Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.550
Filtrar
1.
Life Sci ; 258: 118195, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32781073

RESUMO

AIMS: The estrogen-ERα axis participates in osteoblast maturation. This study was designed to further evaluated the roles of the estrogen-ERα axis in bone healing and the possible mechanisms. MAIN METHODS: Female ICR mice were created a metaphyseal bone defect in the left femurs and administered with methylpiperidinopyrazole (MPP), an inhibitor of ERα. Bone healing was evaluated using micro-computed tomography. Colocalization of ERα with alkaline phosphatase (ALP) and ERα translocation to mitochondria were determined. Levels of ERα, ERß, PECAM-1, VEGF, and ß-actin were immunodetected. Expression of chromosomal Runx2, ALP, and osteocalcin mRNAs and mitochondrial cytochrome c oxidase (COX) I and COXII mRNAs were quantified. Angiogenesis was measured with immunohistochemistry. KEY FINDINGS: Following surgery, the bone mass was time-dependently augmented in the bone-defect area. Simultaneously, levels of ERα were specifically upregulated and positively correlated with bone healing. Administration of MPP to mice consistently decreased levels of ERα and bone healing. As to the mechanisms, osteogenesis was enhanced in bone healing, but MPP attenuated osteoblast maturation. In parallel, expressions of osteogenesis-related ALP, Runx2, and osteocalcin mRNAs were induced in the injured zone. Treatment with MPP led to significant inhibition of the alp, runx2, and osteocalcin gene expressions. Remarkably, administration of MPP lessened translocation of ERα to mitochondria and expressions of mitochondrial energy production-related coxI and coxII genes. Furthermore, exposure to MPP decreased levels of PECAM-1 and VEGF in the bone-defect area. SIGNIFICANCE: The present study showed the contributions of the estrogen-ERα axis to bone healing through stimulation of energy production, osteoblast maturation, and angiogenesis.


Assuntos
Regeneração Óssea , Diferenciação Celular , Metabolismo Energético , Receptor alfa de Estrogênio/metabolismo , Neovascularização Fisiológica , Osteoblastos/citologia , Transdução de Sinais , Fosfatase Alcalina/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Calo Ósseo/efeitos dos fármacos , Calo Ósseo/patologia , Diferenciação Celular/efeitos dos fármacos , Cromossomos de Mamíferos/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos ICR , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteogênese/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Regulação para Cima/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
2.
Int J Nanomedicine ; 15: 4171-4189, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606671

RESUMO

Background: Angiogenic and osteogenic activities are two major problems with biomedical titanium (Ti) and other orthopedic implants used to repair large bone defects. Purpose: The aim of this study is to prepare hydroxyapatite (HA) coatings on the surface of Ti by using electrochemical deposition (ED), and to evaluate the effects of nanotopography and silicon (Si) doping on the angiogenic and osteogenic activities of the coating in vitro. Materials and Methods: HA coating and Si-doped HA (HS) coatings with varying nanotopographies were fabricated using two ED modes, ie, the pulsive current (PC) and cyclic voltammetry (CV) methods. The coatings were characterized through scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectrometer (XPS), and atomic force microscopy (AFM), and their in vitro bioactivity and protein adsorption were assessed. Using MC3T3-E1 pre-osteoblasts and HUVECs as cell models, the osteogenic and angiogenic capabilities of the coatings were evaluated through in vitro cellular experiments. Results: By controlling Si content in ~0.8 wt.%, the coatings resulting from the PC mode (HA-PC and HS-PC) and CV mode (HA-CV and HS-CV) had nanosheet and nanorod topographies, respectively. At lower crystallinity, higher ionic dissolution, smaller contact angle, higher surface roughness, and more negative zeta potential, the HS and PC samples exhibited quicker apatite deposition and higher BSA adsorption capacity. The in vitro cell study showed that Si doping was more favorable for enhancing the viability of the MC3T3-E1 cells, but nanosheet coating increased the area for cell spreading. Of the four coatings, HS-PC with Si doping and nanosheet topography exhibited the best effect in terms of up-regulating the expressions of the osteogenic genes (ALP, Col-I, OSX, OPN and OCN) in the MC3T3-E1 cells. Moreover, all leach liquors of the surface-coated Ti disks promoted the growth of the HUVECs, and the HS samples played a more significant role in promoting cell migration and tube formation than the HA samples. Of the four leach liquors, only the two HS samples up-regulated NO content and expressions of the angiogenesis-related genes (VEGF, bFGF and eNOS) in the HUVECs, and the HS-PC yielded a better effect. Conclusion: The results show that Si doping while regulating the topography of the coating can help enhance the bone regeneration and vascularization of HA-coated Ti implants.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Durapatita/farmacologia , Nanopartículas/química , Osteogênese , Próteses e Implantes , Silício/química , Titânio/farmacologia , Adsorção , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Camundongos , Nanopartículas/ultraestrutura , Nanotubos/química , Neovascularização Fisiológica/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Soroalbumina Bovina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Difração de Raios X
3.
Int J Nanomedicine ; 15: 4441-4452, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606688

RESUMO

Purpose: The present study focuses on threshold levels for cytotoxicity after long-term and repetitive exposure for HUVEC as a model for the specific microvascular endothelial system. Furthermore, possible genotoxic effects and functional impairment caused by ZnO NPs in HUVEC are elucidated. Methods: Thresholds for cytotoxic effects are determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Annexin V assay. To demonstrate DNA damage, single-cell microgel electrophoresis (comet) assay is performed after exposure to sub-cytotoxic concentrations of ZnO NPs. The proliferation assay, dot blot assay and capillary tube formation assay are also carried out to analyze functional impairment. Results: NPs showed to be spherical in shape with an average size of 45-55 nm. Long-term exposure as well as repetitive exposure with ZnO NPs exceeding 25 µg/mL lead to decreased viability in HUVEC. In addition, DNA damage was indicated by the comet assay after long-term and repetitive exposure. Twenty-four hours after long-term exposure, the proliferation assay does not show any difference between negative control and exposed cells. Forty-eight hours after exposure, HUVEC show an inverse concentration-related ability to proliferate. The dot blot assay provides evidence that ZnO NPs lead to a decreased release of VEGF, while capillary tube formation assay shows restriction in the ability of HUVEC to build tubes and meshes as a first step in angiogenesis. Conclusion: Sub-cytotoxic concentrations of ZnO NPs lead to DNA damage and functional impairment in HUVEC. Based on these data, ZnO NPs may affect neo-angiogenesis. Further investigation based on tissue cultures is required to elucidate the impact of ZnO NPs on human cell systems.


Assuntos
Dano ao DNA , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Óxido de Zinco/toxicidade , Anexina A5/metabolismo , Apoptose/efeitos dos fármacos , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neovascularização Fisiológica/efeitos dos fármacos
4.
Anticancer Res ; 40(6): 3191-3201, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32487613

RESUMO

BACKGROUND/AIM: Although it has been accepted that the tandem repeat galectin-8 (Gal-8) is linked to angiogenesis, the underlying mechanisms in endothelial cells has remained poorly understood. In this study we aimed to investigate the effect of Gal-8 on selected biological processes linked to angiogenesis in in vitro and in vivo models. MATERIALS AND METHODS: In detail, we assessed how exogenously added human recombinant Gal-8 (with or without vascular endothelial growth factor - VEGF) affects selected steps involved in vessel formation in human umbilical vein endothelial cells (HUVECs) as well as using the chick chorioallantoic membrane (CAM) assay. Gene expression profiling of HUVECs was performed to extend the scope of our investigation. RESULTS: Our findings demonstrate that Gal-8 in combination with VEGF enhanced cell proliferation and migration, two cellular events linked to angiogenesis. However, Gal-8 alone did not exhibit any significant effects on cell proliferation or on cell migration. The molecular analysis revealed that Gal-8 in the presence of VEGF influenced cytokine-cytokine receptor interactions, HIF-1 and PI3K/AKT signaling pathways. Gal-8 alone also targeted cytokine-cytokine receptor interactions, but with a different expression profile as well as a modulated focal adhesion and TNF signaling. CONCLUSION: Gal-8 promotes a pro-angiogenic phenotype possibly in a synergistic manner with VEGF.


Assuntos
Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/efeitos dos fármacos , Galectinas/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Embrião de Galinha , Membrana Corioalantoide/metabolismo , Galectinas/metabolismo , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Técnicas In Vitro , Neovascularização Fisiológica/efeitos dos fármacos
5.
Int J Nanomedicine ; 15: 3511-3522, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547010

RESUMO

Introduction: Diabetic wounds are challenging to treat due to a wide range of pathophysiological changes. Hypoxia is one of the predominant contributing factors of poor vascularization and chronicity in diabetic wounds. This study was designed to develop polycaprolactone (PCL)-based oxygen-releasing electrospun wound dressings and evaluate their efficacy for improved full thickness wound healing in diabetic rats. Methods: PCL-based oxygen releasing wound dressings were made using electrospinning technology. The developed dressings were characterized in terms of physical as well as biological properties both in vitro and in vivo. E-spun nanofibrous dressings were physically characterized with scanning electron microscopy, Fourier-transform infrared spectroscopy, and Energy-dispersive X-ray spectroscopy. To study the likely impact of the fabricated wound dressings in hypoxic conditions, HIF-1α expression analysis was carried out both at gene and protein levels. Wound dressings were further evaluated for their healing potential for extensive wounds in diabetic rat models. Results: The experimental results showed that the developed dressings were capable of continuously generating oxygen for up to 10 days. Cell studies further confirmed pronounced expression of HIF-1α at gene and protein levels in cells seeded on PCL-sodium percarbonate (SPC) and PCL scaffolds compared with the cells cultured on a tissue culture plate. Chorioallantoic membrane assay revealed the supportive role of oxygen releasing dressings on angiogenesis compared to the control group. Histological assessment of the regenerated skin tissues proved that full thickness wounds covered with SPC loaded PCL dressings had a comparatively better vascularized and compact extracellular matrix with completely covered thick epithelium. Discussion: The developed oxygen generating polymeric nanofibrous wound dressings could potentially be used as an envisioned approach for the efficient recovery of chronic diabetic wounds.


Assuntos
Diabetes Mellitus/patologia , Nanofibras/química , Neovascularização Fisiológica/efeitos dos fármacos , Oxigênio/química , Poliésteres/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Bandagens , Bioensaio , Membrana Corioalantoide/efeitos dos fármacos , Membrana Corioalantoide/metabolismo , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Nanofibras/ultraestrutura , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Pele/patologia , Espectroscopia de Infravermelho com Transformada de Fourier
6.
PLoS One ; 15(6): e0235362, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32584895

RESUMO

OBJECTIVE: Cardiovascular disease is a leading cause of death worldwide. Obesity-related metabolic disorders including dyslipidemia cause impaired collateralization under ischemic conditions, thereby resulting in exacerbated cardiovascular dysfunction. Pemafibrate is a novel selective PPARα modulator, which has been reported to improve atherogenic dyslipidemia, in particular, hypertriglyceridemia and low HDL-cholesterol. Here, we investigated whether pemafibrate modulates the revascularization process in a mouse model of hindlimb ischemia. METHODS AND RESULTS: Male wild-type (WT) mice were randomly assigned to two groups, normal diet or pemafibrate admixture diet from the ages of 6 weeks. After 4 weeks, mice were subjected to unilateral hindlimb surgery to remove the left femoral artery and vein. Pemafibrate treatment enhanced blood flow recovery and capillary formation in ischemic limbs of mice, which was accompanied by enhanced phosphorylation of endothelial nitric oxide synthase (eNOS). Treatment of cultured endothelial cells with pemafibrate resulted in increased network formation and migratory activity, which were blocked by pretreatment with the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME). Pemafibrate treatment also increased plasma levels of the PPARα-regulated gene, fibroblast growth factor (FGF) 21 in WT mice. Systemic administration of adenoviral vectors expressing FGF21 (Ad-FGF21) to WT mice enhanced blood flow recovery, capillary density and eNOS phosphorylation in ischemic limbs. Treatment of cultured endothelial cells with FGF21 protein led to increases in endothelial cell network formation and migration, which were canceled by pretreatment with L-NAME. Furthermore, administration of pemafibrate or Ad-FGF21 had no effects on blood flow in ischemic limbs in eNOS-deficient mice. CONCLUSION: These data suggest that pemafibrate can promote revascularization in response to ischemia, at least in part, through direct and FGF21-mediated modulation of endothelial cell function. Thus, pemafibrate could be a potentially beneficial drug for ischemic vascular disease.


Assuntos
Benzoxazóis/farmacologia , Butiratos/farmacologia , Isquemia/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Membro Posterior/irrigação sanguínea , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Knockout , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , PPAR alfa/química , PPAR alfa/metabolismo , Fosforilação/efeitos dos fármacos
7.
J Vasc Res ; 57(4): 185-194, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32526735

RESUMO

Information on the function of transient receptor potential vanilloid 1 (TRPV1) in arteriogenesis is limited. We aimed to verify whether TRPV1 is involved in collateral vessel growth in rat hind limbs and elucidate the possible subcellular action mechanisms. Adult Sprague Dawley rats were chosen to establish the hind limb ischemic model and treatment with capsaicin. Angiographies were performed, and tissue was isolated for immunohistochemistry. In vitro, rat aortic endothelial cells (RAECs) were treated with capsaicin and antagonist capsazepine. The RAEC proliferation was determined, and the protein and mRNA levels of Ca2+-dependent transcription factors were assessed. In vivo, the collateral vessels exhibited positive outward remodeling characterized by enhanced inflammatory cell/macrophage accumulation in the adventitia and activated cell proliferation in all layers of the vascular wall and elevated endothelial NO synthetase expression in the rats with hind limb ligation. In RAECs, TRPV1 activation-induced Ca2+-dependent transcriptional factors, nuclear factor of activated T cells 1, calsenilin and myocyte enhancer factor 2C increase, and augmented RAEC proliferation could be a subcellular mechanism for TRPV1 in endothelial cells and ultimately contribute to collateral vessel growth. TRPV1, a novel candidate, positively regulates arteriogenesis, meriting further studies to unravel the potential therapeutic target leading to improved collateral vessel growth for treating ischemic diseases.


Assuntos
Indutores da Angiogênese/farmacologia , Artérias/efeitos dos fármacos , Capsaicina/farmacologia , Circulação Colateral/efeitos dos fármacos , Isquemia/tratamento farmacológico , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica/efeitos dos fármacos , Canais de Cátion TRPV/agonistas , Animais , Artérias/metabolismo , Artérias/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Membro Posterior , Isquemia/metabolismo , Isquemia/fisiopatologia , Proteínas Interatuantes com Canais de Kv/metabolismo , Fatores de Transcrição MEF2/metabolismo , Fatores de Transcrição NFATC/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional , Transdução de Sinais , Canais de Cátion TRPV/metabolismo
8.
Arterioscler Thromb Vasc Biol ; 40(7): 1627-1634, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32434408

RESUMO

Peripheral artery disease is a common disorder and a major cause of morbidity and mortality worldwide. Therapy is directed at reducing the risk of major adverse cardiovascular events and at ameliorating symptoms. Medical therapy is effective at reducing the incidence of myocardial infarction and stroke to which these patients are prone but is inadequate in relieving limb-related symptoms, such as intermittent claudication, rest pain, and ischemic ulceration. Limb-related morbidity is best addressed with surgical and endovascular interventions that restore perfusion. Current medical therapies have only modest effects on limb blood flow. Accordingly, there is an opportunity to develop medical approaches to restore limb perfusion. Vascular regeneration to enhance limb blood flow includes methods to enhance angiogenesis, arteriogenesis, and vasculogenesis using angiogenic cytokines and cell therapies. We review the molecular mechanisms of these processes; briefly discuss what we have learned from the clinical trials of angiogenic and cell therapies; and conclude with an overview of a potential new approach based upon transdifferentiation to enhance vascular regeneration in peripheral artery disease.


Assuntos
Indutores da Angiogênese/uso terapêutico , Artérias/efeitos dos fármacos , Citocinas/uso terapêutico , Neovascularização Fisiológica/efeitos dos fármacos , Doença Arterial Periférica/terapia , Regeneração/efeitos dos fármacos , Transplante de Células-Tronco , Animais , Artérias/metabolismo , Artérias/patologia , Artérias/fisiopatologia , Humanos , Doença Arterial Periférica/metabolismo , Doença Arterial Periférica/patologia , Doença Arterial Periférica/fisiopatologia , Recuperação de Função Fisiológica , Fluxo Sanguíneo Regional , Resultado do Tratamento
9.
Diab Vasc Dis Res ; 17(3): 1479164120907971, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32223319

RESUMO

OBJECTIVE: Diabetes mellitus is a significant risk factor for peripheral artery disease. Diabetes mellitus induces chronic states of oxidative stress and vascular inflammation that increase neutrophil activation and release of myeloperoxidase. The goal of this study is to determine whether inhibiting myeloperoxidase reduces oxidative stress and neutrophil infiltration, increases vascularization, and improves blood flow in a diabetic murine model of hindlimb ischaemia. METHODS: Leptin receptor-deficient (db/db) mice were subjected to hindlimb ischaemia. Ischaemic mice were treated with N-acetyl-lysyltyrosylcysteine-amide (KYC) to inhibit myeloperoxidase. After ligating the femoral artery, effects of treatments were determined with respect to hindlimb blood flow, neutrophil infiltration, oxidative damage, and the capability of hindlimb extracellular matrix to support human endothelial cell proliferation and migration. RESULTS: KYC treatment improved hindlimb blood flow at 7 and 14 days in db/db mice; decreased the formation of advanced glycation end products, 4-hydroxynonenal, and 3-chlorotyrosine; reduced neutrophil infiltration into the hindlimbs; and improved the ability of hindlimb extracellular matrix from db/db mice to support endothelial cell proliferation and migration. CONCLUSION: These results demonstrate that inhibiting myeloperoxidase reduces oxidative stress in ischaemic hindlimbs of db/db mice, which improves blood flow and reduces neutrophil infiltration such that hindlimb extracellular matrix from db/db mice supports endothelial cell proliferation and migration.


Assuntos
Indutores da Angiogênese/farmacologia , Diabetes Mellitus/metabolismo , Inibidores Enzimáticos/farmacologia , Isquemia/tratamento farmacológico , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Oligopeptídeos/farmacologia , Peroxidase/antagonistas & inibidores , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus/genética , Diabetes Mellitus/fisiopatologia , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Membro Posterior , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Isquemia/enzimologia , Isquemia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Receptores para Leptina/deficiência , Receptores para Leptina/genética , Fluxo Sanguíneo Regional , Transdução de Sinais
10.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1165-L1171, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32292070

RESUMO

Bronchopulmonary dysplasia (BPD), a long-term respiratory morbidity of prematurity, is characterized by attenuated alveolar and vascular development. Supplemental oxygen and immature antioxidant defenses contribute to BPD development. Our group identified thioredoxin reductase-1 (TXNRD1) as a therapeutic target to prevent BPD. The present studies evaluated the impact of the TXNRD1 inhibitor aurothioglucose (ATG) on pulmonary responses and gene expression in newborn C57BL/6 pups treated with saline or ATG (25 mg/kg ip) within 12 h of birth and exposed to room air (21% O2) or hyperoxia (>95% O2) for 72 h. Purified RNA from lung tissues was sequenced, and differential expression was evaluated. Hyperoxic exposure altered ~2,000 genes, including pathways involved in glutathione metabolism, intrinsic apoptosis signaling, and cell cycle regulation. The isolated effect of ATG treatment was limited primarily to genes that regulate angiogenesis and vascularization. In separate studies, pups were treated as described above and returned to room air until 14 days. Vascular density analyses were performed, and ANOVA indicated an independent effect of hyperoxia on vascular density and alveolar architecture at 14 days. Consistent with RNA-seq analyses, ATG significantly increased vascular density in room air, but not in hyperoxia-exposed pups. These findings provide insights into the mechanisms by which TXNRD1 inhibitors may enhance lung development.


