozolomide chemotherapy, including the reactivation of hepatitis B virus, assessment of MGMT promoter methylation, and pseudo-progression. Local chemotherapy for newly diagnosed resectable glioblastoma cases using carmustine wafers is currently under investigation with a randomized phase 3 trial (JCOG 1703), which will also be discussed. In addition, recent progress in convection-enhanced delivery of chemotherapeutics against gliomas has also been reported. Development of an alternative strategy to effectively deliver drugs to the tumor site may improve the efficacy of chemotherapy against gliomas in the near future.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Glioma , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Encefálicas/tratamento farmacológico , Ensaios Clínicos Fase III como Assunto , Glioblastoma/tratamento farmacológico , Glioma/tratamento farmacológico , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
17.
No Shinkei Geka ; 49(3): 623-631, 2021 May.
Artigo em Japonês | MEDLINE | ID: mdl-34092568

RESUMO

Glioblastoma, the most malignant and most common form of glioma, is known to portend very poor prognosis with the median overall survival of approximately 1.5 years. Its treatment requires a multidisciplinary approach, which consists of maximal safe resection followed by radiotherapy and chemotherapy with temozolomide. Bevacizumab is approved for newly diagnosed as well as recurrent malignant glioma in Japan. NovoTTF is a novel medical device that emits alternating electric fields; it inhibits the proliferation and growth of the tumor by interfering with tumor cell mitosis at anaphase. A photodynamic therapy with talaporfin sodium has been approved for primary malignant brain tumor including glioblastoma in Japan. For epilepsy secondary to glioblastoma, a novel class of antiepileptics such as levetiracetam and lacosamide is preferred given the lack of drug-drug interactions. Perampanel is a selective antagonist of AMPA receptors, the major subtype of ionotropic glutamate receptors; it may be a preferred antiepileptics for glioblastoma, given the in vitro and in vivo analyses suggesting that it decreases the proliferation and invasion of tumor cells. In this chapter, I describe the overview of the multidisciplinary treatments of glioblastoma. I also describe the future perspectives.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Humanos , Japão , Recidiva Local de Neoplasia , Temozolomida
18.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065991

RESUMO

Although there are many patients with brain tumors worldwide, there are numerous difficulties in overcoming brain tumors. Among brain tumors, glioblastoma, with a 5-year survival rate of 5.1%, is the most malignant. In addition to surgical operations, chemotherapy and radiotherapy are generally performed, but the patients have very limited options. Temozolomide is the most commonly prescribed drug for patients with glioblastoma. However, it is difficult to completely remove the tumor with this drug alone. Therefore, it is necessary to discuss the potential of anticancer drugs, other than temozolomide, against glioblastomas. Since the discovery of cisplatin, platinum-based drugs have become one of the leading chemotherapeutic drugs. Although many studies have reported the efficacy of platinum-based anticancer drugs against various carcinomas, studies on their effectiveness against brain tumors are insufficient. In this review, we elucidated the anticancer effects and advantages of platinum-based drugs used in brain tumors. In addition, the cases and limitations of the clinical application of platinum-based drugs are summarized. As a solution to overcome these obstacles, we emphasized the potential of a novel approach to increase the effectiveness of platinum-based drugs.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Compostos de Platina/uso terapêutico , Antineoplásicos/farmacologia , Neoplasias Encefálicas/metabolismo , Ensaios Clínicos como Assunto , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/metabolismo , Humanos , Compostos de Platina/farmacologia , Análise de Sobrevida , Resultado do Tratamento
19.
BMC Infect Dis ; 21(1): 537, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34098877

RESUMO

BACKGROUND: Invasive aspergillosis of the central nervous system is a rare but increasingly prevalent disease. We present the unusual case of an immunosuppressed patient suffering from unexpected superinfected invasive aspergillosis with cerebral, pulmonal, and adrenal manifestations, mimicking a metastasized bronchial carcinoma. This report reveals the importance of including aspergillosis in the differential diagnosis of a cerebral mass lesion in the light of unspecific clinical findings. CASE PRESENTATION: A 58-year-old immunocompromised female presented to our emergency department with a single tonic-clonic seizure. Imaging showed a ring enhancing cerebral mass with perifocal edema and evidence of two smaller additional hemorrhagic cerebral lesions. In the setting of a mass lesion in the lung, and additional nodular lesions in the left adrenal gland the diagnosis of a metastasized bronchus carcinoma was suspected and the cerebral mass resected. However, histology did not reveal any evidence for a neoplastic lesion but septate hyphae consistent with aspergillus instead and microbiological cultures confirmed concomitant staphylococcal infection. CONCLUSIONS: A high index of suspicion for aspergillus infection should be maintained in the setting of immunosuppression. Clinical and radiological findings are often unspecific and even misleading. Definite confirmation usually relies on tissue diagnosis with histochemical stains. Surgical resection is crucial for establishing the diagnosis and guiding therapy with targeted antifungal medications.


Assuntos
Aspergilose/diagnóstico , Neoplasias Encefálicas/diagnóstico , Infecções Fúngicas do Sistema Nervoso Central/diagnóstico , Superinfecção/diagnóstico , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergilose/imunologia , Aspergilose/patologia , Aspergillus/isolamento & purificação , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Infecções Fúngicas do Sistema Nervoso Central/tratamento farmacológico , Infecções Fúngicas do Sistema Nervoso Central/imunologia , Infecções Fúngicas do Sistema Nervoso Central/patologia , Diagnóstico Diferencial , Feminino , Humanos , Hospedeiro Imunocomprometido , Pessoa de Meia-Idade , Staphylococcus/isolamento & purificação , Superinfecção/tratamento farmacológico , Superinfecção/imunologia , Superinfecção/patologia
20.
Int J Mol Sci ; 22(11)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34071132

RESUMO

Demethoxycurcumin (DMC), a derivate of curcumin, has been shown to induce apoptotic cell death in human glioblastoma multiforme GBM 8401 cells via cell cycle arrest and induction of cell apoptosis. However, there is no report showing DMC suppresses glioblastoma multiforme cells in vivo. In the present study, we investigated the effects of DMC on GBM8401 cells in vivo. At first, we established a luciferase-expressing stable clone named GBM 8401/luc2. Second, mice were inoculated subcutaneously with GBM 8401/luc2 cells to generate a xenograft tumor mice model. After inoculation, tumor volume reached 100-120 mm3, and all mice were randomly divided into three groups: Group I was treated with 110 µL phosphate-buffered solution (PBS) containing 0.1% dimethyl sulfoxide, Group II with 30 mg/kg of DMC, and Group III with 60 mg/kg of DMC. Mice from each group were given the oral treatment of DMC by gavage for 21 days. The body weight and tumor volume were recorded every 3 days. DMC significantly decreased the tumor volumes, and 60 mg/kg treatment showed a higher decrease in tumor volumes than that of 30 mg/kg, However, DMC did not affect the body weights. The photons emitted from mice tumors were detected with Xenogen IVIS imaging system, DMC at both doses decreased the total photon flux and 60 mg/kg treatment of DMC has low total photon flux than that of 30 mg/kg. The tumor volumes and weights in 60 mg/kg treatment of DMC were lower than that of 30 mg/kg. Immunohistochemical analysis was used to measure protein expression of tumors and results showed that DMC treatment led to lightly staining with anti-Bcl-2 and -XIAP and 60 mg/kg treatment of DMC has lighter staining with anti-Bcl-2 and -XIAP than that of 30 mg/kg. The higher dose (60 mg/kg) of DMC has higher signals of cleaved-caspase-3 than that of the lower dose (30 mg/kg). Furthermore, the hematoxylin and eosin (H&E) staining of liver tissues showed no significant difference between DMC-treated and control-groups. Overall, these observations showed that DMC suppressed tumor properties in vivo and DMC may be used against human glioblastoma multiforme in the future.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Diarileptanoides/uso terapêutico , Glioblastoma/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/toxicidade , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Diarileptanoides/toxicidade , Genes Reporter , Glioblastoma/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Nus , Proteínas de Neoplasias/análise , Proteínas Proto-Oncogênicas c-bcl-2/análise , Distribuição Aleatória , Carga Tumoral , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/análise , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína X Associada a bcl-2/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...