Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.285
Filtrar
1.
Eur J Med Chem ; 244: 114842, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36274274

RESUMO

Protein arginine methyltransferases 5 (PRMT5), a therapeutic target whose main physiological function is mono- and symmetric dimethylation of arginine, has drawn significant attention from researchers in the field. PRMT5 has been reported to participate in many cellular functions including cell growth, migration, and development. Upregulation of PRMT5 occurs in different kinds of tumors and is strongly associated with poor prognosis. In recent years, several PRMT5 inhibitors have entered clinical trials for the treatment of various cancers, such as advanced or recurrent solid tumors with MTAP deletion. Herein, we reviewed the binding modes and structure-activity relationships of novel PRMT5 inhibitors and discussed prospects of PRMT5 inhibitors in cancer therapy, aiming to provide insights on drug development of PRMT5 inhibitors.


Assuntos
Inibidores Enzimáticos , Terapia de Alvo Molecular , Neoplasias , Proteína-Arginina N-Metiltransferases , Humanos , Arginina/metabolismo , Química Farmacêutica , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores
2.
Nucleic Acids Res ; 50(14): 8023-8040, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35822874

RESUMO

Amino acid substitutions in the exonuclease domain of DNA polymerase ϵ (Polϵ) cause ultramutated tumors. Studies in model organisms suggested pathogenic mechanisms distinct from a simple loss of exonuclease. These mechanisms remain unclear for most recurrent Polϵ mutations. Particularly, the highly prevalent V411L variant remained a long-standing puzzle with no detectable mutator effect in yeast despite the unequivocal association with ultramutation in cancers. Using purified four-subunit yeast Polϵ, we assessed the consequences of substitutions mimicking human V411L, S459F, F367S, L424V and D275V. While the effects on exonuclease activity vary widely, all common cancer-associated variants have increased DNA polymerase activity. Notably, the analog of Polϵ-V411L is among the strongest polymerases, and structural analysis suggests defective polymerase-to-exonuclease site switching. We further show that the V411L analog produces a robust mutator phenotype in strains that lack mismatch repair, indicating a high rate of replication errors. Lastly, unlike wild-type and exonuclease-dead Polϵ, hyperactive variants efficiently synthesize DNA at low dNTP concentrations. We propose that this characteristic could promote cancer cell survival and preferential participation of mutator polymerases in replication during metabolic stress. Our results support the notion that polymerase fitness, rather than low fidelity alone, is an important determinant of variant pathogenicity.


Assuntos
DNA Polimerase II , Neoplasias , Nucleotídeos , Proteínas de Saccharomyces cerevisiae , DNA Polimerase II/metabolismo , Replicação do DNA/genética , Exonucleases/genética , Humanos , Mutação , Neoplasias/enzimologia , Neoplasias/genética , Nucleotídeos/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Sci Rep ; 12(1): 11161, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778520

RESUMO

Topoisomerase IIα (TOP2A) plays an oncogenic role in multiple tumor types. However, no pan-cancer analysis about the function and the upstream molecular mechanism of TOP2A is available. For the first time, we analyzed potential oncogenic roles of TOP2A in 33 cancer types via The Cancer Genome Atlas (TCGA) database. Overexpression of TOP2A was existed in almost all cancer types, and related to poor prognosis and advanced pathological stages in most cases. Besides, the high frequency of TOP2A genetic alterations was observed in several cancer types, and related to prognosis in some cases. Moreover, we conduct upstream miRNAs and lncRNAs of TOP2A to establish ceRNA networks in kidney renal clear cell carcinoma (SNHG3-miR-139-5p), kidney renal papillary cell carcinoma (TMEM147-AS1/N4BP2L2-IT2/THUMPD3-AS1/ERICD/TTN-AS1/SH3BP5-AS1/THRB-IT1/SNHG3/NEAT1-miR-139-5p), liver hepatocellular carcinoma (SNHG3/THUMPD3-AS1/NUTM2B-AS1/NUTM2A-AS1-miR-139-5p and SNHG6/GSEC/SNHG1/SNHG14/LINC00265/MIR3142HG-miR-101-3p) and lung adenocarcinoma (TYMSOS/HELLPAR/SNHG1/GSEC/SNHG6-miR-101-3p). TOP2A expression was generally positively correlated with cancer associated fibroblasts, M0 and M1 macrophages in most cancer types. Furthermore, TOP2A was positively associated with expression of immune checkpoints (CD274, CTLA4, HAVCR2, LAG3, PDCD1 and TIGIT) in most cancer types. Our first TOP2A pan-cancer study contributes to understanding the prognostic roles, immunological roles and potential upstream molecular mechanism of TOP2A in different cancers.


Assuntos
Carcinoma de Células Renais , DNA Topoisomerases Tipo II , MicroRNAs , Neoplasias , Proteínas de Ligação a Poli-ADP-Ribose , Carcinogênese/genética , Carcinoma de Células Renais/genética , Movimento Celular/genética , Proliferação de Células/genética , Humanos , MicroRNAs/genética , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia
4.
Proc Natl Acad Sci U S A ; 119(28): e2119038119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867754

RESUMO

Studies on biological functions of RNA modifications such as N6-methyladenosine (m6A) in mRNA have sprung up in recent years, while the roles of N1-methyladenosine (m1A) in cancer progression remain largely unknown. We find m1A demethylase ALKBH3 can regulate the glycolysis of cancer cells via a demethylation activity dependent manner. Specifically, sequencing and functional studies confirm that ATP5D, one of the most important subunit of adenosine 5'-triphosphate synthase, is involved in m1A demethylase ALKBH3-regulated glycolysis of cancer cells. The m1A modified A71 at the exon 1 of ATP5D negatively regulates its translation elongation via increasing the binding with YTHDF1/eRF1 complex, which facilitates the release of message RNA (mRNA) from ribosome complex. m1A also regulates mRNA stability of E2F1, which directly binds with ATP5D promoter to initiate its transcription. Targeted specific demethylation of ATP5D m1A by dm1ACRISPR system can significantly increase the expression of ATP5D and glycolysis of cancer cells. In vivo data confirm the roles of m1A/ATP5D in tumor growth and cancer progression. Our study reveals a crosstalk of mRNA m1A modification and cell metabolism, which expands the understanding of such interplays that are essential for cancer therapeutic application.


Assuntos
Glicólise , ATPases Mitocondriais Próton-Translocadoras , Neoplasias , RNA Mensageiro , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Glicólise/genética , Humanos , Metilação , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , RNA Mensageiro/metabolismo
5.
Int J Biol Macromol ; 213: 944-954, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35690164

RESUMO

Cancer is one of the major causes of global deaths and needs immediate therapeutic development. So far, several strategies have been undertaken to prevent cancer, including kinase targeting by small-molecule inhibitors. Cyclin dependent kinase 6 (CDK6) plays an essential role in cancer progression and development as its overexpression is associated with tumor development and progression. The present study demonstrated that Naringenin (NAG) binds strongly to CDK6 with a binding affinity of -7.51 kcal/mol. ATPase assay of CDK6 in the presence of NAG shows that it inhibits CDK6 with an IC50 = 3.13 µM. Fluorescence and isothermal titration calorimetry studies demonstrated that NAG binds to CDK6 with the binding constant (K) values of 3.55 × 106 M-1 and 7.06 ± 2.70 × 106 M-1, respectively. The cell-based functional studies showed that NAG decreases the cell viability of human cancer cell lines, induces apoptosis, and reduces their colonization ability. Outcomes of the present in silico and in vitro studies highlighted the significance of NAG for the development of anti-cancer leads in terms of CDK6 inhibitors and provided future implications for combinatorial anti-cancer therapies.


Assuntos
Quinase 6 Dependente de Ciclina , Flavanonas , Neoplasias , Apoptose/efeitos dos fármacos , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/química , Quinase 6 Dependente de Ciclina/metabolismo , Flavanonas/química , Flavanonas/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/patologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
6.
Nat Commun ; 13(1): 3778, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773251

RESUMO

PPM1D encodes a serine/threonine phosphatase that regulates numerous pathways including the DNA damage response and p53. Activating mutations and amplification of PPM1D are found across numerous cancer types. GSK2830371 is a potent and selective allosteric inhibitor of PPM1D, but its mechanism of binding and inhibition of catalytic activity are unknown. Here we use computational, biochemical and functional genetic studies to elucidate the molecular basis of GSK2830371 activity. These data confirm that GSK2830371 binds an allosteric site of PPM1D with high affinity. By further incorporating data from hydrogen deuterium exchange mass spectrometry and sedimentation velocity analytical ultracentrifugation, we demonstrate that PPM1D exists in an equilibrium between two conformations that are defined by the movement of the flap domain, which is required for substrate recognition. A hinge region was identified that is critical for switching between the two conformations and was directly implicated in the high-affinity binding of GSK2830371 to PPM1D. We propose that the two conformations represent active and inactive forms of the protein reflected by the position of the flap, and that binding of GSK2830371 shifts the equilibrium to the inactive form. Finally, we found that C-terminal truncating mutations proximal to residue 400 result in destabilization of the protein via loss of a stabilizing N- and C-terminal interaction, consistent with the observation from human genetic data that nearly all PPM1D mutations in cancer are truncating and occur distal to residue 400. Taken together, our findings elucidate the mechanism by which binding of a small molecule to an allosteric site of PPM1D inhibits its activity and provides insights into the biology of PPM1D.


Assuntos
Neoplasias , Proteína Fosfatase 2C , Sítio Alostérico , Aminopiridinas/farmacologia , Dipeptídeos/farmacologia , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Conformação Proteica , Proteína Fosfatase 2C/antagonistas & inibidores , Proteína Fosfatase 2C/química , Proteína Fosfatase 2C/genética , Proteína Fosfatase 2C/metabolismo , Serina/genética , Serina/metabolismo , Relação Estrutura-Atividade
7.
Bioconjug Chem ; 33(6): 1210-1221, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35658441

RESUMO

Inhibition of intracellular nicotinamide phosphoribosyltransferase (NAMPT) represents a new mode of action for cancer-targeting antibody-drug conjugates (ADCs) with activity also in slowly proliferating cells. To extend the repertoire of available effector chemistries, we have developed a novel structural class of NAMPT inhibitors as ADC payloads. A structure-activity relationship-driven approach supported by protein structural information was pursued to identify a suitable attachment point for the linker to connect the NAMPT inhibitor with the antibody. Optimization of scaffolds and linker structures led to highly potent effector chemistries which were conjugated to antibodies targeting C4.4a (LYPD3), HER2 (c-erbB2), or B7H3 (CD276) and tested on antigen-positive and -negative cancer cell lines. Pharmacokinetic studies, including metabolite profiling, were performed to optimize the stability and selectivity of the ADCs and to evaluate potential bystander effects. Optimized NAMPTi-ADCs demonstrated potent in vivo antitumor efficacy in target antigen-expressing xenograft mouse models. This led to the development of highly potent NAMPT inhibitor ADCs with a very good selectivity profile compared with the corresponding isotype control ADCs. Moreover, we demonstrate─to our knowledge for the first time─the generation of NAMPTi payload metabolites from the NAMPTi-ADCs in vitro and in vivo. In conclusion, NAMPTi-ADCs represent an attractive new payload class designed for use in ADCs for the treatment of solid and hematological cancers.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Nicotinamida Fosforribosiltransferase , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antígenos B7 , Linhagem Celular Tumoral , Humanos , Imunoconjugados/química , Imunoconjugados/farmacologia , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/química , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Immunother Cancer ; 10(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35728872

RESUMO

BACKGROUND: Despite clinical success with T cell engagers (TCEs) targeting hematological malignancies, achieving a safe and efficacious dose in patients with solid tumors remains challenging. Due to potency, low levels of target antigen expression on normal tissues may not be tolerated. To overcome this, we engineered a novel conditionally active TCE design called COBRA (Conditional Bispecific Redirected Activation). Administered as prodrugs, COBRAs bind to cell surface antigens on both normal and tumor tissues but are preferentially activated within the tumor microenvironment. METHODS: A COBRA was engineered to target EGFR, TAK-186. The potency of precleaved TAK-186 relative to a non-cleavable control was assessed in vitro. Mice bearing established solid tumors expressing a range of EGFR levels were administered a single bolus of human T cells, and concurrently treated with TAK-186 and associated controls intravenously. We assessed the plasma and tumor exposure of intact and cleaved TAK-186. RESULTS: TAK-186 shows potent redirected T cell killing of antigen expressing tumor cells. In vivo efficacy studies demonstrate regressions of established solid tumors, dependent on intratumoral COBRA cleavage. Pharmacokinetic studies reveal TAK-186 is stable in circulation, but once activated is rapidly cleared due to loss of its albumin-binding half-life extension domain. CONCLUSIONS: The studies shown support the advancement of TAK-186, and the pursuit of additional COBRA TCEs for the treatment of solid tumors.


Assuntos
Receptores ErbB , Neoplasias , Linfócitos T , Animais , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Humanos , Imunoterapia , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/imunologia , Linfócitos T/imunologia , Microambiente Tumoral
9.
Proc Natl Acad Sci U S A ; 119(26): e2121987119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35749365

RESUMO

Mechanisms of defense against ferroptosis (an iron-dependent form of cell death induced by lipid peroxidation) in cellular organelles remain poorly understood, hindering our ability to target ferroptosis in disease treatment. In this study, metabolomic analyses revealed that treatment of cancer cells with glutathione peroxidase 4 (GPX4) inhibitors results in intracellular glycerol-3-phosphate (G3P) depletion. We further showed that supplementation of cancer cells with G3P attenuates ferroptosis induced by GPX4 inhibitors in a G3P dehydrogenase 2 (GPD2)-dependent manner; GPD2 deletion sensitizes cancer cells to GPX4 inhibition-induced mitochondrial lipid peroxidation and ferroptosis, and combined deletion of GPX4 and GPD2 synergistically suppresses tumor growth by inducing ferroptosis in vivo. Mechanistically, inner mitochondrial membrane-localized GPD2 couples G3P oxidation with ubiquinone reduction to ubiquinol, which acts as a radical-trapping antioxidant to suppress ferroptosis in mitochondria. Taken together, these results reveal that GPD2 participates in ferroptosis defense in mitochondria by generating ubiquinol.


Assuntos
Ferroptose , Glicerolfosfato Desidrogenase , Peroxidação de Lipídeos , Mitocôndrias , Proteínas Mitocondriais , Neoplasias , Linhagem Celular Tumoral , Ferroptose/genética , Glicerolfosfato Desidrogenase/antagonistas & inibidores , Glicerolfosfato Desidrogenase/genética , Glicerolfosfato Desidrogenase/metabolismo , Humanos , Peroxidação de Lipídeos/genética , Mitocôndrias/enzimologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
10.
J Mol Biol ; 434(17): 167626, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35595166

RESUMO

Allosteric mechanisms are pervasive in nature, but human-designed allosteric perturbagens are rare. The history of KRASG12C inhibitor development suggests that covalent chemistry may be a key to expanding the armamentarium of allosteric inhibitors. In that effort, irreversible targeting of a cysteine converted a non-deal allosteric binding pocket and low affinity ligands into a tractable drugging strategy. Here we examine the feasibility of expanding this approach to other allosteric pockets of RAS and kinase family members, given that both protein families are regulators of vital cellular processes that are often dysregulated in cancer and other human diseases. Moreover, these heavily studied families are the subject of numerous drug development campaigns that have resulted, sometimes serendipitously, in the discovery of allosteric inhibitors. We consequently conducted a comprehensive search for cysteines, a commonly targeted amino acid for covalent drugs, using AlphaFold-generated structures of those families. This new analysis presents potential opportunities for allosteric targeting of validated and understudied drug targets, with an emphasis on cancer therapy.


Assuntos
Antineoplásicos , Terapia de Alvo Molecular , Neoplasias , Inibidores de Proteínas Quinases , Proteínas Quinases , Proteínas ras , Antineoplásicos/química , Antineoplásicos/farmacologia , Cisteína/metabolismo , Humanos , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/química , Proteínas ras/antagonistas & inibidores , Proteínas ras/química
11.
Int J Mol Sci ; 23(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35563478

RESUMO

Lysyl oxidases are multifunctional proteins derived from five lysyl oxidase paralogues (LOX) and lysyl oxidase-like 1 through lysyl oxidase-like 4 (LOXL1-LOXL4). All participate in the biosynthesis of and maturation of connective tissues by catalyzing the oxidative deamination of lysine residues in collagens and elastin, which ultimately results in the development of cross-links required to function. In addition, the five LOX genes have been linked to fibrosis and cancer when overexpressed, while tumor suppression by the propeptide derived from pro-LOX has been documented. Similarly, in diabetic retinopathy, LOX overexpression, activity, and elevated LOX propeptide have been documented. The proteolytic processing of pro-forms of the respective proteins is beginning to draw attention as the resultant peptides appear to exhibit their own biological activities. In this review we focus on the LOX paralogue, and what is known regarding its extracellular biosynthetic processing and the still incomplete knowledge regarding the activities and mechanisms of the released lysyl oxidase propeptide (LOX-PP). In addition, a summary of the roles of both LOX and LOX-PP in diabetic retinopathy, and brief mentions of the roles for LOX and closely related LOXL1 in glaucoma, and keratoconus, respectively, are included.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Neoplasias , Proteína-Lisina 6-Oxidase , Colágeno/metabolismo , Diabetes Mellitus/enzimologia , Diabetes Mellitus/metabolismo , Retinopatia Diabética/enzimologia , Retinopatia Diabética/metabolismo , Humanos , Neoplasias/enzimologia , Neoplasias/metabolismo , Peptídeos , Proteína-Lisina 6-Oxidase/metabolismo
12.
Cancer Lett ; 539: 215698, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35523311

RESUMO

Macrophages play important roles in cancer microenvironment. Human cytosolic glycyl-tRNA synthetase (GARS1) was previously shown to be secreted via extracellular vesicles (EVs) from macrophages to trigger cancer cell death. However, the effects of GARS1-containing EVs (GARS1-EVs) on macrophages as well as on cancer cells and the working mechanisms of GARS1 in cancer microenvironment are not yet understood. Here we show that GARS1-EVs induce M1 polarization and facilitate phagocytosis of macrophages. GARS1-EVs triggers M1 polarization of macrophage via the specific interaction of the extracellular cadherin subdomains 1-4 of the cadherin EGF LAG seven-pass G-type receptor 2 (CELSR2) with the N-terminal WHEP domain containing peptide region of GARS1, and activates the RAF-MEK-ERK pathway for M1 type cytokine production and phagocytosis. Besides, GARS1 interacted with cadherin 6 (CDH6) of cancer cells via its C-terminal tRNA-binding domain to induce cancer cell death. In vivo model, GARS1-EVs showed potent suppressive activity against tumor initiation via M1 type macrophages. GARS1 displayed on macrophage-secreted extracellular vesicles suppressed tumor growth in dual mode, namely through pro-apoptotic effect on cancer cells and M1 polarization effect on macrophages. Collectively, these results elucidate the unique tumor suppressive activity and mechanism of GARS1-EVs by activating M1 macrophage via CELSR2 as well as by direct killing of cancer cells via CDH6.


Assuntos
Vesículas Extracelulares , Glicina-tRNA Ligase , Macrófagos , Neoplasias , Caderinas/metabolismo , Polaridade Celular , Vesículas Extracelulares/enzimologia , Vesículas Extracelulares/metabolismo , Glicina-tRNA Ligase/análise , Glicina-tRNA Ligase/metabolismo , Glicina-tRNA Ligase/farmacologia , Humanos , Macrófagos/enzimologia , Macrófagos/metabolismo , Macrófagos/patologia , Neoplasias/enzimologia , Neoplasias/metabolismo , Fagocitose , Microambiente Tumoral
13.
Proc Natl Acad Sci U S A ; 119(16): e2200476119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412887

RESUMO

Augmentor α and ß (Augα and Augß) are newly discovered ligands of the receptor tyrosine kinases Alk and Ltk. Augα functions as a dimeric ligand that binds with high affinity and specificity to Alk and Ltk. However, a monomeric Augα fragment and monomeric Augß also bind to Alk and potently stimulate cellular responses. While previous studies demonstrated that oncogenic Alk mutants function as important drivers of a variety of human cancers, the physiological roles of Augα and Augß are poorly understood. Here, we investigate the physiological roles of Augα and Augß by exploring mice deficient in each or both Aug ligands. Analysis of mutant mice showed that both Augα single knockout and double knockout of Augα and Augß exhibit a similar thinness phenotype and resistance to diet-induced obesity. In the Augα-knockout mice, the leanness phenotype is coupled to increased physical activity. By contrast, Augß-knockout mice showed similar weight curves as the littermate controls. Experiments are presented demonstrating that Augα is robustly expressed and metabolically regulated in agouti-related peptide (AgRP) neurons, cells that control whole-body energy homeostasis in part via their projections to the paraventricular nucleus (PVN). Moreover, both Alk and melanocortin receptor-4 are expressed in discrete neuronal populations in the PVN and are regulated by projections containing Augα and AgRP, respectively, demonstrating that two distinct mechanisms that regulate pigmentation operate in the hypothalamus to control body weight. These experiments show that Alk-driven cancers were co-opted from a neuronal pathway in control of body weight, offering therapeutic opportunities for metabolic diseases and cancer.


Assuntos
Quinase do Linfoma Anaplásico , Peso Corporal , Citocinas , Hipotálamo , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Hipotálamo/metabolismo , Ligantes , Redes e Vias Metabólicas , Camundongos , Camundongos Knockout , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Magreza/genética
14.
Cancer Discov ; 12(6): 1500-1517, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35404998

RESUMO

Covalent inhibitors of KRASG12C have shown antitumor activity against advanced/metastatic KRASG12C-mutated cancers, though resistance emerges and additional strategies are needed to improve outcomes. JDQ443 is a structurally unique covalent inhibitor of GDP-bound KRASG12C that forms novel interactions with the switch II pocket. JDQ443 potently inhibits KRASG12C-driven cellular signaling and demonstrates selective antiproliferative activity in KRASG12C-mutated cell lines, including those with G12C/H95 double mutations. In vivo, JDQ443 induces AUC exposure-driven antitumor efficacy in KRASG12C-mutated cell-derived (CDX) and patient-derived (PDX) tumor xenografts. In PDX models, single-agent JDQ443 activity is enhanced by combination with inhibitors of SHP2, MEK, or CDK4/6. Notably, the benefit of JDQ443 plus the SHP2 inhibitor TNO155 is maintained at reduced doses of either agent in CDX models, consistent with mechanistic synergy. JDQ443 is in clinical development as monotherapy and in combination with TNO155, with both strategies showing antitumor activity in patients with KRASG12C-mutated tumors. SIGNIFICANCE: JDQ443 is a structurally novel covalent KRASG12C inhibitor with a unique binding mode that demonstrates potent and selective antitumor activity in cell lines and in vivo models. In preclinical models and patients with KRASG12C-mutated malignancies, JDQ443 shows potent antitumor activity as monotherapy and in combination with the SHP2 inhibitor TNO155. This article is highlighted in the In This Issue feature, p. 1397.


Assuntos
Inibidores Enzimáticos , Indazóis , Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Indazóis/química , Indazóis/farmacologia , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
15.
Cancer Discov ; 12(6): 1435-1448, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35398880

RESUMO

Missense mutations in the polymerase epsilon (POLE) gene have been reported to generate proofreading defects resulting in an ultramutated genome and to sensitize tumors to checkpoint blockade immunotherapy. However, many POLE-mutated tumors do not respond to such treatment. To better understand the link between POLE mutation variants and response to immunotherapy, we prospectively assessed the efficacy of nivolumab in a multicenter clinical trial in patients bearing advanced mismatch repair-proficient POLE-mutated solid tumors. We found that only tumors harboring selective POLE pathogenic mutations in the DNA binding or catalytic site of the exonuclease domain presented high mutational burden with a specific single-base substitution signature, high T-cell infiltrates, and a high response rate to anti-PD-1 monotherapy. This study illustrates how specific DNA repair defects sensitize to immunotherapy. POLE proofreading deficiency represents a novel agnostic biomarker for response to PD-1 checkpoint blockade therapy. SIGNIFICANCE: POLE proofreading deficiency leads to high tumor mutational burden with high tumor-infiltrating lymphocytes and predicts anti-PD-1 efficacy in mismatch repair-proficient tumors. Conversely, tumors harboring POLE mutations not affecting proofreading derived no benefit from PD-1 blockade. POLE proofreading deficiency is a new tissue-agnostic biomarker for cancer immunotherapy. This article is highlighted in the In This Issue feature, p. 1397.


Assuntos
DNA Polimerase II , Neoplasias , DNA Polimerase II/genética , Humanos , Imunoterapia , Mutação de Sentido Incorreto , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética
16.
Biochim Biophys Acta Rev Cancer ; 1877(3): 188723, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35314212

RESUMO

Tumor suppressor activation or reactivation has long been a sought-after, yet elusive, therapeutic strategy for human cancer. Phosphatase and tensin homolog (PTEN) is one of the most frequently mutated tumor suppressor genes that regulate many biological processes, including proliferation, survival, cellular architecture, motility, energy metabolism, and genomic stability. As a dose-dependent tumor suppressor, subtle reductions in PTEN protein levels and activity will alter the gene-expression profiles involved in tumor progression, laying the foundation for PTEN reactivation in cancer treatment. However, treatment strategies that manipulate and/or replace PTEN activity to successfully block and reverse the destructive progression of cancer are not yet available. Ubiquitination/de-ubiquitination is one of the major regulatory mechanisms of PTEN by influencing its stability, subcellular localization, and activity. Recent discoveries, including new ubiquitination sites, E3 ubiquitin ligases, de-ubiquitinases of PTEN, and participation of accessory and adaptor proteins, have revealed new modes of PTEN ubiquitination regulation. Furthermore, either pharmaceutical or gene-targeted inhibition of E3 ligase-mediated ubiquitination of PTEN potently releases PTEN's anticancer activity and suppresses tumorigenesis. These findings shed light on therapeutic strategies for reactivating PTEN in cancer that target ubiquitination/de-ubiquitination. Therefore, a comprehensive understanding of the ubiquitination/de-ubiquitination regulation of PTEN could help improve clinical conceptualization and treatment of cancer. This review aimed to summarize and discuss recent discoveries on PTEN ubiquitination and de-ubiquitination, with the goal of providing a systematic summary in the field and promoting clinical transformation of targeting ubiquitination for PTEN reactivation in the treatment of cancer.


Assuntos
Neoplasias , PTEN Fosfo-Hidrolase , Ubiquitinação , Carcinogênese , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
17.
SLAS Discov ; 27(4): 249-257, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35288294

RESUMO

KRAS is one of the most heavily mutated oncogenes in cancer and targeting mutant KRAS with drugs has proven difficult. However, recent FDA approval of the KRAS G12C selective inhibitor sotorasib (AMG-510), has breathed new life into the drive to develop mutant KRAS inhibitors. In an effort to study RAS inhibitors in cells and identify new compounds that inhibit Ras signaling, western blotting and ELISA assays are commonly used. These traditional immunoassays are tedious, require multiple washing steps, and are not easily adaptable to a high throughput screening (HTS) format. To overcome these limitations, we applied Lumit immunoassay technology to analyze RAS signaling pathway activation and inhibition through the detection of phosphorylated ERK. The assay we developed was used to rank order potencies of allele specific inhibitors within cell lines harboring various activating KRAS mutations. An inhibition profile was obtained indicating various potencies and selectivity of the inhibitors, including MRTX-1133, which was shown to be highly potent against KRAS G12D signaling. MRTX-1133 had approximately 40 and 400 times less inhibitory potency against G12C and G12V mutant KRAS, respectively, while no inhibition of WT KRAS was observed. The potency of PROTAC compound LC-2 targeting selective degradation of KRAS G12C was also tested using the Lumit pERK immunoassay, and a maximal decrease in RAS signaling was achieved. Lumit immunoassays provide a rapid, homogeneous platform for detecting signaling pathway activation and inhibition. Our results demonstrate that this bioluminescent technology can streamline the analysis of signaling pathways of interest, such as RAS-dependent pathways, and be used to identify much needed inhibitors. The results further imply that similar assay designs could be applied to other signaling pathway nodes.


Assuntos
Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular , Inibidores de Checkpoint Imunológico , Imunoensaio , Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Antineoplásicos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/enzimologia , Neoplasias/genética , Oncogenes , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Piridinas/farmacologia , Piridinas/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico
18.
Adv Cancer Res ; 153: 131-168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35101229

RESUMO

Mutations in the three RAS oncogenes are present in approximately 30% of all human cancers that drive tumor growth and metastasis by aberrant activation of RAS-mediated signaling. Despite the well-established role of RAS in tumorigenesis, past efforts to develop small molecule inhibitors have failed for various reasons leading many to consider RAS as "undruggable." Advances over the past decade with KRAS(G12C) mutation-specific inhibitors have culminated in the first FDA-approved RAS drug, sotorasib. However, the patient population that stands to benefit from KRAS(G12C) inhibitors is inherently limited to those patients harboring KRAS(G12C) mutations. Additionally, both intrinsic and acquired mechanisms of resistance have been reported that indicate allele-specificity may afford disadvantages. For example, the compensatory activation of uninhibited wild-type (WT) NRAS and HRAS isozymes can rescue cancer cells harboring KRAS(G12C) mutations from allele-specific inhibition or the occurrence of other mutations in KRAS. It is therefore prudent to consider alternative drug discovery strategies that may overcome these potential limitations. One such approach is pan-RAS inhibition, whereby all RAS isozymes co-expressed in the tumor cell population are targeted by a single inhibitor to block constitutively activated RAS regardless of the underlying mutation. This chapter provides a review of past and ongoing strategies to develop pan-RAS inhibitors in detail and seeks to outline the trajectory of this promising strategy of RAS inhibition.


Assuntos
Antineoplásicos , Neoplasias , Proteínas ras , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Isoenzimas , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Proteínas ras/antagonistas & inibidores , Proteínas ras/metabolismo
19.
Adv Cancer Res ; 153: 205-236, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35101231

RESUMO

The non-receptor protein tyrosine phosphatase SHP2 (encoded by PTPN11) is a critical component of RAS/MAPK signaling by acting upstream of RAS to promote oncogenic signaling and tumor growth. Over three decades, SHP2 was considered "undruggable" because enzymatic active-site inhibitors generally showed off-target inhibition of other proteins and low membrane permeability. More recently, allosteric SHP2 inhibitors with striking inhibitory potency have been developed. These small molecules effectively block the signal transduction between receptor tyrosine kinases (RTKs) and RAS/MAPK signaling and show efficacy in preclinical cancer models. Moreover, clinical evaluation of these allosteric SHP2 inhibitors is ongoing. RAS proteins which harbor transforming properties by gain-of-function mutations are present in various cancer types. While inhibitors of KRASG12C show early clinical promise, resistance remains a challenge and other forms of oncogenic RAS remain to be selectively inhibited. Here, we summarize the role of SHP2 in RAS-driven cancers and the therapeutic potential of allosteric SHP2 inhibitors as a strategy to block RAS-driven cancers.


Assuntos
Inibidores Enzimáticos , Neoplasias , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteínas ras , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo
20.
EBioMedicine ; 77: 103872, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35158113

RESUMO

BACKGROUND: Sensitivity has been a key issue for Enhancer of zeste homolog 2 (EZH2) inhibitors in cancer therapy. The EZH2 inhibitor EPZ-6438 was first approved by the US Food and Drug Administration (FDA) in 2020. However, its inadequate anti-cancer activity in solid tumors limits its clinical application. In this study, we utilized the multiple cancer cell lines, which are less sensitive to the EZH2 inhibitor GSK126, combining animal model and clinical data to investigate the underlying mechanism. METHODS: IncuCyte S3 was used to explore the difference in the responsiveness of hematological tumor cells and solid tumor cells to GSK126. Transcriptome and metabolome of B16F10 cells after GSK126 treatment were analyzed and the distinct changes in the metabolic profile were revealed. Real-time quantitative PCR and western blot experiments were used to further verify the multi-omics data. ChIP-qPCR was performed to detected H3K27me3 enrichment of target genes. Finally, the anti-tumor effects of combining GSK126 and lipid metabolism drugs were observed with IncuCyte S3 platform, CCK-8 and animal model respectively. FINDINGS: We found that although the proliferative phenotype did not show strong difference upon treatment with GSK126, the transcriptome and metabolome changed profoundly. GSK126 treatment led to broad shifts in glucose, amino acid, and lipid metabolism. Lipid synthesis was strengthened manifested by the increasing abundance of unsaturated fatty acids. SCD1 and ELOVL2 were regulated by H3K27me3 at gene regulatory region, and upregulated by EZH2 knockdown and inhibitors. SCD1 knockdown increased cellular sensitivity to GSK126. Based on the findings above, the application of the combination with SCD1 inhibitor significantly attenuated the proliferation of cancer and increased the sensitivity to GSK126 by suppressing desaturation of fatty acids. INTERPRETATION: Dysregulated lipid metabolism can blunt the sensitivity of cancer cells to GSK126. These characteristics shed light on the novel combination therapy strategies to combat tumor resistance. FUNDING: National Natural Science Foundation of China (No. 81672091, No.91749107 and No. 81972966).


Assuntos
Benzamidas , Compostos de Bifenilo , Proteína Potenciadora do Homólogo 2 de Zeste , Inibidores Enzimáticos , Metabolismo dos Lipídeos , Morfolinas , Neoplasias , Piridonas , Animais , Benzamidas/farmacologia , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Lipogênese , Morfolinas/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Piridonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...