Assuntos
Ar , Aurotioglucose/farmacologia , Hiperóxia/patologia , Pulmão/irrigação sanguínea , Pulmão/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Doença Aguda , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Apoptose/genética , DNA/biossíntese , Glutationa/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/embriologia , Camundongos Endogâmicos C57BL , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/embriologia , Alvéolos Pulmonares/patologia , Transdução de Sinais/efeitos dos fármacos , Transcrição Genética/efeitos dos fármacos , Transcriptoma/genética , Regulação para Cima/efeitos dos fármacos
11.
Nat Commun ; 11(1): 1204, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139674

RESUMO

Anti-angiogenic therapies have generated significant interest for their potential to combat tumor growth. However, tumor overproduction of pro-angiogenic ligands can overcome these therapies, hampering success of this approach. To circumvent this problem, we target the resynthesis of phosphoinositides consumed during intracellular transduction of pro-angiogenic signals in endothelial cells (EC), thus harnessing the tumor's own production of excess stimulatory ligands to deplete adjacent ECs of the capacity to respond to these signals. Using zebrafish and human endothelial cells in vitro, we show ECs deficient in CDP-diacylglycerol synthase 2 are uniquely sensitive to increased vascular endothelial growth factor (VEGF) stimulation due to a reduced capacity to re-synthesize phosphoinositides, including phosphatidylinositol-(4,5)-bisphosphate (PIP2), resulting in VEGF-exacerbated defects in angiogenesis and angiogenic signaling. Using murine tumor allograft models, we show that systemic or EC specific suppression of phosphoinositide recycling results in reduced tumor growth and tumor angiogenesis. Our results suggest inhibition of phosphoinositide recycling provides a useful anti-angiogenic approach.


Assuntos
Inibidores da Angiogênese/farmacologia , Endotélio Vascular/metabolismo , Fosfatidilinositóis/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Aloenxertos/efeitos dos fármacos , Animais , Bovinos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diacilglicerol Colinofosfotransferase/deficiência , Diacilglicerol Colinofosfotransferase/metabolismo , Endotélio Vascular/efeitos dos fármacos , Deleção de Genes , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Knockout , Modelos Biológicos , Neovascularização Fisiológica/efeitos dos fármacos , Especificidade de Órgãos , Transdução de Sinais , Peixe-Zebra
12.
Ann N Y Acad Sci ; 1470(1): 31-43, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32166759

RESUMO

Loss of vascular elasticity results from progressive degeneration of the extracellular matrix of elastic arteries under the effect of aging and certain diseases, including atherosclerosis. To investigate the influence of vessel wall stiffening on endothelial cell (EC) function, we seeded human umbilical vein ECs onto variably compliant polydimethylsiloxane substrates. When plated on the more compliant substrate, ECs assembled into capillary-like structures. By contrast, they failed to form a network on stiff substrates, even in the presence of vascular endothelial growth factor (VEGF). Cell proliferation and migration increased with stiffness, while ECs released more nitric oxide (NO) on the soft substrate. Treatment with VEGF increased migration and NO release in a stiffness-dependent manner. Atomic force microscopy measurement of cell elasticity along with actin fiber analysis revealed that ECs plated on the more compliant surface were mechanically softer, with mostly diffuse actin arrangement. Our results demonstrate that matrix stiffening induces actin reorganizations, reflected by cortical stiffening in ECs, which may lead to a decrease in their angiogenic capacity and NO release. Hence, the mechanical properties of ECs display a prognostic and therapeutic potential and might serve as a reliable biomarker of vascular function.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica/fisiologia , Óxido Nítrico/metabolismo , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia
13.
Endocrinology ; 161(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32141513

RESUMO

Follicle-stimulating hormone (FSH)-induced growth of ovarian follicles is independent of follicular vascularization. Recent evidence has indicated that follicular vascularization is critical to ovarian follicle development and survival. FSH, a gonadotropin that induces follicular growth and development, also acts as the major survival factor for antral follicles. FSH has been reported to stimulate angiogenesis in the theca layers mediated in part by the vascular endothelial growth factor A (VEGFA) and the transcription factor hypoxia inducible factor 1α (HIF-1α). However, it remains largely undetermined whether FSH-dependent growth and survival of antral follicles relies on FSH-induced vascularization. Here, we first demonstrated that induction of angiogenesis through the FSH-HIF-1α-VEGFA axis is not required for FSH-stimulated follicular growth in mouse ovary. FSH increased the total number of blood vessels in mouse ovarian follicles, which was correlated with elevated expression of VEGFA and HIF-1α in granulosa cells. In contrast, blocking of follicular angiogenesis using inhibitors against the HIF-1α-VEGFA pathway repressed vasculature formation in follicles despite FSH administration. Interestingly, by measuring follicular size and ovarian weight, we found that the suppression of angiogenesis via HIF-1α-VEGFA pathway did not influence FSH-mediated follicular growth. However, inhibition of FSH-induced follicular vascularization by PX-478, a small-molecule inhibitor that suppresses HIF-1α activity, blocked ovulation and triggered atresia in large follicles. On the other hand, PX-478 injection reduced oocyte quality via impairing the meiotic apparatus, showing a prominently defective spindle assembly and actin dynamics. Collectively, our findings unveiled a vascularization-independent effect of FSH on follicular growth, whereas follicular survival, ovulation, and oocyte development relies on FSH-mediated angiogenesis in the follicles.


Assuntos
Hormônio Foliculoestimulante/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oócitos/crescimento & desenvolvimento , Folículo Ovariano/crescimento & desenvolvimento , Ovulação/metabolismo , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Feminino , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Ovulação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
14.
Acta Diabetol ; 57(8): 1009-1018, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32221724

RESUMO

AIMS: The minimal-invasive transplantation of pancreatic islets is a promising approach to treat diabetes mellitus type 1. However, islet transplantation is still hampered by the insufficient process of graft revascularization, leading to a poor clinical outcome. Accordingly, the identification of novel compounds, which accelerate and improve the revascularization of transplanted islets, is of great clinical interest. Previous studies have shown that darbepoetin (DPO)-α, a long lasting analogue of erythropoietin, is capable of promoting angiogenesis. Hence, we investigated in this study whether DPO improves the revascularization of transplanted islets. METHODS: Islets were isolated from green fluorescent protein-positive FVB/N donor mice and transplanted into dorsal skinfold chambers of FVB/N wild-type animals, which were treated with DPO low dose (2.5 µg/kg), DPO high dose (10 µg/kg) or vehicle (control). The revascularization was assessed by repetitive intravital fluorescence microscopy over an observation period of 14 days. Subsequently, the cellular composition of the grafts was analyzed by immunohistochemistry. RESULTS: The present study shows that neither low- nor high-dose DPO treatment accelerates the revascularization of free pancreatic islet grafts. However, high-dose DPO treatment increased the blood volume flow of the transplanted islet. CONCLUSIONS: These findings demonstrated that DPO treatment does not affect the revascularization of transplanted islets. However, the glycoprotein increases the blood volume flow of the grafts, which results in an improved microvascular function and may facilitate successful transplantation.


Assuntos
Darbepoetina alfa/farmacologia , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/irrigação sanguínea , Fluxo Sanguíneo Regional/efeitos dos fármacos , Transplantes/irrigação sanguínea , Animais , Ilhotas Pancreáticas/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Neovascularização Fisiológica/efeitos dos fármacos , Transplantes/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
15.
Artigo em Inglês | MEDLINE | ID: mdl-32186933

RESUMO

Diabetes (especially Type II) is one of the primary threats to cardiovascular health. Wound healing defects and vascular dysfunction are common in diabetic patients, and the primary cause of deterioration is sustained high plasma glucose. microRNA, a noncoding RNA, has regulatory functions that are critical to maintaining homeostasis. MicroRNA (miR)-126-3p is a potential diabetes biomarker and a proangiogenic factor, and its plasma level decreases in diabetic patients. Previous studies have revealed the proangiogenic character of the gasotransmitter hydrogen sulfide (H2S). However, little is known about the relationship between H2S and miR-126-3p when the extracellular glucose level is high, let alone their influences on deteriorated endothelial cell migration, a key component of angiogenesis, which is crucial for wound healing. Human umbilical vein endothelial cells (HUVECs) were treated with high glucose (33.3 mmol/L) or normal glucose (5.5 mmol/L) for 48 h. Affymetrix miRNA profiling and real-time PCR were used to validate the miRNA expression. An H2S probe (HSip-1) was used to detect endogenous H2S. Scratch wound-healing assays were used to evaluate HUVEC migration. The protein levels were quantified by Western blot. Both exogenous and endogenous H2S could upregulate the miR-126-3p levels in HUVECs or muscle tissue. High glucose decreased the H2S level and the protein expression of the H2S-producing enzyme cystathionine γ-lyase (CSE) in HUVECs; however, the DNA methyltransferase 1 (DNMT1) protein level was upregulated. CSE overexpression not only increased the miR-126-3p level by decreasing the DNMT1 protein level but also rescued the deteriorated cell migration in HUVECs treated with high glucose. DNMT1 overexpression decreased the miR-126-3p level and inhibited the migration of HUVECs, whereas silencing DNMT1 improved cell migration. High glucose decreased the endogenous H2S and miR-126-3p levels and increased the DNMT1 expression, thus inducing the migration dysfunction of HUVECs. Treatment with exogenous H2S or the overexpression of the endogenously produced enzyme CSE would rescue this migration dysfunction through H2S-DNMT1-miR-126-3p.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Sulfeto de Hidrogênio/farmacologia , MicroRNAs/genética , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/crescimento & desenvolvimento , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Movimento Celular/efeitos dos fármacos , Cistationina gama-Liase/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glucose/toxicidade , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Sulfeto de Hidrogênio/metabolismo , Camundongos , Neovascularização Fisiológica/genética , Transdução de Sinais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
16.
Microvasc Res ; 130: 104001, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32198058

RESUMO

Endothelial dysfunction is prominent in atherosclerosis, hypertension, diabetes, peripheral and cardiovascular diseases, and stroke. Novel therapeutic approaches to these conditions often involve development of tissue-engineered veins with ex vivo expanded endothelial cells. However, high cell number requirements limit these approaches to become applicable to clinical applications and highlight the requirement of technologies that accelerate expansion of vascular-forming cells. We have previously shown that novel small molecules could induce hematopoietic stem cell expansion ex vivo. We hypothesized that various small molecules targeting hematopoietic stem cell quiescence and mobilization could be used to induce endothelial cell expansion and angiogenesis due to common origin and shared characteristics of endothelial and hematopoietic cells. Here, we have screened thirty-five small molecules and found that CASIN and AMD3100 increase endothelial cell expansion up to two-fold and induce tube formation and ex vivo sprouting. In addition, we have studied how CASIN and AMD3100 affect cell migration, apoptosis and cell cycle of endothelial cells. CASIN and AMD3100 upregulate key endothelial marker genes and downregulate a number of cyclin dependent kinase inhibitors. These findings suggest that CASIN and AMD3100 could be further tested in the development of artificial vascular systems and vascular gene editing technologies. Furthermore, these findings may have potential to contribute to the development of alternative treatment methods for diseases that cause endothelial damage.


Assuntos
Indutores da Angiogênese/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Membrana Corioalantoide/irrigação sanguínea , Compostos Heterocíclicos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/metabolismo , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Int J Nanomedicine ; 15: 587-599, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32095072

RESUMO

Introduction: As heterologous islets or islet-like stem cells become optional sources for islet transplantation, the subcutaneous site appears to be an acceptable replacement of the intrahepatic site due to its graft retrievability. The device-less (DL) procedure improves the feasibility; however, some limitations such as fibrotic overgrowth or immunodeficiency still exist. Nanofibers could mimic the extracellular matrix to improve the vitality of transplanted islets. Therefore, we designed a vascular endothelial growth factor (VEGF)-modified polyvinyl alcohol (PVA)/silicone nanofiber (SiO2-VEGF) to optimize the DL procedure. Methods: SiO2-VEGF nanofibers were designed by nano-spinning and characterized the physical-chemical properties before subcutaneous islet transplantation. Cell viability, vessel formation, and glucose-stimulated insulin secretion were tested in vitro to ensure biocompatibility; and blood glucose level (BGL), transplanted islet function, and epithelial-mesenchymal transition (EMT)-related biomarker expression were analyzed in vivo. Results: The intensity of inflammatory reaction induced by SiO2 nanofibers was between nylon and silicone, which did not bring out excessive fibrosis. The vascularization could be enhanced by VEGF functionalization both in vitro and in vivo. The BGL control was better in the DL combined with SiO2-VEGF group. The percentage of recipients that achieved normoglycemia was higher and earlier (71% at day 57), and the intraperitoneal glucose tolerance test (IPGTT) also confirmed better islet function. The expressions of vimentin, α-SMA, and twist-1 were upregulated, which indicated that SiO2-VEGF nanofibers might promote islet function by regulating the EMT pathway. Discussion: In summary, our new SiO2-VEGF combined with DL procedure might improve the feasibility of subcutaneous islet transplantation for clinical application.


Assuntos
Diabetes Mellitus Experimental/terapia , Transplante das Ilhotas Pancreáticas/métodos , Nanofibras/química , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Glicemia/análise , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Células Endoteliais da Veia Umbilical Humana , Humanos , Injeções Subcutâneas , Insulina/metabolismo , Transplante das Ilhotas Pancreáticas/efeitos adversos , Transplante das Ilhotas Pancreáticas/instrumentação , Masculino , Camundongos Endogâmicos ICR , Neovascularização Fisiológica/efeitos dos fármacos , Álcool de Polivinil/química , Dióxido de Silício/química , Silicones/química , Fator A de Crescimento do Endotélio Vascular/química
18.
Cell Prolif ; 53(3): e12784, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32080957

RESUMO

OBJECTIVES: CD31hi EMCNhi vessels (CD31, also known as PECAM1 [platelet and endothelial cell adhesion molecule 1]; EMCN, endomucin), which are strongly positive for CD31 and endomucin, couple angiogenesis and osteogenesis. However, the role of CD31hi EMCNhi vessels in bone regeneration remains unknown. In the present study, we investigated the role of CD31hi EMCNhi vessels in the process of bone regeneration. MATERIALS AND METHODS: We used endothelial-specific Krüppel like factor 3 (Klf3) knockout mice and ophiopogonin D treatment to interfere with CD31hi EMCNhi vessel formation. We constructed a bone regeneration model by surgical ablation of the trabecular bone. Immunofluorescence and micro-computed tomography (CT) were used to detect CD31hi EMCNhi vessels and bone formation. RESULTS: CD31hi EMCNhi vessels participate in the process of bone regeneration, such that endothelial-specific Klf3 knockout mice showed increased CD31hi EMCNhi vessels and osteoprogenitors in the bone regeneration area, and further accelerated bone formation. We also demonstrated that the natural compound, ophiopogonin D, acts as a KLF3 inhibitor to promote vessels formation both in vitro and in vivo. Administration of ophiopogonin D increased the abundance of CD31hi Emcnhi vessels and accelerated bone healing. CONCLUSIONS: Our findings confirmed the important role of CD31hi Emcnhi vessels in bone regeneration and provided a new target to treat bone fracture or promote bone regeneration.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Saponinas/farmacologia , Sialoglicoproteínas/metabolismo , Espirostanos/farmacologia , Animais , Células Cultivadas , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteogênese/efeitos dos fármacos
19.
Int. j. morphol ; 38(1): 135-139, Feb. 2020. graf
Artigo em Espanhol | LILACS | ID: biblio-1056411

RESUMO

La angiogénesis es el proceso por el cual se forman nuevos vasos sanguíneos a partir de otros ya existentes. Para que esto se lleve a cabo de forma correcta debe existir un balance entre los factores proangiogénicos y los factores antiangiogénicos dentro del microambiente tisular. Por otra parte, la existencia de productos químicos naturales como los polifenoles, que son capaces de adquirirse en la dieta, inducen a estos factores a intervenir en el proceso de angiogénesis. Se administraron los polifenoles en filtros de metilcelulosa sobre la membrana alantocoriónica de huevos White Leghorn, manteniendo el posterior desarrollo normal del feto. Se utilizaron 15 fetos de pollo fijados en formalina tamponada, a los cuales se extrajo el corazón. El procesamiento de las muestras de corazón se realizó a través de técnicas histológicas, histoquímicas e inmunohistoquímica. Finalmente se evaluó la presencia del VEGF y la capacidad de formar vasos sanguíneos bajo el tratamiento con los polifenoles. La inmunorreactividad fue cuantificada mediante Image J®. Los resultados indican que Ácido cafeico y Pinocembrina disminuyen la densidad microvascular y la expresión de VEGF en corazones de fetos de pollo tratados con estos polifenoles. Tanto el Ácido Cafeico como la Pinocembrina cumplen un rol inhibitorio en el proceso de angiogénesis fisiológica en corazón de pollo, pudiendo modular las vías de señalización mediadas por los VEGFR o modulando la disponibilidad de VEGF. Estos polifenoles podrían utilizarse para el estudio de otros tejidos asociados a angiogénesis patológica.


Angiogenesis is the process by which new blood vessels are formed from other existing ones. A balance between proangiogenic factors and anti-angiogenic factors within the microenvironment must exist for the process to be carried out correctly. Similarly, the existence of natural chemicals such as polyphenols, which are capable of being acquired in the diet, induce these factors in the angiogenic process. Polyphenols were administered in the methylcellulose filters on the of chorioallantoic membrane of White Leghorn eggs, maintaining the normal posterior development of the fetus. 15 chicken fetuses were fixed in buffered formalin, obtaining the hearts to histological processing, performing histological, histochemical and immunohistochemical techniques. VEGF levels and the ability of the blood vessels growing under the stimulation of the polyphenols were evaluated. Immunoreactivity was quantified by Image J. The results indicate that caffeic acid and pinocembrin decreased microvascular density and VEGF expression in hearts stimulated with these polyphenols. Both the caffeic and pinocembrin acids play an inhibitory role in the physiological angiogenesis process in the chicken heart, which decrease the microvascular density and could act by modulating the signaling pathways mediated by the VEGFR or by modulating the availability of VEGF. The use of these polyphenols could be useful in studies of other tissues associated with pathological angiogenesis.


Assuntos
Animais , Ácidos Cafeicos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Embrião de Galinha , Polifenóis/farmacologia
20.
Am J Physiol Endocrinol Metab ; 318(4): E492-E503, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32017594

RESUMO

Sodium-glucose cotransporter 2 inhibitors (SGLT2is) have been reported to improve obesity, diabetes, and nonalcoholic fatty liver disease (NAFLD) in addition to exercise training, whereas the combined effects remain to be elucidated fully. We investigated the effect of the combination of the SGLT2i canagliflozin (CAN) and exercise training in high-fat diet-induced obese mice. High-fat diet-fed mice were housed in normal cages (sedentary; Sed) or wheel cages (WCR) with or without CAN (0.03% of diet) for 4 wk. The effects on obesity, glucose metabolism, and hepatic steatosis were evaluated in four groups (Control/Sed, Control/WCR, CAN/Sed, and CAN/WCR). Numerically additive improvements were found in body weight, body fat mass, blood glucose, glucose intolerance, insulin resistance, and the fatty liver of the CAN/WCR group, whereas CAN increased food intake and reduced running distance. Exercise training alone, CAN alone, or both did not change the weight of skeletal muscle, but microarray analysis showed that each resulted in a characteristic change of gene expression in gastrocnemius muscle. In particular, in the CAN/WCR group, there was acceleration of the angiogenesis pathway and suppression of the adipogenesis pathway compared with the CAN/Sed group. In conclusion, the combination of an SGLT2i and exercise training improves obesity, insulin resistance, and NAFLD in an additive manner. Changes of gene expression in skeletal muscle may contribute, at least in part, to the improvement of obesity and insulin sensitivity.


Assuntos
Canagliflozina/farmacologia , Dieta Hiperlipídica , Condicionamento Físico Animal/fisiologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/crescimento & desenvolvimento , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Intolerância à Glucose , Teste de Tolerância a Glucose , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Neovascularização Fisiológica/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/metabolismo , Obesidade/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA