Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.616
Filtrar
1.
Eur J Med Chem ; 182: 111609, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31445229

RESUMO

A series of new pyrazolo-benzothiazole hybrids (7-26) were synthesised and screened for their cytotoxic activity towards several cancer cell lines [colon (HT-29), prostate (PC-3), lung (A549), glioblastoma (U87MG)] and normal human embryonic kidney cell line (Hek-293T). Compounds 8, 9, 13, 14, 18, 19, 23, and 24 displayed significant activity, with compound 14 being particularly potent towards all the tested cancer cell lines with IC50 values in the range 3.17-6.77 µM, even better than reference drug axitinib (4.88-21.7 µM). Compound 14 also showed the strongest growth inhibition in 3D multicellular spheroids of PC-3 and U87MG cells. The mechanism of cellular toxicity in PC-3 cells was found to be cell cycle arrest and apoptosis induction through depolarisation of mitochondrial membrane potential, increased ROS production and subsequent DNA damage. Further, compound 14 displayed significant in vitro (VEGFR-2 inhibition) and in vivo [transgenic zebrafish Tg(flila:EGFP) model] antiangiogenic properties. Overall, these results provide strong evidence that compound 14 could be considered for a lead candidate in anticancer and antiangiogenic drug discovery.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Benzotiazóis/farmacologia , Modelos Animais de Doenças , Neovascularização Patológica/tratamento farmacológico , Pirazóis/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzotiazóis/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Neovascularização Patológica/metabolismo , Pirazóis/química , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/efeitos dos fármacos , Peixe-Zebra
2.
Oncol Rep ; 42(4): 1569-1579, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31364749

RESUMO

Triple­negative breast cancer (TNBC) is characterized by fast progression with high potential for metastasis, and poor prognosis. The dysregulation of microRNAs (miRNAs) occurring in the initiation or progression of cancers often leads to aberrant gene expression. The aim of the present study was to explore the function of miR­126 in TNBC cells. Expression levels of miR­126­3p were determined by quantitative real­time PCR. Then, the effects of miR­126­3p on migration, proliferation, invasion, and angiogenesis were assessed through in vitro experiments including Cell Counting Kit­8, colony formation, Transwell invasion and vasculogenic mimicry formation assays. One of the target genes for miR­126­3p predicted by TargetScan was confirmed by luciferase activity assay. Results indicated that miR­126­3p expression was reduced in TNBC cell lines. Functional assays revealed that miR­126­3p overexpression inhibited cell proliferation, migration, invasion, colony formation capacity and vasculogenesis by 1.2­, 1.8­, 2.3­, 2.0­ and 3.3­fold, respectively, compared to the miRNA­negative control group of MDA­MB­231 cells (P<0.001, respectively). In addition, the regulator of G­protein signaling 3 (RGS3) was hypothesized and validated as a direct target of miR­126­3p in TNBC. The proliferation, migration, invasion, colony formation capacity and vasculogenesis of MDA­MB­231 cells were significantly increased by 1.4­, 2.0­, 1.8­, 1.4­ and 3.2­fold, respectively, in cells transfected with pcDNA3.0­RGS3 compared to pcDNA3.0­negative control groups (P<0.001, respectively). The influence of miR­126­3p expression was reversed by RGS3 restoration. Collectively, the present study revealed that miR­126­3p plays a role as a tumor suppressor in regulating TNBC cell activities by targeting RGS3, indicating that the miR­126­3p/RGS3 axis may be a potential treatment target.


Assuntos
MicroRNAs/genética , Proteínas RGS/genética , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , MicroRNAs/biossíntese , Invasividade Neoplásica , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Proteínas RGS/biossíntese , Proteínas RGS/metabolismo , Neoplasias de Mama Triplo Negativas/irrigação sanguínea , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
3.
J Agric Food Chem ; 67(32): 8855-8867, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31343893

RESUMO

Abalone (Haliotis discus hannai) is a precious seafood in the market. It has been reported that biological active substances derived from abalone have anti-oxidative, anti-inflammatory, anti-bacterial, and anti-thrombosis potential. However, there were few studies to assess whether they have anti-cancer potential. In this study, we evaluated the anti-metastasis and anti-pro-angiogenic factors and mechanism of action of boiled abalone byproduct peptide (BABP, EMDEAQDPSEW) in human fibrosarcoma (HT1080) cells and human umbilical vein endothelial cells (HUVECs). The results demonstrated that BABP treatment significantly lowers migration and the invasion of HT1080 cells and HUVECs. BABP inhibits phorbol 12-myristate 13-acetate (PMA)-induced matrix metalloproteinase (MMP) expression and activity by blocking mitogen-activated protein kinases (MAPKs) and NF-κB signaling and hypoxia-induced vascular endothelial growth factor (VEGF) secretion and hypoxia inducible factor (HIF)-1α accumulation through suppressing the AKT/mTOR signal pathway. BABP treatment inhibits VEGF-induced VEGFR-2 expression and tube formation in HUVECs. The effect of BABP on anti-metastatic and anti-vascular activity in HT1080 cells and HUVECs revealed that BABP may be a potential pharmacophore for tumor therapy in the future.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Gastrópodes/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Peptídeos/farmacologia , Resíduos/análise , Inibidores da Angiogênese/química , Inibidores da Angiogênese/isolamento & purificação , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metástase Neoplásica , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/fisiopatologia , Peptídeos/química , Peptídeos/isolamento & purificação , Frutos do Mar/análise , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
Anticancer Res ; 39(7): 3641-3649, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31262890

RESUMO

BACKGROUND/AIM: Amentoflavone has been shown to be effective against a variety of cancer cells, but its role in bladder cancer remains unclear. Thus, the aim of this study is to evaluate whether amentoflavone may induce toxicity effect of bladder cancer. MATERIALS AND METHODS: Herein, we evaluated amentoflavone effects in a human bladder cancer cell line TSGH8301 in vitro. RESULTS: Amentoflavone caused significant cytotoxicity in TSGH8301 cells at a concentration as low as 200 µM. FAS/FASL-dependent extrinsic apoptosis and mitochondria-dependent intrinsic apoptosis were observed in amentoflavone-treated cells in a dose-dependent manner. Levels of several proapoptotic proteins, such as FAS, FAS-ligand and BAX (B-cell lymphoma 2 associated X) were increased following amentoflavone treatment. Meanwhile, anti-apoptotic MCL-1 (myeloid cell leukemia sequence 1) and cellular FLICE-inhibitory protein (C-FLIP) protein levels were reduced. Additionally, angiogenesis and proliferation-related proteins, including matrix metalloproteinase (MMP)-2, -9, vascular endothelial growth factor (VEGF), urokinase-type plasminogen actvator (uPA) and cyclin D1 were diminished by amentoflavone. CONCLUSION: Amentoflavone induced toxicity of bladder cancer by inhibiting tumor progression and inducing apoptosis signaling transduction.


Assuntos
Antineoplásicos/farmacologia , Biflavonoides/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proteína Ligante Fas/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/fisiopatologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/fisiopatologia , Receptor fas/metabolismo
5.
Int J Oncol ; 55(1): 167-178, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31180533

RESUMO

Vascular endothelial growth inhibitor (VEGI; also referred to as TNFSF15 or TL1A) is involved in the modulation of vascular homeostasis. VEGI is known to operate via two receptors: Death receptor­3 (DR3) and decoy receptor­3 (DcR3). DR3, which is thus far the only known functional receptor for VEGI, contains a death domain and induces cell apoptosis. DcR3 is secreted as a soluble protein and antagonizes VEGI/DR3 interaction. Overexpression of DcR3 and downregulation of VEGI have been detected in a number of cancers. The aim of the present study was to investigate the effects of sodium valproate (VPA), a histone deacetylase inhibitor, in combination with hydralazine hydrochloride (Hy), a DNA methylation inhibitor, on the expression of VEGI and its related receptors in human osteosarcoma (OS) cell lines and human microvascular endothelial (HMVE) cells. Combination treatment with Hy and VPA synergistically induced the expression of VEGI and DR3 in both OS and HMVE cells, without inducing DcR3 secretion. In addition, it was observed that the combination of VPA and Hy significantly enhanced the inhibitory effect on vascular tube formation by VEGI/DR3 autocrine and paracrine pathways. Furthermore, the VEGI/VEGF­A immune complex was pulled down by immunoprecipitation. Taken together, these findings suggest that DNA methyltransferase and histone deacetylase inhibitors not only have the potential to induce the re­expression of tumor suppressor genes in cancer cells, but also exert anti­angiogenic effects, via enhancement of the VEGI/DR3 pathway and VEGI/VEGF­A interference.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Hidralazina/farmacologia , Osteossarcoma/tratamento farmacológico , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/biossíntese , Ácido Valproico/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neoplasias Ósseas/irrigação sanguínea , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Sinergismo Farmacológico , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Inibidores Enzimáticos/farmacologia , Epigênese Genética , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Osteossarcoma/irrigação sanguínea , Osteossarcoma/genética , Osteossarcoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Membro 25 de Receptores de Fatores de Necrose Tumoral/biossíntese , Membro 25 de Receptores de Fatores de Necrose Tumoral/genética , Transcrição Genética/efeitos dos fármacos , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
6.
Cancer Sci ; 110(8): 2658-2666, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31199029

RESUMO

Although direct adhesion of cancer cells to the mesothelial cell layer is considered to be a key step for peritoneal invasion of ovarian cancer cell masses (OCM), we recently identified a different strategy for the peritoneal invasion of OCM. In 6 out of 20 cases of ovarian carcinoma, extraperitoneal growth of the OCM was observed along with the neovascularization of feeding vessels, which connect the intraperitoneal host stroma and extraperitoneal lesions through the intact mesothelial cell layer. As an early step, the OCMs anchor in the extraperitoneal fibrin networks and then induce the migration of CD34-positive and vascular endothelial growth factor A (VEGF-A)-positive endothelial cells, constructing extraperitoneal vascular networks around the OCM. During the extraperitoneal growth of OCM, podoplanin-positive and α smooth muscle actin (αSMA)-positive cancer-associated fibroblasts (CAF) appears. In more advanced lesions, the boundary line of mesothelial cells disappears around the insertion areas of feeding vessels and then extraperitoneal and intraperitoneal stroma are integrated, enabling the OCM to invade the host stroma, being associated with CAF. In addition, tissue factors (TF) are strongly detected around these peritoneal implantation sites and their levels in ascites were higher than that in blood. These findings demonstrate the presence of neovascularization around fibrin net-anchored OCMs on the outer side of the intact peritoneal surface, suggesting a novel strategy for peritoneal invasion of ovarian cancer and TF-targeted intraperitoneal anti-cancer treatment. We observed and propose a novel strategy for peritoneal implantation of ovarian cancer. The strategy includes the preinvasive growth of fibrin-anchored cancer cells along with neovascularization on the outer side of the intact peritoneal surface.


Assuntos
Fibrina/metabolismo , Invasividade Neoplásica/patologia , Neovascularização Patológica/patologia , Neoplasias Ovarianas/patologia , Adulto , Idoso , Ascite/metabolismo , Ascite/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Epitélio/metabolismo , Epitélio/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Neovascularização Patológica/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Peritoneais/metabolismo , Neoplasias Peritoneais/patologia , Peritônio/metabolismo , Peritônio/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Cancer Sci ; 110(8): 2558-2572, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31215106

RESUMO

Glioma, the most common human primary brain tumor, is characterized by invasive capabilities and angiogenesis. Vasorin (VASN), a transmembrane protein, is reported to be associated with vascular injury repair and is overexpressed in some human tumors. However, its role in tumor progression and angiogenesis in glioma is unknown. In this study, VASN was shown to be overexpressed in high-grade gliomas, and the expression level correlated with tumor grade and microvessel density in glioma specimens. Glioma patients with high VASN expression had a shorter overall survival time. Knockdown of VASN in glioma cells by shRNA significantly inhibited the malignancy of glioma, including cell proliferation, colony formation, invasion, and sphere formation. Ectopic expression of VASN increased glioma progression in vitro. The expression of VASN correlated with the mesenchymal type of glioblastoma multiforme (GBM) subtyped by gene set enrichment analysis (GSEA). Our results showed that the concentration of VASN was increased in the conditioned medium (CM) from glioma cells with VASN overexpression, and the CM from glioma cells with knockdown or overexpressed VASN inhibited or promoted HUVEC migration and tubulogenesis in vitro, respectively. Glioma growth and angiogenesis were stimulated upon ectopic expression of VASN in vivo. The STAT3 and NOTCH pathways were found to be activated and inhibited by VASN overexpression. Our findings suggest that VASN stimulates tumor progression and angiogenesis in glioma, and, as such, represents a novel therapeutic target for glioma.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proteínas de Transporte/metabolismo , Glioma/metabolismo , Glioma/patologia , Proteínas de Membrana/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Adulto , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Cancer Sci ; 110(8): 2520-2528, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31215118

RESUMO

Iodothyronine deiodinase 2 (DIO2) converts the prohormone thyroxine (T4) to bioactive T3 in peripheral tissues and thereby regulates local thyroid hormone (TH) levels. Although epidemiologic studies suggest the contribution of TH to the progression of colorectal cancer (CRC), the role of DIO2 in CRC remains elusive. Here we show that Dio2 is highly expressed in intestinal polyps of ApcΔ716 mice, a mouse model of familial adenomatous polyposis and early stage sporadic CRC. Laser capture microdissection and in situ hybridization analysis show almost exclusive expression of Dio2 in the stroma of ApcΔ716 polyps in the proximity of the COX-2-positive areas. Treatment with iopanoic acid, a deiodinase inhibitor, or chemical thyroidectomy suppresses tumor formation in ApcΔ716 mice, accompanied by reduced tumor cell proliferation and angiogenesis. Dio2 expression in ApcΔ716 polyps is strongly suppressed by treatment with the COX-2 inhibitor meloxicam. Analysis of The Cancer Genome Atlas data shows upregulation of DIO2 in CRC clinical samples and a close association of its expression pattern with the stromal component, consistently with almost exclusive expression of DIO2 in the stroma of human CRC as revealed by in situ hybridization. These results indicate essential roles of stromal DIO2 and thyroid hormone signaling in promoting the growth of intestinal tumors.


Assuntos
Proliferação de Células/fisiologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Iodeto Peroxidase/metabolismo , Polipose Adenomatosa do Colo/tratamento farmacológico , Polipose Adenomatosa do Colo/metabolismo , Polipose Adenomatosa do Colo/patologia , Animais , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Modelos Animais de Doenças , Humanos , Pólipos Intestinais/tratamento farmacológico , Pólipos Intestinais/metabolismo , Pólipos Intestinais/patologia , Camundongos , Camundongos Knockout , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Hormônios Tireóideos/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
9.
Int J Mol Sci ; 20(12)2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216652

RESUMO

The sharing of molecules function that affects both tumor growth and neoangiogenesis with cells of the immune system creates a mutual interplay that impairs the host's immune response against tumor progression. Increasing evidence shows that tumors are able to create an immunosuppressive microenvironment by recruiting specific immune cells. Moreover, molecules produced by tumor and inflammatory cells in the tumor microenvironment create an immunosuppressive milieu able to inhibit the development of an efficient immune response against cancer cells and thus fostering tumor growth and progression. In addition, the immunoediting could select cancer cells that are less immunogenic or more resistant to lysis. In this review, we summarize recent findings regarding the immunomodulatory effects and cancer progression of the angiogenic growth factor namely placental growth factor (PlGF) and address the biological complex effects of this cytokine. Different pathways of the innate and adaptive immune response in which, directly or indirectly, PlGF is involved in promoting tumor immune escape and metastasis will be described. PlGF is important for building up vascular structures and functions. Although PlGF effects on vascular and tumor growth have been widely summarized, its functions in modulating the immune intra-tumoral microenvironment have been less highlighted. In agreement with PlGF functions, different antitumor strategies can be envisioned.


Assuntos
Vigilância Imunológica , Neoplasias/etiologia , Neoplasias/metabolismo , Fator de Crescimento Placentário/genética , Fator de Crescimento Placentário/metabolismo , Indutores da Angiogênese/metabolismo , Animais , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos , Humanos , Imunomodulação , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Neovascularização Patológica/metabolismo , Receptores de Neuropeptídeos/metabolismo , Transdução de Sinais
10.
J Cancer Res Ther ; 15(3): 463-469, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31169205

RESUMO

Oral submucous fibrosis (OSMF) is a chronic progressive, scarring disease affecting oral, oropharyngeal, and sometimes the esophageal mucosa. It is characterized by the progressive fibrosis of the submucosal tissue. The pathogenesis of OSMF has been directly related to the habit of chewing areca nut and its commercial preparation, which is widespread in Indian subcontinent and Southeast Asia. The areca nut has been classified as a "group one human carcinogen." Oral squamous cell carcinoma in the background of OSMF is one of the most common malignancies in South and Southeast Asian countries. Malignant transformation has been reported in 7%-12% cases of OSMF. Histopathological spectrum of OSMF includes the apparent alterations observed in the epithelium and connective tissue. Epithelial atrophy and sometimes epithelial hyperplasia with or without dysplasia are the peculiar alterations seen in the epithelium. In the connective tissue, there is extracellular matrix remodeling which results in excessive collagenization. Further cross-linking of collagen leads to hyalinization which makes the collagen resistant to proteolysis. Owing to fibrosis in the connective tissue, there is narrowing of blood vessels which further results in compromised blood supply to the local tissue milieu, that is, hypoxia. This tissue hypoxia elicits angiogenesis which may result in the malignant transformation of OSMF. Perpetual irritation of areca nut and its constituents to the oral mucosa leads to upregulation of pro-inflammatory cytokines and further juxtaepithelial inflammation. Thus, these coordinated reactions in epithelium and connective tissue leads the OSMF toward malignant transformation.


Assuntos
Fibrose Oral Submucosa/etiologia , Fibrose Oral Submucosa/metabolismo , Animais , Atrofia , Transformação Celular Neoplásica , Progressão da Doença , Suscetibilidade a Doenças , Matriz Extracelular/metabolismo , Humanos , Hiperplasia , Mucosa Bucal/metabolismo , Mucosa Bucal/patologia , Neoplasias Bucais/etiologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Neovascularização Patológica/etiologia , Neovascularização Patológica/metabolismo , Fibrose Oral Submucosa/patologia
11.
Int J Mol Sci ; 20(9)2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035644

RESUMO

Gastric cancer is diagnosed in nearly one million new patients each year and it remains the second leading cause of cancer-related deaths worldwide. Although gastric cancer represents a heterogeneous group of diseases, chronic inflammation has been shown to play a role in tumorigenesis. Cancer development is a multistep process characterized by genetic and epigenetic alterations during tumour initiation and progression. The stromal microenvironment is important in maintaining normal tissue homeostasis or promoting tumour development. A plethora of immune cells (i.e., lymphocytes, macrophages, mast cells, monocytes, myeloid-derived suppressor cells, Treg cells, dendritic cells, neutrophils, eosinophils, natural killer (NK) and natural killer T (NKT) cells) are components of gastric cancer microenvironment. Mast cell density is increased in gastric cancer and there is a correlation with angiogenesis, the number of metastatic lymph nodes and the survival of these patients. Mast cells exert a protumorigenic role in gastric cancer through the release of angiogenic (VEGF-A, CXCL8, MMP-9) and lymphangiogenic factors (VEGF-C and VEGF-F). Gastric mast cells express the programmed death ligands (PD-L1 and PD-L2) which are relevant as immune checkpoints in cancer. Several clinical undergoing trials targeting immune checkpoints could be an innovative therapeutic strategy in gastric cancer. Elucidation of the role of subsets of mast cells in different human gastric cancers will demand studies of increasing complexity beyond those assessing merely mast cell density and microlocalization.


Assuntos
Linfangiogênese , Mastócitos/imunologia , Neovascularização Patológica , Neoplasias Gástricas/etiologia , Neoplasias Gástricas/patologia , Animais , Biomarcadores , Regulação Neoplásica da Expressão Gênica , Humanos , Linfangiogênese/genética , Linfangiogênese/imunologia , Mastócitos/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
12.
Int J Mol Sci ; 20(9)2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31052525

RESUMO

Liver diseases are perpetuated by the orchestration of hepatocytes and other hepatic non-parenchymal cells. These cells communicate and regulate with each other by secreting mediators such as peptides, hormones, and cytokines. Extracellular vesicles (EVs), small particles secreted from cells, contain proteins, DNAs, and RNAs as cargos. EVs have attracted recent research interests since they can communicate information from donor cells to recipient cells thereby regulating physiological events via delivering of specific cargo mediators. Previous studies have demonstrated that liver cells secrete elevated numbers of EVs during diseased conditions, and those EVs are internalized into other liver cells inducing disease-related reactions such as inflammation, angiogenesis, and fibrogenesis. Reactions in recipient cells are caused by proteins and RNAs carried in disease-derived EVs. This review summarizes cell-to-cell communication especially via EVs in the pathogenesis of liver diseases and their potential as a novel therapeutic target.


Assuntos
Comunicação Celular , Vesículas Extracelulares/patologia , Hepatócitos/patologia , Hepatopatias/patologia , Animais , Vesículas Extracelulares/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/terapia , Hepatopatias/metabolismo , Hepatopatias/terapia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/terapia
13.
Int J Mol Sci ; 20(9)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052281

RESUMO

Glioblastoma (GBM) is the most malignant tumor type affecting the adult central nervous system. Despite advances in therapy, the prognosis for patients with GBM remains poor, with a median survival of about 15 months. To date, few treatment options are available and recent trials based on the molecular targeting of some of the GBM hallmark pathways (e.g., angiogenesis) have not produced any significant improvement in overall survival. The urgent need to develop more efficacious targeted therapies has led to a better molecular characterization of GBM, revealing an emerging role of semaphorins in GBM progression. Semphorins are a wide group of membrane-bound and secreted proteins, originally identified as axon guidance cues, signaling through their receptors, neuropilins, and plexins. A number of semaphorin signals involved in the control of axonal growth and navigation during development have been found to furthermore participate in crosstalk with different dysfunctional GBM pathways, controlling tumor cell proliferation, migration, and invasion, as well as tumor angiogenesis or immune response. In this review, we summarize the regulatory activities mediated by semaphorins and their receptors on the oncogenic pathways implicated in GBM growth and invasive/metastatic progression.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Semaforinas/metabolismo , Animais , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Humanos , Invasividade Neoplásica , Neovascularização Patológica/metabolismo , Semaforinas/genética
14.
Int J Mol Med ; 44(1): 103-114, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31115482

RESUMO

Retinoblastoma (RB) is a common neoplasm that is exhibited in individuals globally. Increasing evidence demonstrated that cyclin­dependent kinase regulatory subunit 1B (CKS1B) may be involved in the pathogenesis of various tumor types, including multiple myeloma and breast cancer. In the present study, the hypothesis that CKS1B downregulation would effectively inhibit the proliferation, invasion and angiogenesis of RB cells through the mitogen­activated protein kinase kinase (MEK)/extracellular signal­regulated kinase (ERK) signaling pathway was examined. Initial investigation of the expression profile of CKS1B in RB and adjacent retina tissues was performed using reverse transcription­quantitative polymerase chain reaction and western blot analysis. A total of three RB cell lines, SO­RB50, Y79 and HXO­RB44, were examined for selection of the cell line with the highest expression of CKS1B, and human normal retinal vascular endothelial cells (ACBRI­181) were also evaluated. CKS1B short hairpin RNA (shRNA) sequences (shRNA CKS1B­1, shRNA CKS1B­2 and shRNA CKS1B­3) and negative control shRNA sequences were constructed and transfected into cells at the third generation to evaluate the role of shCKS1B and the MEK/ERK signaling pathway in RB. Furthermore, the effect of shCKS1B on cell proliferation, migration, invasion, apoptosis and angiogenesis was investigated. CKS1B was determined to be highly expressed in RB tissue, compared with adjacent retina tissue. SO­RB50 and HXO­RB44 cells treated with shRNA CKS1B­1 and shRNA CKS1B­2 were selected for the present experiments. Activation of the MEK/ERK signaling pathway increases the expression of MEK, ERK, B­cell lymphoma 2, proliferating cell nuclear antigen, cyclin D1, vascular endothelia growth factor and basic fibroblast growth factor, enhances cell proliferation, migration, invasion and lumen formation, and decreases apoptosis. Following silencing CKS1B, the aforementioned conditions were reversed. The key observations of the present study demonstrated that shCKS1B can inhibit the proliferation, invasion and angiogenesis of RB cells by suppressing the MEK/ERK signaling pathway. Thus, CKS1B represents a potential research target in the development of therapeutics for RB.


Assuntos
CDC2-CDC28 Quinases/sangue , Proliferação de Células , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Proteínas de Neoplasias/biossíntese , Neovascularização Patológica/metabolismo , Retinoblastoma/metabolismo , CDC2-CDC28 Quinases/genética , Linhagem Celular Tumoral , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Retinoblastoma/genética , Retinoblastoma/patologia
15.
EBioMedicine ; 43: 525-536, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31060904

RESUMO

BACKGROUND: We have revealed that neuropilin-1 (NRP-1) promoted hepatic stellate cell activation and liver fibrosis through its profibrogenic signalling pathways. However, the role of NRP-1 in angiogenesis in hepatic sinusoidal endothelial cells (HSECs) during liver cirrhosis remains unclear. METHODS: The correlation between NRP-1 expression and angiogenesis was evaluated in both human and murine cirrhotic liver tissues by immunohistochemical staining, quantitative real-time PCR, and western blotting. In addition, the role and mechanism of NRP-1 in regulating VEGFR2-dependent angiogenesis was identified in endothelial cells (ECs) in vitro. Moreover, liver histocultures were used to test the therapeutic effect of NRP-1 blocking in liver fibrosis. FINDINGS: Higher expression of NRP-1 in HSECs was detected, which was positively correlated with angiogenesis in liver cirrhosis. In vitro, NRP-1 knockdown suppressed the expression and activation of VEGFR2, accompanied by reduced ability of the vascular tube formation and the migration of ECs. Conversely, NRP-1 overexpression upregulated VEGFR2, promoted tube formation, and the migration of ECs. Mechanistically, NRP-1 modulated the expression of VEGFR2 by regulating FAK and its kinase activity. Furthermore, NRP-1 promoted VEGFR2-dependent angiogenesis via the PI3K/Akt pathway in HSECs. Blocking NRP-1 function reduced intrahepatic angiogenesis and fibrosis-associated factors in the in vitro liver histocultures. INTERPRETATION: NRP-1 promotes angiogenesis by upregulating the expression and activation of VEGFR2 through the PI3K/Akt signalling pathway in liver cirrhosis. This study highlights the possibility of therapeutically targeting NRP-1 for the treatment of cirrhosis. FUND: National Natural Science Foundation of China (No. 81570551; 81770607; 81600469; 81401868), Key Research project of Shandong Province (No. 2016GSF201008; 2017GSF218053), Natural Science Foundation of Shandong Province (No. ZR2017MH102), National Science and Technology Major Project of China (No. 2018ZX10302206-001-006).


Assuntos
Células Endoteliais/metabolismo , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Neuropilina-1/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular , Expressão Gênica , Humanos , Cirrose Hepática/patologia , Camundongos , Modelos Biológicos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neuropilina-1/metabolismo , Técnicas de Cultura de Tecidos
16.
Asian Pac J Cancer Prev ; 20(5): 1537-1545, 2019 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-31128060

RESUMO

Background: The aim of this study was to evaluate microvessel density (MVD) by expression of CD31 and CLEC14A in core biopsies from previously untreated patients with locally advanced breast cancer (LABC) and assess its prognostic significance. Methods: MVD was evaluated in core needle biopsies (n = 92), collected prior to any treatment, from patients who were diagnosed with locally advanced breast cancer (LABC). Immunohistochemistry for expression of CD31 and CLEC14A were performed on these tumours. The median duration of follow-up was 9.3 years. The effect of prognostic factors on disease free survival (DFS) and overall survival (OS) was assessed using a Log rank test and Cox regression model. Results: The clinical factors such as age, clinical nodal stage, stage and pathological nodal status were found to be significant in predicting overall survival by multivariate analysis (P<0.05). Out of 92, 52 tumours had blood vessels expressing CD31, whereas in the remainder, there was no expression. The mean and median MVD of CD31 in 92 tumours was 38 and 5.5 respectively, and it was not a significant factor for predicting disease free survival or overall survival. When we considered the tumours (n=52) which expressed CD31, patients who had very high MVD (>100), had inferior progression free survival and overall survival (P=0.5). There was no expression of CLEC14A in any of the core needle biopsies whereas it was expressed in specimens from mastectomy from the same patient. Conclusion: This is the first report of MVD in LABC prior to any treatment. The results suggest angiogenesis could be a prognostic factor in LABC.


Assuntos
Neoplasias da Mama/patologia , Microvasos/patologia , Neovascularização Patológica/patologia , Adulto , Idoso , Neoplasias da Mama/metabolismo , Intervalo Livre de Doença , Feminino , Humanos , Imuno-Histoquímica/métodos , Mastectomia/métodos , Microvasos/metabolismo , Pessoa de Meia-Idade , Neovascularização Patológica/metabolismo , Prognóstico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto Jovem
17.
Int J Mol Sci ; 20(10)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121863

RESUMO

The endoplasmic reticulum (ER) has diverse functions, and especially misfolded protein modification is in the focus of this review paper. With a highly regulatory mechanism, called unfolded protein response (UPR), it protects cells from the accumulation of misfolded proteins. Nevertheless, not only does UPR modify improper proteins, but it also degrades proteins that are unable to recover. Three pathways of UPR, namely PERK, IRE-1, and ATF6, have a significant role in regulating stress-induced physiological responses in cells. The dysregulated UPR may be involved in diseases, such as atherosclerosis, heart diseases, amyotrophic lateral sclerosis (ALS), and cancer. Here, we discuss the relation between UPR and cancer, considering several aspects including survival, dormancy, immunosuppression, angiogenesis, and metastasis of cancer cells. Although several moderate adversities can subject cancer cells to a hostile environment, UPR can ensure their survival. Excessive unfavorable conditions, such as overloading with misfolded proteins and nutrient deprivation, tend to trigger cancer cell death signaling. Regarding dormancy and immunosuppression, cancer cells can survive chemotherapies and acquire drug resistance through dormancy and immunosuppression. Cancer cells can also regulate the downstream of UPR to modulate angiogenesis and promote metastasis. In the end, regulating UPR through different molecular mechanisms may provide promising anticancer treatment options by suppressing cancer proliferation and progression.


Assuntos
Neoplasias/patologia , Resposta a Proteínas não Dobradas , Animais , Sobrevivência Celular , Progressão da Doença , Humanos , Tolerância Imunológica , Metástase Neoplásica/imunologia , Metástase Neoplásica/patologia , Metástase Neoplásica/terapia , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/terapia , Neovascularização Patológica/imunologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/terapia
18.
Int J Nanomedicine ; 14: 2719-2731, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114192

RESUMO

Background: Previously, our group confirmed the presence of a subset of cancer stem cells in the tissues of endometrial carcinoma (ie, human endometrial carcinoma stem cells [HuECSCs]). However, the mechanisms by which microRNAs regulate the growth of HuECSCs remain elusive. Methods: We loaded miR-326 onto superparamagnetic iron oxide nanoparticles (miR-326@SPION) and transfected them into HuECSCs. Results: In the present study, we found that the expression levels of members of the G-protein coupled receptor 91 (GPR91)/signal transducer and activator of transcription 3 (STAT3)/vascular endothelial growth factor (VEGF) pathway were significantly elevated in CD44+/CD133+ HuECSCs. Luciferase reporter assays indicated that the succinate receptor 1 (SUCNR1) gene, also known as the G-protein coupled receptor 91 (GPR91) gene, was one of the potential targets of miR-326. Transmission electron microscopy revealed that the SPIONs could cross the cell membrane and accumulate in the cytoplasm. The overexpression of miR-326 significantly inhibited the proliferation and cell cycle progression of HuECSCs in vitro. MiR-326 overexpression also effectively inhibited the invasion and angiogenic capacities of HuECSCs in the extracellular matrix. Meanwhile, miR-326 overexpression significantly inhibited the tumorigenicity and tumour neovascularization capacity of HuECSCs in nude mice. Both quantitative real-time PCR and Western blotting confirmed that overexpression of miR-326 significantly reduced the expression of members of the GPR91/STAT3/VEGF pathway in HuECSCs, and the activity (level of phosphorylation) of key molecules in this pathway was also reduced. Conclusion: Collectively, we confirmed that SPIONs are highly efficient nanocarriers for nucleic acids, on which the loading of miR-326 inhibited the activation of the GPR91/STAT3/VEGF signaling pathway and significantly attenuated the activity of stem cells in endometrial carcinoma, both in vitro and in vivo.


Assuntos
Neoplasias do Endométrio/patologia , Regulação Neoplásica da Expressão Gênica , Nanopartículas de Magnetita/química , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , Animais , Sequência de Bases , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Endométrio/irrigação sanguínea , Feminino , Humanos , Nanopartículas de Magnetita/ultraestrutura , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Invasividade Neoplásica , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Receptores Acoplados a Proteínas-G/metabolismo , Transdução de Sinais
19.
Int J Mol Sci ; 20(10)2019 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-31109142

RESUMO

The highly malignant phenotype of oral squamous cell carcinoma (OSCC), including the presence of nodal and distant metastasis, reduces patient survival. High-mobility group A protein 2 (HMGA2) is a non-histone chromatin factor that is involved in advanced malignant phenotypes and poor prognosis in several human cancers. However, its biological role in OSCC remains to be elucidated. The purpose of this study was to determine the clinical significance and role of HMGA2 in the malignant potential of OSCC. We first investigated the expression pattern of HMGA2 and its clinical relevance in 110 OSCC specimens using immunohistochemical staining. In addition, we examined the effects HMGA2 on the regulation of vascular endothelial growth factor (VEGF)-A, VEGF-C, and fibroblast growth factor (FGF)-2, which are related to angiogenesis, in vitro. High expression of HMGA2 was significantly correlated with distant metastasis and poor prognosis. Further, HMGA2 depletion in OSCC cells reduced the expression of angiogenesis genes. In OSCC tissues with high HMGA2 expression, angiogenesis genes were increased and a high proportion of blood vessels was observed. These findings suggest that HMGA2 plays a significant role in the regulation of angiogenesis and might be a potential biomarker to predict distant metastasis and prognosis in OSCC.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Proteína HMGA2/metabolismo , Neoplasias Bucais/metabolismo , Neovascularização Patológica/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/irrigação sanguínea , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/patologia , Feminino , Proteína HMGA2/análise , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/irrigação sanguínea , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/patologia , Invasividade Neoplásica/patologia , Neovascularização Patológica/diagnóstico , Neovascularização Patológica/patologia , Prognóstico
20.
J Ovarian Res ; 12(1): 49, 2019 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-31128594

RESUMO

BACKGROUND: We have previously shown that a whole flaxseed supplemented diet decreased the onset and severity of ovarian cancer in the laying hen, the only known animal model of spontaneous ovarian cancer. Flaxseed is rich in omega-3 fatty acids (OM3FA), mostly α-Linoleic acid (ALA), which gets converted to Docosahexaenoic acid (DHA) by the action of delta-6 desaturase enzyme. Ingestion of flaxseed also causes an increase in production of 2-methoxyestradiol (2MeOE2) via the induction of the CYP1A1 pathway of estrogen metabolism. We have previously reported that the flaxseed diet induces apoptosis via p38-MAPK pathway in chicken tumors. The objective of this study was to investigate the effect of the flaxseed diet on ovarian cancer in chickens, focusing on two hallmarks of cancer, apoptosis and angiogenesis. RESULTS: The anti-cancer effects of two active biologically derived compounds of flax diet, 2MeOE2 and DHA, were individually tested on human ovarian cancer cells and in vivo by the Chick Chorioallantoic Membrane (CAM) assay. Our results indicate that a flaxseed-supplemented diet promotes apoptosis and inhibits angiogenesis in chicken tumors but not in normal ovaries. 2MeOE2 promotes apoptosis in human ovarian cancer cells, inhibits angiogenesis on CAM and its actions are dependent on the p38-MAPK pathway. DHA does not have any pro-apoptotic effect on human ovarian cancer cells but has strong anti-angiogenic effects as seen on CAM, but not dependent on the p38-MAPK pathway. CONCLUSIONS: Dietary flaxseed supplementation promotes a pro-apoptotic and anti-angiogenic effect in ovarian tumors, not in normal ovaries. The biologically derived active compounds from flaxseed diet act through different pathways to elicit their respective anti-cancer effects. A flaxseed-supplemented diet is a promising approach for prevention of ovarian cancer as well as having a significant potential as an adjuvant treatment to supplement chemotherapeutic agents for treatment of advanced stages of ovarian cancer.


Assuntos
2-Metoxiestradiol/farmacologia , Apoptose/efeitos dos fármacos , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/farmacologia , Linho , Neoplasias Ovarianas/prevenção & controle , 2-Metoxiestradiol/administração & dosagem , Animais , Linhagem Celular Tumoral , Galinhas , Membrana Corioalantoide , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/administração & dosagem , Feminino , Linho/química , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/prevenção & controle , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Ovário , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA