Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97.888
Filtrar
1.
Philos Trans A Math Phys Eng Sci ; 377(2153): 20180128, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31329071

RESUMO

We study the spatio-temporal dynamics of a multiplex network of delay-coupled FitzHugh-Nagumo oscillators with non-local and fractal connectivities. Apart from chimera states, a new regime of coexistence of slow and fast oscillations is found. An analytical explanation for the emergence of such coexisting partial synchronization patterns is given. Furthermore, we propose a control scheme for the number of fast and slow neurons in each layer. This article is part of the theme issue 'Nonlinear dynamics of delay systems'.


Assuntos
Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Simulação por Computador , Humanos
2.
Nature ; 571(7764): 198-204, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31292557

RESUMO

Slow-wave sleep and rapid eye movement (or paradoxical) sleep have been found in mammals, birds and lizards, but it is unclear whether these neuronal signatures are found in non-amniotic vertebrates. Here we develop non-invasive fluorescence-based polysomnography for zebrafish, and show-using unbiased, brain-wide activity recording coupled with assessment of eye movement, muscle dynamics and heart rate-that there are at least two major sleep signatures in zebrafish. These signatures, which we term slow bursting sleep and propagating wave sleep, share commonalities with those of slow-wave sleep and paradoxical or rapid eye movement sleep, respectively. Further, we find that melanin-concentrating hormone signalling (which is involved in mammalian sleep) also regulates propagating wave sleep signatures and the overall amount of sleep in zebrafish, probably via activation of ependymal cells. These observations suggest that common neural signatures of sleep may have emerged in the vertebrate brain over 450 million years ago.


Assuntos
Neurônios/fisiologia , Sono/fisiologia , Peixe-Zebra/fisiologia , Animais , Evolução Biológica , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Epêndima/citologia , Movimentos Oculares , Fluorescência , Frequência Cardíaca , Hipnóticos e Sedativos/farmacologia , Hormônios Hipotalâmicos/metabolismo , Melaninas/metabolismo , Neurônios/efeitos dos fármacos , Pigmentação/fisiologia , Hormônios Hipofisários/metabolismo , Polissonografia/métodos , Sono/efeitos dos fármacos , Privação do Sono/fisiopatologia , Sono REM/efeitos dos fármacos , Sono REM/fisiologia , Sono de Ondas Lentas/efeitos dos fármacos , Sono de Ondas Lentas/fisiologia
3.
Nat Commun ; 10(1): 2897, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263107

RESUMO

Multiple areas within the reticular activating system (RAS) can hasten awakening from sleep or light planes of anesthesia. However, stimulation in individual sites has shown limited recovery from deep global suppression of brain activity, such as coma. Here we identify a subset of RAS neurons within the anterior portion of nucleus gigantocellularis (aNGC) capable of producing a high degree of awakening represented by a broad high frequency cortical reactivation associated with organized movements and behavioral reactivity to the environment from two different models of deep pharmacologically-induced coma (PIC): isoflurane (1.25%-1.5%) and induced hypoglycemic coma. Activating aNGC neurons triggered awakening by recruiting cholinergic, noradrenergic, and glutamatergic arousal pathways. In summary, we identify an evolutionarily conserved population of RAS neurons, which broadly restore cerebral cortical activation and motor behavior in rodents through the coordinated activation of multiple arousal-promoting circuits.


Assuntos
Anestésicos Inalatórios/administração & dosagem , Tronco Encefálico/fisiopatologia , Coma/fisiopatologia , Isoflurano/administração & dosagem , Animais , Tronco Encefálico/efeitos dos fármacos , Coma/induzido quimicamente , Eletroencefalografia , Feminino , Humanos , Masculino , Bulbo/efeitos dos fármacos , Bulbo/fisiopatologia , Camundongos , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Vigília
4.
Nat Commun ; 10(1): 2942, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270312

RESUMO

Depression and transient ischaemic attack represent the common psychological and neurological diseases, respectively, and are tightly associated. However, studies of depression-affected ischaemic attack have been limited to epidemiological evidences, and the neural circuits underlying depression-modulated ischaemic injury remain unknown. Here, we find that chronic social defeat stress (CSDS) and chronic footshock stress (CFS) exacerbate CA1 neuron loss and spatial learning/memory impairment after a short transient global ischaemia (TGI) attack in mice. Whole-brain mapping of direct outputs of locus coeruleus (LC)-tyrosine hydroxylase (TH, Th:) positive neurons reveals that LC-CA1 projections are decreased in CSDS or CFS mice. Furthermore, using designer receptors exclusively activated by designer drugs (DREADDs)-based chemogenetic tools, we determine that Th:LC-CA1 circuit is necessary and sufficient for depression-induced aggravated outcomes of TGI. Collectively, we suggest that Th:LC-CA1 pathway plays a crucial role in depression-induced TGI vulnerability and offers a potential intervention for preventing depression-related transient ischaemic attack.


Assuntos
Região CA1 Hipocampal/fisiopatologia , Isquemia/fisiopatologia , Locus Cerúleo/fisiopatologia , Estresse Psicológico/fisiopatologia , Animais , Humanos , Isquemia/complicações , Isquemia/psicologia , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Aprendizagem Espacial , Estresse Psicológico/complicações , Estresse Psicológico/psicologia
5.
Nat Commun ; 10(1): 2937, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270315

RESUMO

During the generation of rhythmic movements, most spinal neurons receive an oscillatory synaptic drive. The neuronal architecture underlying this drive is unknown, and the corresponding network size and sparseness have not yet been addressed. If the input originates from a small central pattern generator (CPG) with dense divergent connectivity, it will induce correlated input to all receiving neurons, while sparse convergent wiring will induce a weak correlation, if any. Here, we use pairwise recordings of spinal neurons to measure synaptic correlations and thus infer the wiring architecture qualitatively. A strong correlation on a slow timescale implies functional relatedness and a common source, which will also cause correlation on fast timescale due to shared synaptic connections. However, we consistently find marginal coupling between slow and fast correlations regardless of neuronal identity. This suggests either sparse convergent connectivity or a CPG network with recurrent inhibition that actively decorrelates common input.


Assuntos
Medula Espinal/fisiologia , Animais , Feminino , Cinética , Masculino , Modelos Neurológicos , Neurônios/química , Neurônios/fisiologia , Medula Espinal/química , Sinapses/fisiologia , Transmissão Sináptica , Fatores de Tempo , Tartarugas
6.
Adv Exp Med Biol ; 1140: 469-475, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31347065

RESUMO

With an increasing awareness of mental health issues and neurological disorders, "understanding the brain" is one of the biggest current challenges in biological research. This has been recognised by both governments and funding agencies, and it includes the need to understand connectivity of brain regions and coordinated network activity, as well as cellular and molecular mechanisms at play. In this chapter, we will describe how we have taken advantage of different proteomic techniques to unravel molecular mechanisms underlying two modulators of neuronal function: Neurotrophins and antipsychotics.


Assuntos
Antipsicóticos/farmacologia , Fatores de Crescimento Neural/fisiologia , Neurônios/fisiologia , Proteômica , Transdução de Sinais , Humanos
7.
Cell Tissue Res ; 377(1): 95-106, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31165247

RESUMO

A theoretical framework is proposed to gain insight into the pathogenesis of major depressive disorder (MDD). Despite being a relatively weak argument, the neurogenesis theory is suggested to compensate for the limitations of the monoamine theory. In the adult hippocampus, neurogenesis is functionally related to regulation of the hypothalamic-pituitary-adrenal (HPA) axis, inflammatory processes, cognitive functions and other aspects that contribute to etiological factors that lead to MDD and promote recovery from MDD. Despite a lack of investigation into neurogenesis and antidepressant action, it is proposed that chronic administration of antidepressant(s) can induce the recruitment and integration of newborn neurons into the dentate gyrus and, ultimately, lead to the remission of MDD. The extant body of literature indicates that the suppression of neurogenesis per se may be associated with an impaired response to antidepressant treatment rather than with the induction of depressive-like behaviors. Moreover, recent studies have shown that increasing the survival rate and incorporation of new neurons can alleviate depressive-like behaviors and promote stress resilience. According to the neurogenic reserve hypothesis, hippocampal neurogenesis supports specific cortical functions, including executive functions, pattern separation and contextual information processing, control over the HPA axis and behavioral coping mechanisms in response to stressful situations. Therefore, hippocampal neurogenesis may be a promising biological indicator of stress resilience and antidepressant response in patients with MDD.


Assuntos
Antidepressivos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Hipocampo/embriologia , Neurogênese , Neurônios/fisiologia , Adulto , Animais , Antidepressivos/farmacologia , Transtorno Depressivo Maior/fisiopatologia , Modelos Animais de Doenças , Humanos , Sistema Hipotálamo-Hipofisário/embriologia , Camundongos , Neurônios/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/embriologia , Sistema Hipófise-Suprarrenal/fisiopatologia , Ratos
8.
Nat Neurosci ; 22(7): 1061-1065, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209378

RESUMO

A key assumption of optogenetics is that light only affects opsin-expressing neurons. However, illumination invariably heats tissue, and many physiological processes are temperature-sensitive. Commonly used illumination protocols increased the temperature by 0.2-2 °C and suppressed spiking in multiple brain regions. In the striatum, light delivery activated an inwardly rectifying potassium conductance and biased rotational behavior. Thus, careful consideration of light-delivery parameters is required, as even modest intracranial heating can confound interpretation of optogenetic experiments.


Assuntos
Córtex Cerebral/fisiologia , Corpo Estriado/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Temperatura Ambiente , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/efeitos da radiação , Animais , Compostos de Bário/farmacologia , Córtex Cerebral/citologia , Cloretos/farmacologia , Corpo Estriado/citologia , Hipocampo/citologia , Temperatura Alta , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/efeitos da radiação , Luz , Camundongos , Atividade Motora/efeitos da radiação , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Optogenética/métodos , Técnicas de Patch-Clamp , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/efeitos da radiação , Projetos de Pesquisa
10.
Nat Commun ; 10(1): 2769, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235690

RESUMO

Loss of appetite or anorexia associated with inflammation impairs quality of life and increases morbidity in many diseases. However, the exact neural mechanism that mediates inflammation-associated anorexia is still poorly understood. Here we identified a population of neurons, marked by the expression of protein kinase C-delta, in the oval region of the bed nucleus of the stria terminalis (BNST), which are activated by various inflammatory signals. Silencing of these neurons attenuates the anorexia caused by these inflammatory signals. Our results demonstrate that these neurons mediate bidirectional control of general feeding behaviors. These neurons inhibit the lateral hypothalamus-projecting neurons in the ventrolateral part of BNST to regulate feeding, receive inputs from the canonical feeding regions of arcuate nucleus and parabrachial nucleus. Our data therefore define a BNST microcircuit that might coordinate canonical feeding centers to regulate food intake, which could offer therapeutic targets for feeding-related diseases such as anorexia and obesity.


Assuntos
Anorexia/fisiopatologia , Comportamento Alimentar/fisiologia , Inflamação/fisiopatologia , Neurônios/fisiologia , Núcleos Septais/fisiologia , Animais , Anorexia/etiologia , Anorexia/prevenção & controle , Núcleo Arqueado do Hipotálamo/fisiologia , Modelos Animais de Doenças , Ingestão de Alimentos/fisiologia , Feminino , Humanos , Inflamação/complicações , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/fisiologia , Obesidade/etiologia , Obesidade/fisiopatologia , Núcleos Parabraquiais/fisiologia , Proteína Quinase C-delta/genética , Proteína Quinase C-delta/metabolismo , Núcleos Septais/citologia , Técnicas Estereotáxicas
11.
Nat Commun ; 10(1): 2772, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235693

RESUMO

Movement through space is a fundamental behavior for all animals. Cognitive maps of environments are encoded in the hippocampal formation in an allocentric reference frame, but motor movements that comprise physical navigation are represented within an egocentric reference frame. Allocentric navigational plans must be converted to an egocentric reference frame prior to implementation as overt behavior. Here we describe an egocentric spatial representation of environmental boundaries in the dorsomedial striatum.


Assuntos
Corpo Estriado/fisiologia , Locomoção/fisiologia , Modelos Biológicos , Orientação Espacial/fisiologia , Percepção Espacial/fisiologia , Animais , Comportamento Animal , Corpo Estriado/citologia , Eletrodos Implantados , Masculino , Modelos Animais , Neurônios/fisiologia , Ratos , Ratos Long-Evans , Técnicas Estereotáxicas
12.
Life Sci ; 231: 116566, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31201846

RESUMO

AIMS: Diabetes mellitus can cause cognitive impairments, a state between normal aging and dementia. Effective clinical interventions are urgently needed to prevent or treat this complication. Liraglutide as a glucagon-like peptide 1 analog has been shown to exert memory-enhancing and neuroprotective effects on neurodegenerative diseases. This study aims to investigate the neuroprotective effects of liraglutide in streptozotocin (STZ)-induced diabetic mice with cognitive deficits. METHODS: Male C57BL/6J mice were intraperitoneal injected with STZ (65 mg/kg body weight daily for 5 days) to induce type 1 diabetes model. Then the mice were treated with liraglutide (250 mg/kg/day, for 6 weeks) or saline. Weekly changes of body weight and fasting blood glucose were measured. Cognitive performance was evaluated by Morris water maze test. The ultrastructure of hippocampus was observed by transmission electron microscope. The superoxide dismutase activities and malondialdehyde levels in the hippocampus were detected by biochemistry assay. Apoptosis-related proteins and phosphoinositide 3-kinase (PI3K)/protein kinase-B (Akt) signaling were detected by Western blotting. KEY FINDINGS: We found that STZ-induced diabetic mice exhibited impaired learning and memory, ultrastructure damage of hippocampal neurons and synapses, exacerbated oxidative stress and neuronal apoptosis, as compared to the control mice. These effects were attenuated by the treatment with liraglutide. Furthermore, liraglutide reversed diabetes-induced alterations in PI3K/Akt signaling pathway that plays an essential role in modulating neuronal survival, apoptosis and plasticity. SIGNIFICANCE: These data suggest that the neuroprotective effects of liraglutide on diabetes-induced cognitive impairments are associated with the improvements of hippocampal synapses and inhibition of neuronal apoptosis.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Complicações do Diabetes/tratamento farmacológico , Liraglutida/farmacologia , Animais , Apoptose/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Cognição/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Modelos Animais de Doenças , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipoglicemiantes/farmacologia , Liraglutida/metabolismo , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estreptozocina/efeitos adversos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
13.
Nat Commun ; 10(1): 2845, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253782

RESUMO

A puzzle for neuroscience-and robotics-is how insects achieve surprisingly complex behaviours with such tiny brains. One example is depth perception via binocular stereopsis in the praying mantis, a predatory insect. Praying mantids use stereopsis, the computation of distances from disparities between the two retinal images, to trigger a raptorial strike of their forelegs when prey is within reach. The neuronal basis of this ability is entirely unknown. Here we show the first evidence that individual neurons in the praying mantis brain are tuned to specific disparities and eccentricities, and thus locations in 3D-space. Like disparity-tuned cortical cells in vertebrates, the responses of these mantis neurons are consistent with linear summation of binocular inputs followed by an output nonlinearity. Our study not only proves the existence of disparity sensitive neurons in an insect brain, it also reveals feedback connections hitherto undiscovered in any animal species.


Assuntos
Encéfalo/fisiologia , Percepção de Profundidade/fisiologia , Mantódeos/fisiologia , Neurônios/fisiologia , Animais , Encéfalo/citologia , Visão Binocular/fisiologia
14.
Nat Commun ; 10(1): 2851, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253786

RESUMO

Male and female brains differ significantly in both health and disease, and yet the female brain has been understudied. Sex-hormone fluctuations make the female brain particularly dynamic and are likely to confer female-specific risks for neuropsychiatric disorders. The molecular mechanisms underlying the dynamic nature of the female brain structure and function are unknown. Here we show that neuronal chromatin organization in the female ventral hippocampus of mouse fluctuates with the oestrous cycle. We find chromatin organizational changes associated with the transcriptional activity of genes important for neuronal function and behaviour. We link these chromatin dynamics to variation in anxiety-related behaviour and brain structure. Our findings implicate an immediate-early gene product, Egr1, as part of the mechanism mediating oestrous cycle-dependent chromatin and transcriptional changes. This study reveals extreme, sex-specific dynamism of the neuronal epigenome, and establishes a foundation for the development of sex-specific treatments for disorders such as anxiety and depression.


Assuntos
Encéfalo/fisiologia , Cromatina/fisiologia , Ciclo Estral/fisiologia , Neurônios/fisiologia , Animais , Comportamento Animal , Encéfalo/citologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Epigenômica , Estradiol/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Progesterona/metabolismo , Ligação Proteica , RNA/genética , RNA/metabolismo
15.
Nat Neurosci ; 22(7): 1110-1121, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31160741

RESUMO

Learning to predict rewards based on environmental cues is essential for survival. The orbitofrontal cortex (OFC) contributes to such learning by conveying reward-related information to brain areas such as the ventral tegmental area (VTA). Despite this, how cue-reward memory representations form in individual OFC neurons and are modified based on new information is unknown. To address this, using in vivo two-photon calcium imaging in mice, we tracked the response evolution of thousands of OFC output neurons, including those projecting to VTA, through multiple days and stages of cue-reward learning. Collectively, we show that OFC contains several functional clusters of neurons distinctly encoding cue-reward memory representations, with only select responses routed downstream to VTA. Unexpectedly, these representations were stably maintained by the same neurons even after extinction of the cue-reward pairing, and supported behavioral learning and memory. Thus, OFC neuronal activity represents a long-term cue-reward associative memory to support behavioral adaptation.


Assuntos
Adaptação Psicológica/fisiologia , Aprendizagem por Associação/fisiologia , Sinalização do Cálcio , Condicionamento Clássico/fisiologia , Memória de Longo Prazo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Recompensa , Estimulação Acústica , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Sinais (Psicologia) , Comportamento de Ingestão de Líquido/fisiologia , Extinção Psicológica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/fisiologia , Neurônios/enzimologia , Optogenética , Técnicas de Patch-Clamp , Córtex Pré-Frontal/citologia , Análise de Célula Única , Área Tegmentar Ventral/fisiologia
16.
Nat Neurosci ; 22(7): 1132-1139, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31182867

RESUMO

An approaching predator and self-motion toward an object can generate similar looming patterns on the retina, but these situations demand different rapid responses. How central circuits flexibly process visual cues to activate appropriate, fast motor pathways remains unclear. Here we identify two descending neuron (DN) types that control landing and contribute to visuomotor flexibility in Drosophila. For each, silencing impairs visually evoked landing, activation drives landing, and spike rate determines leg extension amplitude. Critically, visual responses of both DNs are severely attenuated during non-flight periods, effectively decoupling visual stimuli from the landing motor pathway when landing is inappropriate. The flight-dependence mechanism differs between DN types. Octopamine exposure mimics flight effects in one, whereas the other probably receives neuronal feedback from flight motor circuits. Thus, this sensorimotor flexibility arises from distinct mechanisms for gating action-specific descending pathways, such that sensory and motor networks are coupled or decoupled according to the behavioral state.


Assuntos
Drosophila melanogaster/fisiologia , Reação de Fuga/fisiologia , Voo Animal/fisiologia , Atividade Motora/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia , Potenciais de Ação , Animais , Vias Eferentes/fisiologia , Octopamina/farmacologia , Técnicas de Patch-Clamp , Estimulação Luminosa
17.
Nat Commun ; 10(1): 2748, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227709

RESUMO

The human amygdala grows during childhood, and its abnormal development is linked to mood disorders. The primate amygdala contains a large population of immature neurons in the paralaminar nuclei (PL), suggesting protracted development and possibly neurogenesis. Here we studied human PL development from embryonic stages to adulthood. The PL develops next to the caudal ganglionic eminence, which generates inhibitory interneurons, yet most PL neurons express excitatory markers. In children, most PL cells are immature (DCX+PSA-NCAM+), and during adolescence many transition into mature (TBR1+VGLUT2+) neurons. Immature PL neurons persist into old age, yet local progenitor proliferation sharply decreases in infants. Using single nuclei RNA sequencing, we identify the transcriptional profile of immature excitatory neurons in the human amygdala between 4-15 years. We conclude that the human PL contains excitatory neurons that remain immature for decades, a possible substrate for persistent plasticity at the interface of the hippocampus and amygdala.


Assuntos
Desenvolvimento do Adolescente/fisiologia , Complexo Nuclear Basolateral da Amígdala/crescimento & desenvolvimento , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Adolescente , Adulto , Idoso , Complexo Nuclear Basolateral da Amígdala/citologia , Núcleo Celular/genética , Criança , Pré-Escolar , Feto , Hipocampo/fisiologia , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Plasticidade Neuronal/fisiologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Adulto Jovem
18.
Nihon Yakurigaku Zasshi ; 153(6): 278-283, 2019.
Artigo em Japonês | MEDLINE | ID: mdl-31178533

RESUMO

The neuronal activity forms the basis of functional circuits and brain functions. To understand how the brain operates, recording of neural activity at micro-, meso-, and macro-scales is required. Recently, improved optical microscopic technology helps us to develop a whole-brain imaging system at a single-cell resolution. The combination of a whole-brain imaging system and a reporter system of neuronal activation enables a whole-brain mapping of neuronal activity. In this review, we first describe the high-speed and scalable whole-brain imaging system including our recently developed system, named FAST, and then present the instances of whole-brain mapping of neuronal activity and its analytical methods.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso , Neurônios/fisiologia , Análise de Célula Única , Humanos
19.
Nat Commun ; 10(1): 2642, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201331

RESUMO

Transcranial magnetic stimulation (TMS) can non-invasively modulate neural activity in humans. Despite three decades of research, the spatial extent of the cortical area activated by TMS is still controversial. Moreover, how TMS interacts with task-related activity during motor behavior is unknown. Here, we applied single-pulse TMS over macaque parietal cortex while recording single-unit activity at various distances from the center of stimulation during grasping. The spatial extent of TMS-induced activation is remarkably restricted, affecting the spiking activity of single neurons in an area of cortex measuring less than 2 mm in diameter. In task-related neurons, TMS evokes a transient excitation followed by reduced activity, paralleled by a significantly longer grasping time. Furthermore, TMS-induced activity and task-related activity do not summate in single neurons. These results furnish crucial experimental evidence for the neural effects of TMS at the single-cell level and uncover the neural underpinnings of behavioral effects of TMS.


Assuntos
Modelos Biológicos , Neurônios/fisiologia , Lobo Parietal/fisiologia , Estimulação Magnética Transcraniana , Animais , Comportamento Animal/fisiologia , Eletroencefalografia/instrumentação , Macaca mulatta , Imagem por Ressonância Magnética , Masculino , Microeletrodos , Modelos Animais , Lobo Parietal/diagnóstico por imagem , Análise de Célula Única
20.
Nat Commun ; 10(1): 2637, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201332

RESUMO

The brain stores and recalls memories through a set of neurons, termed engram cells. However, it is unclear how these cells are organized to constitute a corresponding memory trace. We established a unique imaging system that combines Ca2+ imaging and engram identification to extract the characteristics of engram activity by visualizing and discriminating between engram and non-engram cells. Here, we show that engram cells detected in the hippocampus display higher repetitive activity than non-engram cells during novel context learning. The total activity pattern of the engram cells during learning is stable across post-learning memory processing. Within a single engram population, we detected several sub-ensembles composed of neurons collectively activated during learning. Some sub-ensembles preferentially reappear during post-learning sleep, and these replayed sub-ensembles are more likely to be reactivated during retrieval. These results indicate that sub-ensembles represent distinct pieces of information, which are then orchestrated to constitute an entire memory.


Assuntos
Hipocampo/fisiologia , Memória/fisiologia , Neurônios/fisiologia , Animais , Mapeamento Encefálico/métodos , Feminino , Hipocampo/citologia , Microscopia Intravital/métodos , Proteínas Luminescentes/química , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Microscopia de Fluorescência/métodos , Modelos Animais , Imagem Óptica/métodos , Optogenética/métodos , Sono/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA