Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.503
Filtrar
1.
Nat Genet ; 52(2): 219-230, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025000

RESUMO

Somatic alterations in cancer genes are being detected in normal and premalignant tissue, thus placing greater emphasis on gene-environment interactions that enable disease phenotypes. By combining early genetic alterations with disease-relevant exposures, we developed an integrative mouse model to study gastric premalignancy. Deletion of Trp53 in gastric cells confers a selective advantage and promotes the development of dysplasia in the setting of dietary carcinogens. Organoid derivation from dysplastic lesions facilitated genomic, transcriptional and functional evaluation of gastric premalignancy. Cell cycle regulators, most notably Cdkn2a, were upregulated by p53 inactivation in gastric premalignancy, serving as a barrier to disease progression. Co-deletion of Cdkn2a and Trp53 in dysplastic gastric organoids promoted cancer phenotypes but also induced replication stress, exposing a susceptibility to DNA damage response inhibitors. These findings demonstrate the utility of mouse models that integrate genomic alterations with relevant exposures and highlight the importance of gene-environment interactions in shaping the premalignant state.


Assuntos
Lesões Pré-Cancerosas/patologia , Neoplasias Gástricas/etiologia , Proteína Supressora de Tumor p53/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Esôfago de Barrett/genética , Esôfago de Barrett/patologia , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/genética , Exposição Ambiental/efeitos adversos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Humanos , Metilnitrosoureia/toxicidade , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Organoides/patologia , Lesões Pré-Cancerosas/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia
3.
Bull Cancer ; 107(1): 30-40, 2020 Jan.
Artigo em Francês | MEDLINE | ID: mdl-31466696

RESUMO

Primarily used in genetic studies of development, the zebrafish (Danio rerio) has rapidly emerged as a promising animal model of human cancer. Cancer cell transplantation in zebrafish constitutes a key platform for clinical research since it allows to study cellular and molecular events involved in various aspects of tumorigenesis and to evaluate the efficacy of therapeutic molecules in vivo. Applied to patient-derived cells, the xenotransplantation approach in zebrafish allows to define the most appropriate therapeutic strategies for specific alterations found in patients in the context of personalized medicine. This review discusses the zebrafish transplantation model for the study of cancer development and drug discovery.


Assuntos
Transplante de Neoplasias , Neoplasias Experimentais/etiologia , Medicina de Precisão/métodos , Pesquisa Médica Translacional/métodos , Peixe-Zebra , Imunidade Adaptativa , Animais , Animais Geneticamente Modificados , Transformação Celular Neoplásica , Modelos Animais de Doenças , Progressão da Doença , Descoberta de Drogas , Genes Neoplásicos , Xenoenxertos , Humanos , Imunossupressão/métodos , Neoplasias Experimentais/genética , Oncogenes , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/imunologia
4.
Dev Biol ; 457(1): 1-8, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557471

RESUMO

The Hedgehog (Hh) morphogen regulates growth and patterning. Since Hh signaling is also implicated in carcinogenesis, it is conceivable that de novo Hh-secreting organizers, if formed in association with oncogenic hit could be tumor-cooperative. Here we validate this hypothesis using the Drosophila model of cooperative epithelial carcinogenesis. We generate somatic clones with simultaneous loss of tumor suppressor, Lgl, and gain of the posterior compartment selector, Engrailed (En), known to induce synthesis of Hh. We show that lgl UAS-en clones in the anterior wing compartment trigger Hh signaling cascade via cross-talk with their Ci-expressing wild type cell neighbors. Hh-Dpp signaling from clone boundaries of such ectopically formed de novo organizers in turn drive lgl carcinogenesis. By contrast, Ci-expressing lgl clones transform by autocrine and/or juxtracine activation of Hh signaling in only the posterior compartment. We further show that sequestration of the Hh ligand or loss of Dpp receptor, Tkv, in these Hh-sending or -receiving lgl clones arrested their carcinogenesis. Our results therefore reveal a hitherto unrecognized mechanism of tumor cooperation by developmental organizers, which are induced fortuitously by oncogenic hits.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/metabolismo , Neoplasias Epiteliais e Glandulares/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas Hedgehog/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Neoplasias/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética
5.
Nat Commun ; 10(1): 3959, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477729

RESUMO

Successful combinations of radiotherapy and immunotherapy depend on the presence of live T cells within the tumor; however, radiotherapy is believed to damage T cells. Here, based on longitudinal in vivo imaging and functional analysis, we report that a large proportion of T cells survive clinically relevant doses of radiation and show increased motility, and higher production of interferon gamma, compared with T cells from unirradiated tumors. Irradiated intratumoral T cells can mediate tumor control without newly-infiltrating T cells. Transcriptomic analysis suggests T cell reprogramming in the tumor microenvironment and similarities with tissue-resident memory T cells, which are more radio-resistant than circulating/lymphoid tissue T cells. TGFß is a key upstream regulator of T cell reprogramming and contributes to intratumoral Tcell radio-resistance. These findings have implications for the design of radio-immunotherapy trials in that local irradiation is not inherently immunosuppressive, and irradiation of multiple tumors might optimize systemic effects of radiotherapy.


Assuntos
Imunoterapia/métodos , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias Experimentais/terapia , Radioterapia/métodos , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Sobrevivência Celular/genética , Terapia Combinada , Perfilação da Expressão Gênica/métodos , Interferon gama/imunologia , Interferon gama/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , Tolerância a Radiação/genética
6.
Mol Carcinog ; 58(12): 2316-2326, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31553086

RESUMO

Primary tumor can induce the formation of premetastatic niche. The hyperpermeability of the vessels in the premetastatic niche is the first step in the development of metastasis. However, the cellular and molecular mechanisms of vascular hyperpermeability remain to be elucidated. In this study, 4T1 breast cells were injected into the breasts of mice to establish a tumor model. Our results showed that primary tumors induced hyperpermeability of the vessels in the premetastatic lung. Subsequent studies showed that the level of vascular endothelial growth factor (VEGF) was elevated in the tumor-bearing mice serum and the levels of tight junction (TJ) proteins occludin and ZO-1 were decreased in the premetastatic lung. In vitro studies demonstrated that VEGF increased the permeability of dextran and decreased the levels of occludin and ZO-1 in human umbilical vein endothelial cells. Moreover, the hyperpermeability of vessels and the degradation of occludin was blocked by bevacizumab. Overexpression of occludin alleviated the VEGF-induced hyperpermeability. Further investigations revealed that VEGF-induced occludin phosphorylation at Ser-490 and ubiquitination. Finally, we showed that VEGF accelerated the process of occludin degradation through the ubiquitin-proteasome system. In conclusion, primary tumor-secrete VEGF induce the occludin phosphorylation/ubiquitination and downregulation, resulting in the disruption of TJs and hyperpermeability of vessels in premetastatic lung. The occludin phosphorylation/ubiquitination pathway may be the mechanism of VEGF-induced vascular hyperpermeability in the lung premetastatic niche.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Pulmão/metabolismo , Neoplasias Experimentais/metabolismo , Ocludina/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Pulmão/irrigação sanguínea , Pulmão/patologia , Camundongos Endogâmicos BALB C , Mutação de Sentido Incorreto , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Ocludina/genética , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Ubiquitinação/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Nat Commun ; 10(1): 4353, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554795

RESUMO

Stat6 is known to drive macrophage M2 polarization. However, how macrophage polarization is fine-tuned by Stat6 is poorly understood. Here, we find that Lys383 of Stat6 is acetylated by the acetyltransferase CREB-binding protein (CBP) during macrophage activation to suppress macrophage M2 polarization. Mechanistically, Trim24, a CBP-associated E3 ligase, promotes Stat6 acetylation by catalyzing CBP ubiquitination at Lys119 to facilitate the recruitment of CBP to Stat6. Loss of Trim24 inhibits Stat6 acetylation and thus promotes M2 polarization in both mouse and human macrophages, potentially compromising antitumor immune responses. By contrast, Stat6 mediates the suppression of TRIM24 expression in M2 macrophages to contribute to the induction of an immunosuppressive tumor niche. Taken together, our findings establish Stat6 acetylation as an essential negative regulatory mechanism that curtails macrophage M2 polarization.


Assuntos
Ativação de Macrófagos , Macrófagos/metabolismo , Neoplasias Experimentais/metabolismo , Proteínas Nucleares/metabolismo , Fator de Transcrição STAT6/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Lisina/genética , Lisina/metabolismo , Macrófagos/classificação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Proteínas Nucleares/genética , Fator de Transcrição STAT6/genética , Fatores de Transcrição/genética
8.
Nat Commun ; 10(1): 3251, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324798

RESUMO

Lack of proper innate sensing inside tumor microenvironment (TME) limits T cell-targeted immunotherapy. NAD(P)H:quinone oxidoreductase 1 (NQO1) is highly enriched in multiple tumor types and has emerged as a promising target for direct tumor-killing. Here, we demonstrate that NQO1-targeting prodrug ß-lapachone triggers tumor-selective innate sensing leading to T cell-dependent tumor control. ß-Lapachone is catalyzed and bioactivated by NQO1 to generate ROS in NQO1high tumor cells triggering oxidative stress and release of the damage signals for innate sensing. ß-Lapachone-induced high mobility group box 1 (HMGB1) release activates the host TLR4/MyD88/type I interferon pathway and Batf3 dendritic cell-dependent cross-priming to bridge innate and adaptive immune responses against the tumor. Furthermore, targeting NQO1 is very potent to trigger innate sensing for T cell re-activation to overcome checkpoint blockade resistance in well-established tumors. Our study reveals that targeting NQO1 potently triggers innate sensing within TME that synergizes with immunotherapy to overcome adaptive resistance.


Assuntos
NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , Naftoquinonas/farmacologia , Neoplasias/tratamento farmacológico , Pró-Fármacos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Células A549 , Animais , Linhagem Celular Tumoral , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Neoplasias/genética , Neoplasias/imunologia , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo
9.
BMC Cancer ; 19(1): 598, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208373

RESUMO

BACKGROUND: NANOS3 is a gene conserved throughout evolution. Despite the quite low conservation of Nanos sequences between different organisms and even between Nanos paralogs, their role in germ cell development is remarkably universal. Human Nanos3 expression is normally restricted to the gonads and the brain. However, ectopic activation of this gene has been detected in various human cancers. Until now, Nanos3 and other Nanos proteins have been studied almost exclusively in germ cell development. METHODS: Transgenic mice were generated by targeted insertion of a human Nanos3 cDNA into the ROSA26 locus. The transgene could be spatiotemporally induced by Cre recombinase activity removing an upstream floxed STOP cassette. A lung tumor model with ectopic Nanos3 expression was based on the lung-specific activation of the reverse tetracycline transactivator gene, in combination with a tetO-CMV promoter controlling Cre expression. When doxycycline was provided to the mice, Cre was activated leading to deletion of TP53 alleles and activation of both oncogenic KRasG12D and Nanos3. Appropriate controls were foreseen. Tumors and tumor-derived cell cultures were analyzed in various ways. RESULTS: We describe the successful generation of Nanos3LSL/- and Nanos3LSL/LSL mice in which an exogenous human NANOS3 gene can be activated in vivo upon Cre expression. These mice, in combination with different conditional and doxycycline-inducible Cre lines, allow the study of the role of ectopic Nanos3 expression in several cancer types. The Nanos3LSL mice were crossed with a non-small cell lung cancer (NSCLC) mouse model based on conditional expression of oncogenic KRas and homozygous loss of p53. This experiment demonstrated that ectopic expression of Nanos3 in the lungs has a significant negative effect on survival. Enhanced bronchiolar dysplasia was observed when Nanos3-expressing NSCLC mice were compared with control NSCLC mice. An allograft experiment, performed with cell cultures derived from primary lung tumors of control and Nanos3-expressing NSCLC mice, revealed lymph node metastasis in mice injected with Nanos3-expressing NSCLC cells. CONCLUSIONS: A new mouse model was generated allowing examination of Nanos3-associated pathways and investigation of the influence of ectopic Nanos3 expression in various cancer types. This model might identify Nanos3 as an interesting target in cancer therapeutics.


Assuntos
Expressão Ectópica do Gene , Camundongos , Neoplasias Experimentais/genética , Proteínas de Ligação a RNA/genética , Aloenxertos , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Doxiciclina/farmacologia , Feminino , Humanos , Integrases , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Transdução de Sinais/efeitos dos fármacos , Transgenes , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética
10.
Exp Hematol ; 74: 1-12, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31154068

RESUMO

Leukemia is a complex genetic disease caused by errors in differentiation, growth, and apoptosis of hematopoietic cells in either lymphoid or myeloid lineages. Large-scale genomic characterization of thousands of leukemia patients has produced a tremendous amount of data that have enabled a better understanding of the differences between adult and pediatric patients. For instance, although phenotypically similar, pediatric and adult myeloid leukemia patients differ in their mutational profiles, typically involving either chromosomal translocations or recurrent single-base-pair mutations, respectively. To elucidate the molecular mechanisms underlying the biology of this cancer, continual efforts have been made to develop more contextually and biologically relevant experimental models. Leukemic cell lines, for example, provide an inexpensive and tractable model but often fail to recapitulate critical aspects of tumor biology. Likewise, murine leukemia models of leukemia have been highly informative but also do not entirely reproduce the human disease. More recent advances in the development of patient-derived xenografts (PDXs) or human models of leukemias are poised to provide a more comprehensive, and biologically relevant, approach to directly assess the impact of the in vivo environment on human samples. In this review, the advantages and limitations of the various current models used to functionally define the genetic requirements of leukemogenesis are discussed.


Assuntos
Diferenciação Celular , Leucemia Mieloide , Neoplasias Experimentais , Translocação Genética , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Xenoenxertos , Humanos , Lactente , Recém-Nascido , Leucemia Mieloide/genética , Leucemia Mieloide/patologia , Leucemia Mieloide/terapia , Masculino , Camundongos , Transplante de Neoplasias , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia
11.
ACS Appl Mater Interfaces ; 11(29): 25740-25749, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31251022

RESUMO

The insufficient oxygen supply may cause hypoxia in a solid tumor, which can lead to drug resistance and unsatisfactory chemotherapy effect. To address this issue, a new nanodrug has been developed with azoreductase-responsive functional metal-organic frameworks (AMOFs), where chemotherapeutic drugs were encapsulated in the AMOFs and small interfering RNAs (siRNAs) were absorbed on the surface of AMOFs. The siRNA was designed to contain hypoxia-inducible factor (HIF)-1α against RX-0047, which can induce significant downregulation of HIF-1α protein. The azobenzene units within the frameworks of AMOFs could be reduced to amines by the highly expressed azoreductase under the oxygen-deficient environment, which results in azoreductase-responsive release of the encapsulated drugs and siRNAs under the hypoxic condition. Therefore, once the drug-loaded AMOF entered the hypoxic cancer cells, the azoreductase-responsive release of siRNA could decrease the efflux of chemotherapeutic drugs via inhibiting the expressions of HIF-1α, multidrug resistance gene 1, and P-glycoprotein. This nanodrug can thus efficiently break hypoxia-induced chemoresistance and result in high-efficient cancer therapy in hypoxic tumors. As far as we know, this is the first attempt to construct an AMOF-based nanodrug with hypoxic harvesting behaviors. This proof-of-concept research provides a simple strategy for the construction of hypoxic-responsive AMOFs and also offers a unique on-command drug delivery platform, which can effectively break hypoxia-induced chemoresistance.


Assuntos
Portadores de Fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , NADH NADPH Oxirredutases/metabolismo , Nanoestruturas , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais , Oligonucleotídeos , Animais , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , NADH NADPH Oxirredutases/genética , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Proteínas de Neoplasias/genética , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Oligonucleotídeos/química , Oligonucleotídeos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Pathobiology ; 86(4): 173-181, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31121595

RESUMO

BACKGROUND: MicroRNAs (miRNAs), a class of small-regulatory RNA molecules, were closely involved in the pathogenesis of a broad-spectrum of colorectal cancer (CRC). But role of miR-147b in CRC still remains unclear. METHODS: Real-time RT-PCR or Western blotting was utilized to detect the expressions of miR-147b and RAP2B in CRC cell lines and tissues. Luciferase reporter assays were conducted to detect the associations between miR-147b and 3'UTRs of RAP2B. A series of assays were performed to evaluate the effect of miR-147b on proliferation, migration, and invasion of CRC in vitro and in vivo. RESULTS: We found that the level of miR-147b was significantly lower in CRC tissues than in normal tissues (p = 0.0006). Enforced expression of miR-147b led to suppression of CRC cell proliferation in vitro and tumor growth in vivo. Specifically, miR-147b promoted proliferation by arresting CRC cells in the G1/G0 phase. Mechanically, RAP2B was identified as a direct target gene of miR-147b and RAP2B rescued the suppression of proliferation and invasion reduced by miR-147b in CRC cells. CONCLUSIONS: miR-147b not only plays important roles in the regulation of cell proliferation and tumor growth in CRC, which might be a potential prognostic marker or therapeutic target for CRC.


Assuntos
Proliferação de Células , Neoplasias Colorretais/genética , MicroRNAs/genética , Invasividade Neoplásica , Proteínas rap de Ligação ao GTP/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia
13.
Nat Commun ; 10(1): 1653, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30971697

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive subtype of acute leukemia, the cell of origin of which is considered to be precursors of plasmacytoid dendritic cells (pDCs). Since translocation (6;8)(p21;q24) is a recurrent anomaly for BPDCN, we demonstrate that a pDC-specific super-enhancer of RUNX2 is associated with the MYC promoter due to t(6;8). RUNX2 ensures the expression of pDC-signature genes in leukemic cells, but also confers survival and proliferative properties in BPDCN cells. Furthermore, the pDC-specific RUNX2 super-enhancer is hijacked to activate MYC in addition to RUNX2 expression, thereby promoting the proliferation of BPDCN. We also demonstrate that the transduction of MYC and RUNX2 is sufficient to initiate the transformation of BPDCN in mice lacking Tet2 and Tp53, providing a model that accurately recapitulates the aggressive human disease and gives an insight into the molecular mechanisms underlying the pathogenesis of BPDCN.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/genética , Células Dendríticas/patologia , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Proliferação de Células/genética , Cromossomos Humanos Par 6/genética , Cromossomos Humanos Par 8/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos/genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Humanos , Células Jurkat , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Translocação Genética/genética , Irradiação Corporal Total
14.
Pancreas ; 48(4): 555-567, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30946238

RESUMO

OBJECTIVES: Pancreatic carcinoma is one of the most aggressive cancers overcoming chemoresistance. Thus, novel compounds to complement the current antitumor agents are in need. Ocoxin oral solution (OOS) has proven antioxidant, anti-inflammatory, and antistromagenic properties. The aim of this study was to analyze the effect of OOS in an experimental pancreatic cancer model and its implication in stroma-related chemoresistance to paclitaxel and gemcitabine. METHODS: Murine pancreatic carcinoma 266-6 cells were treated with OOS to analyze cell cycle and to perform a mRNA comparative microarray study. Then the viability was assessed in combination with paclitaxel and/or gemcitabine. Chemoresistance induced by the medium taken from fibroblast cultures was also investigated on 6 human pancreatic carcinoma cell lines. Furthermore, an experimental model of pancreatic cancer was carried out to study the effect of OOS in vivo. RESULTS: Ocoxin oral solution enhances the cytotoxic effect of paclitaxel and gemcitabine, while it ameliorates the chemoresistance induced by fibroblast-derived soluble factors in human pancreatic cancer cells. The OOS also promotes the regulation of the expression of genes that are altered in pancreatic carcinoma and slows down 266-6 cell pancreatic tumor development in vivo. CONCLUSIONS: Ocoxin oral solution could be a potential complement to the chemotherapeutic drugs for pancreatic adenocarcinoma.


Assuntos
Adenocarcinoma/tratamento farmacológico , Ácido Ascórbico/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Extratos Vegetais/farmacologia , Vitamina B 12/farmacologia , Vitamina B 6/farmacologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Ácido Ascórbico/administração & dosagem , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Extratos Vegetais/administração & dosagem , Soluções , Vitamina B 12/administração & dosagem , Vitamina B 6/administração & dosagem
15.
PLoS One ; 14(4): e0215312, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30986223

RESUMO

Survival rates of osteosarcoma patients could not be significantly improved by conventional chemotherapeutic treatment regimens since the introduction of high-dose chemotherapy 35 years ago. Therefore, there is a strong clinical need for new therapeutic targets and personalized treatment strategies, requiring reliable in vivo model systems for the identification and testing of potential new treatment approaches. Conventional in vivo rodent experiments face ethical issues, are time consuming and costly, being of particular relevance in orphan diseases like osteosarcoma. An attractive alternative to such animal experiments is the chicken chorioallantoic membrane (CAM) assay. The CAM is a highly vascularized, non-innervated extra-embryonic membrane that is perfectly suited for the engraftment of tumor cells. However, only few reports are available for osteosarcoma and reported data are inconsistent. Therefore, the aim of this study was the adaptation and optimization of the CAM assay for its application in osteosarcoma research. Tumor take rates and volumes of osteosarcoma that developed on the CAM were analyzed after modification of several experimental parameters, including egg windowing, CAM pretreatment, inoculation technique and many more. Eight osteosarcoma cell lines were investigated. Our optimized OS-CAM-assay was finally validated against a rat animal xenograft model. Using the cell line MNNG HOS as reference we could improve the tumor take rates from 51% to 94%, the viability of the embryos from initially 40% to >80% and achieved a threefold increase of the tumor volumes. We were able to generate solid tumors from all eight osteosarcoma cell lines used in this study and could reproduce results that were obtained using an osteosarcoma rat animal model. The CAM assay can bridge the gap between in vitro cell culture and in vivo animal experiments. As reliable in vivo model for osteosarcoma research the optimized CAM assay may speed up preclinical data collection and simplifies research on potential new agents towards personalized treatment strategies. Further, in accordance with Russell's and Burch's "Principles of Humane Experimental Technique" the reasonable use of this model provides a refinement by minimizing pain and suffering of animals and supports a considerable reduction and/or replacement of animal experiments.


Assuntos
Neoplasias Ósseas , Membrana Corioalantoide , Neoplasias Experimentais , Osteossarcoma , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Embrião de Galinha , Membrana Corioalantoide/metabolismo , Membrana Corioalantoide/patologia , Humanos , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Ratos , Ratos Nus
16.
Genes Genomics ; 41(6): 701-712, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30989490

RESUMO

BACKGROUND: Knockout (KO) mice developed by homologous recombination (HR) have become useful tools to elucidate gene function. However, HR has low KO efficiency and is time-consuming, labor-intensive, and expensive. 'Gene editing' has received much attention for efficient genetic manipulation. OBJECTIVE: As generation of KO mice is simplified, KO mice produced by HR can be feasibly reproduced using gene editing. However, phenotyping analysis and comparison between KO mice produced by these two techniques is necessary. METHODS: We generated p53 KO mice through gene editing and compared their phenotype with the already reported HR-mediated p53 KO mice. RESULTS: Tumors occurred in 36 (73%) of 49 homozygous KO mice and the mean age of occurrence was 23 weeks, with lymphoma (64%) and sarcoma (23%) being the most common. Tumors were also developed in 12 heterozygous mice and the mean age of occurrence was 40 weeks, with sarcoma (54%) and lymphoma (46%) in high proportion. Homozygotes had a mean life span of 157 ± 52 days and developmental abnormalities were found in females compared to in males (P < 0.05, P < 0.001). CONCLUSION: We analyzed the basic phenotype of p53 KO mice and observed no significant difference from the conventional HR-mediated p53 KO mice.


Assuntos
Edição de Genes/métodos , Técnicas de Inativação de Genes/métodos , Neoplasias Experimentais/genética , Fenótipo , Proteína Supressora de Tumor p53/deficiência , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/patologia , Proteína Supressora de Tumor p53/genética
17.
Ann Hematol ; 98(7): 1603-1610, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31020347

RESUMO

Platelets are activated in solid cancers, including pancreatic ductal adenocarcinoma (PDA), a highly aggressive malignancy with a devastating prognosis and limited therapeutic options. The mechanisms by which activated platelets regulate tumor progression are poorly understood. The nucleotide-binding domain leucine-rich repeat containing protein 3 (NLRP3) inflammasome is a key inflammatory mechanism recently identified in platelets, which controls platelet activation and aggregation. In an orthotopic PDA mouse model involving surgical implantation of Panc02 murine cancer cells into the tail of the pancreas, we show that the NLRP3 inflammasome in circulating platelets is upregulated in pancreatic cancer. Pharmacological inhibition or genetic ablation of NLRP3 in platelets resulted in decreased platelet activation, platelet aggregation, and tumor progression. Moreover, interfering with platelet NLRP3 signaling significantly improved survival of tumor-bearing mice. Hence, the platelet NLRP3 inflammasome plays a critical role in PDA and might represent a novel therapeutic target.


Assuntos
Regulação Neoplásica da Expressão Gênica , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/metabolismo , Neoplasias Pancreáticas/metabolismo , Agregação Plaquetária , Regulação para Cima , Animais , Plaquetas , Linhagem Celular Tumoral , Inflamassomos/genética , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas de Neoplasias/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia
18.
Exp Hematol ; 74: 42-51.e3, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31022428

RESUMO

A subset of acute myeloid and lymphoid leukemia cases harbor a t(10;11)(p13;q14) translocation resulting in the CALM-AF10 fusion gene. Standard chemotherapeutic strategies are often ineffective in treating patients with CALM-AF10 fusions. Hence, there is an urgent need to identify molecular pathways dysregulated in CALM-AF10-positive leukemias which may lay the foundation for novel targeted therapies. Here we demonstrate that the Polycomb Repressive Complex 1 gene BMI1 is consistently overexpressed in adult and pediatric CALM-AF10-positive leukemias. We demonstrate that genetic Bmi1 depletion abrogates CALM-AF10-mediated transformation of murine hematopoietic stem and progenitor cells (HSPCs). Furthermore, CALM-AF10-positive murine and human AML cells are sensitive to the small-molecule BMI1 inhibitor PTC-209 as well as to PTC-596, a compound in clinical development that has been shown to result in downstream degradation of BMI1 protein. PTC-596 significantly prolongs survival of mice injected with a human CALM-AF10 cell line in a xenograft assay. In summary, these results validate BMI1 as a bona fide candidate for therapeutic targeting in AML with CALM-AF10 rearrangements.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Neoplasias Experimentais/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Compostos Heterocíclicos com 2 Anéis/farmacologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Proteínas de Fusão Oncogênica/genética , Complexo Repressor Polycomb 1/antagonistas & inibidores , Complexo Repressor Polycomb 1/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Tiazóis/farmacologia , Células U937 , Ensaios Antitumorais Modelo de Xenoenxerto
19.
PLoS One ; 14(3): e0212670, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30913212

RESUMO

Immunotherapy has fundamentally changed the landscape of cancer treatment. Despite the encouraging results with the checkpoint modulators, response rates vary widely across tumor types, with a majority of patients exhibiting either primary resistance without a significant initial response to treatment or acquired resistance with subsequent disease progression. Hematopoietic progenitor kinase 1 (HPK1) is predominantly expressed in hematopoietic cell linages and serves as a negative regulator in T cells and dendritic cells (DC). While HPK1 gene knockout (KO) studies suggest its role in anti-tumor immune responses, the involvement of kinase activity and thereof its therapeutic potential remain unknown. To investigate the potential of pharmacological intervention using inhibitors of HPK1, we generated HPK1 kinase dead (KD) mice which carry a single loss-of-function point mutation in the kinase domain and interrogated the role of kinase activity in immune cells in the context of suppressive factors or the tumor microenvironment (TME). Our data provide novel findings that HKP1 kinase activity is critical in conferring suppressive functions of HPK1 in a wide range of immune cells including CD4+, CD8+, DC, NK to Tregs, and inactivation of kinase domain was sufficient to elicit robust anti-tumor immune responses. These data support the concept that an HPK1 small molecule kinase inhibitor could serve as a novel agent to provide additional benefit in combination with existing immunotherapies, particularly to overcome resistance to current treatment regimens.


Assuntos
Imunidade Celular , Vigilância Imunológica , Linfócitos/imunologia , Neoplasias Experimentais/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Microambiente Tumoral/imunologia , Animais , Linhagem Celular Tumoral , Linfócitos/patologia , Camundongos , Camundongos Mutantes , Neoplasias Experimentais/genética , Mutação Puntual , Proteínas Serina-Treonina Quinases/genética , Microambiente Tumoral/genética
20.
Methods Mol Biol ; 1953: 183-211, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30912023

RESUMO

Experimental animal tumor models have been broadly used to evaluate anticancer drugs in the preclinical setting. They have also been widely applied for drug target discovery and validation, which usually follows four experimental strategies: first, assess the roles of putative drug targets using in vivo tumorigenicity and tumor growth kinetics assays of transplanted tumors, engineered through gain-of-function (GOF) by overexpressing transgene or knock-in (KI) or loss-of-function by gene silencing using knockdown (KD) or knockout (KO) or mutation via mutagenesis procedures; second, similarly genetically engineered mouse models (GEMM), through either germline or somatic cell procedures, are used to test the roles of potential targets in spontaneous tumorigenicity assays; third, patient-derived xenografts (PDXs), which most closely resemble patient genetics and histopathology, are used in tumor inhibition assays for evaluating target-/pathway-specific inhibitors, including large and small molecules, thus assessing the drug target; and fourth, the targets can be assessed in population-based trials, mouse clinical trials (MCT), so that the validation can be generally meaningful as performed in human clinical trials. This chapter outlines the commonly used protocols in cancer drug target research: the first four sections describe four sets of different, specific pharmacology protocols used in the respective cancer modeling stages, with the last section summarizing the common protocols applicable to all four pharmacology modeling steps.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas/métodos , Marcação de Genes/métodos , Neoplasias/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Antineoplásicos/uso terapêutico , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Humanos , Camundongos , Terapia de Alvo Molecular/métodos , Neoplasias/genética , Neoplasias/patologia , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Transgenes , Carga Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA