Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.965
Filtrar
1.
J Exp Med ; 218(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33433624

RESUMO

Although COVID-19 is considered to be primarily a respiratory disease, SARS-CoV-2 affects multiple organ systems including the central nervous system (CNS). Yet, there is no consensus on the consequences of CNS infections. Here, we used three independent approaches to probe the capacity of SARS-CoV-2 to infect the brain. First, using human brain organoids, we observed clear evidence of infection with accompanying metabolic changes in infected and neighboring neurons. However, no evidence for type I interferon responses was detected. We demonstrate that neuronal infection can be prevented by blocking ACE2 with antibodies or by administering cerebrospinal fluid from a COVID-19 patient. Second, using mice overexpressing human ACE2, we demonstrate SARS-CoV-2 neuroinvasion in vivo. Finally, in autopsies from patients who died of COVID-19, we detect SARS-CoV-2 in cortical neurons and note pathological features associated with infection with minimal immune cell infiltrates. These results provide evidence for the neuroinvasive capacity of SARS-CoV-2 and an unexpected consequence of direct infection of neurons by SARS-CoV-2.


Assuntos
Anticorpos Bloqueadores/química , Córtex Cerebral , Neurônios , /metabolismo , /antagonistas & inibidores , Animais , /patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/virologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Neurônios/virologia , Organoides/metabolismo , Organoides/patologia , Organoides/virologia
2.
Cell Stem Cell ; 27(6): 937-950.e9, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33010822

RESUMO

Neurological complications are common in patients with COVID-19. Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal pathogen of COVID-19, has been detected in some patient brains, its ability to infect brain cells and impact their function is not well understood. Here, we investigated the susceptibility of human induced pluripotent stem cell (hiPSC)-derived monolayer brain cells and region-specific brain organoids to SARS-CoV-2 infection. We found that neurons and astrocytes were sparsely infected, but choroid plexus epithelial cells underwent robust infection. We optimized a protocol to generate choroid plexus organoids from hiPSCs and showed that productive SARS-CoV-2 infection of these organoids is associated with increased cell death and transcriptional dysregulation indicative of an inflammatory response and cellular function deficits. Together, our findings provide evidence for selective SARS-CoV-2 neurotropism and support the use of hiPSC-derived brain organoids as a platform to investigate SARS-CoV-2 infection susceptibility of brain cells, mechanisms of virus-induced brain dysfunction, and treatment strategies.


Assuntos
Plexo Corióideo/virologia , Células-Tronco Neurais/virologia , Organoides/virologia , Células-Tronco Pluripotentes/virologia , Tropismo Viral , Animais , Astrócitos/virologia , Encéfalo/citologia , Encéfalo/virologia , /virologia , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Neurônios/virologia
3.
Arch Virol ; 165(12): 2857-2867, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33034763

RESUMO

Rabies is an important zoonotic disease in Iran. Autophagy is a process that maintains homeostasis and can be used as an innate defense mechanism against viruses. Apoptosis is the process of programmed cell death induced by physiological and pathological conditions. The crosstalk of autophagy and apoptosis plays a key role in rabies virus infection. In the current study, NMRI mice intra-cranially received 3-Methyl Adenine (3-MA), rapamycin, street rabies virus (SRABV) and drugs plus SRABV. SRABV and Map1lc3, Beclin-1, Atg5 gene expression were assayed by real-time PCR. Immunohistochemistry was carried out via LC3 protein staining as an autophagy marker, and apoptotic cell death was measured using a TUNEL assay. Map1lc3, Beclin-1 and Atg5 genes expression was significantly increased in drug-plus-SRBV-treated tissues compared to control at 24 hpi. Map1lc3 and Atg5 gene expression showed a slight change in the drugs-plus-virus group compared with the control at 72 hpi. The presence of LC3 in the tissues of the group treated with rapamycin plus SRBV confirmed induction of autophagy, but it was not present in the tissues treated with 3-MA plus SRBV. Our data revealed that apoptosis was induced only in the groups receiving the SRBV or rapamycin or both at 24 hpi. Apoptosis was observed after 72 hours, when the drugs' effect had disappeared in all but the autophagy inhibitor group. Understanding the interaction of SRABV with autophagy pathway genes and its effect on host cell apoptosis may open a new horizon for human intervention and allow a deeper understanding of rabies infections.


Assuntos
Apoptose , Autofagia , Encéfalo/patologia , Neurônios/citologia , Vírus da Raiva/fisiologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Encéfalo/virologia , Modelos Animais de Doenças , Técnica Direta de Fluorescência para Anticorpo , Camundongos , Neurônios/virologia , Raiva/patologia , Raiva/virologia , Vírus da Raiva/genética , Sirolimo/farmacologia , Proteínas Virais/metabolismo , Replicação Viral
4.
Mol Neurobiol ; 57(12): 5263-5275, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32869183

RESUMO

Similar to its predecessors, coronavirus disease 2019 (COVID-19) exhibits neurotrophic properties, which lead to progression of neurologic sequelae. Besides direct viral invasion to the central nervous system (CNS), indirect CNS involvement through viral-mediated immune response is plausible. Aberrant immune pathways such as extreme release of cytokines (cytokine storm), autoimmunity mediated by cross-reactivity between CNS components and viral particles, and microglial activation propagate CNS damage in these patients. Here, we review the currently available evidence to discuss the plausible immunologic pathways that may contribute to the development of COVID-19 neurological complications, namely Alzheimer's disease, Parkinson's disease, stroke, multiple sclerosis, Guillain-Barre syndrome, seizure, and brainstem involvement.


Assuntos
Betacoronavirus , Infecções por Coronavirus/complicações , Doenças do Sistema Nervoso/etiologia , Pandemias , Pneumonia Viral/complicações , Animais , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , Tronco Encefálico/fisiopatologia , Tronco Encefálico/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/imunologia , Efeito Citopatogênico Viral , Surtos de Doenças , Síndrome de Guillain-Barré/etiologia , Síndrome de Guillain-Barré/imunologia , Humanos , Camundongos , Esclerose Múltipla/etiologia , Esclerose Múltipla/imunologia , Proteínas do Tecido Nervoso/fisiologia , Doenças do Sistema Nervoso/imunologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/imunologia , Neuroglia/patologia , Neuroglia/virologia , Neurônios/patologia , Neurônios/virologia , Peptidil Dipeptidase A/fisiologia , Pneumonia Viral/imunologia , Receptores Virais/fisiologia , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/fisiopatologia , Convulsões/etiologia , Convulsões/imunologia , Síndrome Respiratória Aguda Grave/complicações , Síndrome Respiratória Aguda Grave/epidemiologia , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/imunologia
5.
J Neurovirol ; 26(5): 631-641, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32876900

RESUMO

A subset of patients with coronavirus 2 disease (COVID-19) experience neurological complications. These complications include loss of sense of taste and smell, stroke, delirium, and neuromuscular signs and symptoms. The etiological agent of COVID-19 is SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), an RNA virus with a glycoprotein-studded viral envelope that uses ACE2 (angiotensin-converting enzyme 2) as a functional receptor for infecting the host cells. Thus, the interaction of the envelope spike proteins with ACE2 on host cells determines the tropism and virulence of SARS-CoV-2. Loss of sense of taste and smell is an initial symptom of COVID-19 because the virus enters the nasal and oral cavities first and the epithelial cells are the receptors for these senses. Stroke in COVID-19 patients is likely a consequence of coagulopathy and injury to cerebral vascular endothelial cells that cause thrombo-embolism and stroke. Delirium and encephalopathy in acute and post COVID-19 patients are likely multifactorial and secondary to hypoxia, metabolic abnormalities, and immunological abnormalities. Thus far, there is no clear evidence that coronaviruses cause inflammatory neuromuscular diseases via direct invasion of peripheral nerves or muscles or via molecular mimicry. It appears that most of neurologic complications in COVID-19 patients are indirect and as a result of a bystander injury to neurons.


Assuntos
Betacoronavirus/patogenicidade , Encefalopatias/complicações , Infecções por Coronavirus/complicações , Transtornos do Olfato/complicações , Pneumonia Viral/complicações , Embolia Pulmonar/complicações , Acidente Vascular Cerebral/complicações , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Encéfalo/virologia , Encefalopatias/imunologia , Encefalopatias/patologia , Encefalopatias/virologia , Efeito Espectador , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Pulmão/irrigação sanguínea , Pulmão/patologia , Pulmão/virologia , Neurônios/patologia , Neurônios/virologia , Transtornos do Olfato/imunologia , Transtornos do Olfato/patologia , Transtornos do Olfato/virologia , Pandemias , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/imunologia , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Embolia Pulmonar/imunologia , Embolia Pulmonar/patologia , Embolia Pulmonar/virologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/virologia
6.
Sci Rep ; 10(1): 15234, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943650

RESUMO

Enterovirus A71 (EV-A71), which belongs to the family Picornaviridae, can invade the central nervous system (CNS) and cause severe CNS complications or death. The EV-A71 antigen has been detected in the neurons in the brains of humans who died from EV-A71 infection. However, the effect of EV-A71 infection on human neuronal cells remains poorly understood. Human neural stem cells (NSCs) and IMR-32 neuroblastoma cells were differentiated into neuronal cells for this study. Although the neuronal cells were permissive to EV-A71 infection, EV-A71 infection did not induce an obvious cytopathic effect on the neuronal cells. EV-A71 infection did not induce apoptosis in neuronal cells. However, autophagy and autophagic flux were induced in EV-A71-infected neuronal cells. The production of autophagosomes was shown to be important for EV-A71 viral RNA (vRNA) replication in neuronal cells.


Assuntos
Enterovirus Humano A/fisiologia , Enterovirus Humano A/patogenicidade , Neurônios/virologia , Autofagossomos/virologia , Autofagia/fisiologia , Caspases/metabolismo , Diferenciação Celular , Células Cultivadas , Efeito Citopatogênico Viral/fisiologia , Enterovirus Humano A/genética , Ativação Enzimática , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Células-Tronco Neurais/virologia , Neurônios/metabolismo , Neurônios/patologia , RNA Viral/biossíntese , RNA Viral/genética , Replicação Viral/fisiologia
7.
Viruses ; 12(9)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911874

RESUMO

Since the global outbreak of SARS-CoV-2 (COVID-19), infections of diverse human organs along with multiple symptoms continue to be reported. However, the susceptibility of the brain to SARS-CoV-2, and the mechanisms underlying neurological infection are still elusive. Here, we utilized human embryonic stem cell-derived brain organoids and monolayer cortical neurons to investigate infection of brain with pseudotyped SARS-CoV-2 viral particles. Spike-containing SARS-CoV-2 pseudovirus infected neural layers within brain organoids. The expression of ACE2, a host cell receptor for SARS-CoV-2, was sustained during the development of brain organoids, especially in the somas of mature neurons, while remaining rare in neural stem cells. However, pseudotyped SARS-CoV-2 was observed in the axon of neurons, which lack ACE2. Neural infectivity of SARS-CoV-2 pseudovirus did not increase in proportion to viral load, but only 10% of neurons were infected. Our findings demonstrate that brain organoids provide a useful model for investigating SARS-CoV-2 entry into the human brain and elucidating the susceptibility of the brain to SARS-CoV-2.


Assuntos
Betacoronavirus/fisiologia , Neurônios/virologia , Organoides/virologia , Prosencéfalo/virologia , Glicoproteína da Espícula de Coronavírus/fisiologia , Axônios/enzimologia , Diferenciação Celular , Células Cultivadas , Córtex Cerebral/citologia , Células-Tronco Embrionárias/virologia , Células HEK293 , Humanos , Proteínas do Tecido Nervoso/fisiologia , Células-Tronco Neurais/enzimologia , Células-Tronco Neurais/virologia , Neurônios/enzimologia , Peptidil Dipeptidase A/fisiologia , Prosencéfalo/citologia , Receptores Virais/fisiologia , Carga Viral , Tropismo Viral , Internalização do Vírus
8.
EMBO J ; 39(20): e106230, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32876341

RESUMO

COVID-19 pandemic caused by SARS-CoV-2 infection is a public health emergency. COVID-19 typically exhibits respiratory illness. Unexpectedly, emerging clinical reports indicate that neurological symptoms continue to rise, suggesting detrimental effects of SARS-CoV-2 on the central nervous system (CNS). Here, we show that a Düsseldorf isolate of SARS-CoV-2 enters 3D human brain organoids within 2 days of exposure. We identified that SARS-CoV-2 preferably targets neurons of brain organoids. Imaging neurons of organoids reveal that SARS-CoV-2 exposure is associated with altered distribution of Tau from axons to soma, hyperphosphorylation, and apparent neuronal death. Our studies, therefore, provide initial insights into the potential neurotoxic effect of SARS-CoV-2 and emphasize that brain organoids could model CNS pathologies of COVID-19.


Assuntos
Betacoronavirus/fisiologia , Encéfalo/virologia , Neurônios/virologia , Animais , Morte Celular , Chlorocebus aethiops , Humanos , Doenças do Sistema Nervoso/virologia , Organoides , Células Vero , Proteínas tau/metabolismo
9.
J Virol ; 94(20)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32796063

RESUMO

Alpha/beta interferon (IFN-α/ß) signaling through the IFN-α/ß receptor (IFNAR) is essential to limit virus dissemination throughout the central nervous system (CNS) following many neurotropic virus infections. However, the distinct expression patterns of factors associated with the IFN-α/ß pathway in different CNS resident cell populations implicate complex cooperative pathways in IFN-α/ß induction and responsiveness. Here we show that mice devoid of IFNAR1 signaling in calcium/calmodulin-dependent protein kinase II alpha (CaMKIIα) expressing neurons (CaMKIIcre:IFNARfl/fl mice) infected with a mildly pathogenic neurotropic coronavirus (mouse hepatitis virus A59 strain [MHV-A59]) developed severe encephalomyelitis with hind-limb paralysis and succumbed within 7 days. Increased virus spread in CaMKIIcre:IFNARfl/fl mice compared to IFNARfl/fl mice affected neurons not only in the forebrain but also in the mid-hind brain and spinal cords but excluded the cerebellum. Infection was also increased in glia. The lack of viral control in CaMKIIcre:IFNARfl/fl relative to control mice coincided with sustained Cxcl1 and Ccl2 mRNAs but a decrease in mRNA levels of IFNα/ß pathway genes as well as Il6, Tnf, and Il1ß between days 4 and 6 postinfection (p.i.). T cell accumulation and IFN-γ production, an essential component of virus control, were not altered. However, IFN-γ responsiveness was impaired in microglia/macrophages irrespective of similar pSTAT1 nuclear translocation as in infected controls. The results reveal how perturbation of IFN-α/ß signaling in neurons can worsen disease course and disrupt complex interactions between the IFN-α/ß and IFN-γ pathways in achieving optimal antiviral responses.IMPORTANCE IFN-α/ß induction limits CNS viral spread by establishing an antiviral state, but also promotes blood brain barrier integrity, adaptive immunity, and activation of microglia/macrophages. However, the extent to which glial or neuronal signaling contributes to these diverse IFN-α/ß functions is poorly understood. Using a neurotropic mouse hepatitis virus encephalomyelitis model, this study demonstrated an essential role of IFN-α/ß receptor 1 (IFNAR1) specifically in neurons to control virus spread, regulate IFN-γ signaling, and prevent acute mortality. The results support the notion that effective neuronal IFNAR1 signaling compensates for their low basal expression of genes in the IFN-α/ß pathway compared to glia. The data further highlight the importance of tightly regulated communication between the IFN-α/ß and IFN-γ signaling pathways to optimize antiviral IFN-γ activity.


Assuntos
Sistema Nervoso Central/virologia , Interferon Tipo I/metabolismo , Interferon gama/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Sistema Nervoso Central/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Encefalomielite/imunologia , Encefalomielite/virologia , Macrófagos/virologia , Camundongos , Camundongos Mutantes , Microglia/virologia , Vírus da Hepatite Murina/fisiologia , Neurônios/virologia , Infiltração de Neutrófilos , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Replicação Viral
10.
Nat Commun ; 11(1): 4148, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811834

RESUMO

We evaluate gene editing of HSV in a well-established mouse model, using adeno-associated virus (AAV)-delivered meganucleases, as a potentially curative approach to treat latent HSV infection. Here we show that AAV-delivered meganucleases, but not CRISPR/Cas9, mediate highly efficient gene editing of HSV, eliminating over 90% of latent virus from superior cervical ganglia. Single-cell RNA sequencing demonstrates that both HSV and individual AAV serotypes are non-randomly distributed among neuronal subsets in ganglia, implying that improved delivery to all neuronal subsets may lead to even more complete elimination of HSV. As predicted, delivery of meganucleases using a triple AAV serotype combination results in the greatest decrease in ganglionic HSV loads. The levels of HSV elimination observed in these studies, if translated to humans, would likely significantly reduce HSV reactivation, shedding, and lesions. Further optimization of meganuclease delivery and activity is likely possible, and may offer a pathway to a cure for HSV infection.


Assuntos
Desoxirribonucleases/genética , Dependovirus/genética , Infecções Oculares/terapia , Edição de Genes/métodos , Herpes Simples/terapia , Herpesvirus Humano 1/genética , Latência Viral/genética , Animais , Sistemas CRISPR-Cas/genética , Células Cultivadas , Chlorocebus aethiops , Infecções Oculares/genética , Infecções Oculares/virologia , Feminino , Células HEK293 , Herpes Simples/genética , Herpesvirus Humano 1/patogenicidade , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/virologia , RNA-Seq , Análise de Célula Única , Gânglio Cervical Superior/metabolismo , Gânglio Cervical Superior/virologia , Células Vero
11.
J Virol ; 94(20)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32796068

RESUMO

Methamphetamine, a potent psychostimulant, is a highly addictive drug commonly used by persons living with HIV (PLWH), and its use can result in cognitive impairment and memory deficits long after its use is discontinued. Although the mechanism(s) involved with persistent neurological deficits is not fully known, mitochondrial dysfunction is a key component in methamphetamine neuropathology. Specific mitochondrial autophagy (mitophagy) and mitochondrial fusion and fission are protective quality control mechanisms that can be dysregulated in HIV infection, and the use of methamphetamine can further negatively affect these protective cellular mechanisms. Here, we observed that treatment of human primary neurons (HPNs) with methamphetamine and HIV gp120 and Tat increase dynamin-related protein 1 (DRP1)-dependent mitochondrial fragmentation and neuronal degeneration. Methamphetamine and HIV proteins increased microtubule-associated protein 1 light chain 3 beta-II (LC3B-II) lipidation and induced sequestosome 1 (SQSTM1, p62) translocation to damaged mitochondria. Additionally, the combination inhibited autophagic flux, increased reactive oxygen species (ROS) production and mitochondrial damage, and reduced microtubule-associated protein 2 (MAP2) dendrites in human neurons. N-Acetylcysteine (NAC), a strong antioxidant and ROS scavenger, abrogated DRP1-dependent mitochondrial fragmentation and neurite degeneration. Thus, we show that methamphetamine combined with HIV proteins inhibits mitophagy and induces neuronal damage, and NAC reverses these deleterious effects on mitochondrial function.IMPORTANCE Human and animal studies show that HIV infection, combined with the long-term use of psychostimulants, increases neuronal stress and the occurrence of HIV-associated neurocognitive disorders (HAND). On the cellular level, mitochondrial function is critical for neuronal health. In this study, we show that in human primary neurons, the combination of HIV proteins and methamphetamine increases oxidative stress, DRP1-mediated mitochondrial fragmentation, and neuronal injury manifested by a reduction in neuronal network and connectivity. The use of NAC, a potent antioxidant, reversed the neurotoxic effects of HIV and methamphetamine, suggesting a novel approach to ameliorate the effects of HIV- and methamphetamine-associated cognitive deficits.


Assuntos
Infecções por HIV/metabolismo , HIV-1/metabolismo , Metanfetamina/efeitos adversos , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Células Cultivadas , Dinaminas/genética , Dinaminas/metabolismo , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/genética , Infecções por HIV/patologia , HIV-1/genética , Humanos , Metanfetamina/farmacologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/virologia , Neurônios/patologia , Neurônios/virologia , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
12.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796066

RESUMO

Rabies, caused by rabies virus (RABV), is an ancient zoonosis and still a major public health problem for humans, especially in developing countries. RABV can be recognized by specific innate recognition receptors, resulting in the production of hundreds of interferon-stimulated genes (ISGs), which can inhibit viral replication at different stages. Interferon-inducible GTPase 1 (IIGP1) is a mouse-specific ISG and belongs to the immunity-related GTPases (IRGs) family. IIGP is reported to constrain intracellular parasite infection by disrupting the parasitophorous vacuole membrane. However, the role of IIGP1 in restricting viral replication has not been reported. In this present study, we found that IIGP1 was upregulated in cells and mouse brains upon RABV infection. Overexpression of IIGP1 limited RABV replication in cell lines and reduced viral pathogenicity in a mouse model. Consistently, deficiency of IIGP1 enhanced RABV replication in different parts of mouse brains. Furthermore, we found that IIGP1 could interact with RABV phosphoprotein (P protein). Mutation and immunoprecipitation analyses revealed that the Y128 site of P protein is critical for its interaction with IIGP1. Further study demonstrated that this interaction impeded the dimerization of P protein and thus suppressed RABV replication. Collectively, our findings for the first reveal a novel role of IIGP1 in restricting a typical neurotropic virus, RABV, which will provide fresh insight into the function of this mouse-specific ISG.IMPORTANCE Interferon and its downstream products, ISGs, are essential in defending against pathogen invasion. One of the ISGs, IIGP1, has been found to constrain intracellular parasite infection by disrupting their vacuole membranes. However, the role of IIGP1 in limiting viral infection is unclear. In this study, we show that infection with a typical neurotropic virus, RABV, can induce upregulation of IIGP1, which, in turn, suppresses RABV by interacting with its phosphoprotein (P protein) and thus blocking the dimerization of P protein. Our study provides the first evidence that IIGP1 functions in limiting viral infection and provides a basis for comprehensive understanding of this important ISG.


Assuntos
GTP Fosfo-Hidrolases/genética , Fosfoproteínas/genética , Vírus da Raiva/genética , Raiva/genética , Proteínas Virais/genética , Replicação Viral/genética , Animais , Linhagem Celular Tumoral , Feminino , GTP Fosfo-Hidrolases/deficiência , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroglia/metabolismo , Neuroglia/virologia , Neurônios/metabolismo , Neurônios/virologia , Fosfoproteínas/metabolismo , Multimerização Proteica , Raiva/mortalidade , Raiva/patologia , Raiva/virologia , Vírus da Raiva/crescimento & desenvolvimento , Vírus da Raiva/patogenicidade , Transdução de Sinais , Análise de Sobrevida , Proteínas Virais/metabolismo
13.
J Virol ; 94(19)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32699089

RESUMO

Herpes simplex virus (HSV) is a neuroinvasive virus that has been used as a model organism for studying common properties of all herpesviruses. HSV induces host organelle rearrangement and forms multiple, dispersed assembly compartments in epithelial cells, which complicates the study of HSV assembly. In this study, we show that HSV forms a visually distinct unitary cytoplasmic viral assembly center (cVAC) in both cancerous and primary neuronal cells that concentrates viral structural proteins and is a major site of capsid envelopment. The HSV cVAC also concentrates host membranes that are important for viral assembly, such as Golgi- and recycling endosome-derived membranes. Finally, we show that HSV cVAC formation and/or maintenance depends on an intact microtubule network and a viral tegument protein, pUL51. Our observations suggest that the neuronal cVAC is a uniquely useful model to study common herpesvirus assembly pathways and cell-specific pathways for membrane reorganization.IMPORTANCE Herpesvirus particles are complex and contain many different proteins that must come together in an organized and coordinated fashion. Many viruses solve this coordination problem by creating a specialized assembly factory in the host cell, and the formation of such factories provides a promising target for interfering with virus production. Herpes simplex virus 1 (HSV-1) infects several types of cells, including neurons, but has not previously been shown to form such an organized factory in the nonneuronal cells in which its assembly has been best studied. Here, we show that HSV-1 forms an organized assembly factory in neuronal cells, and we identify some of the viral and host cell factors that are important for its formation.


Assuntos
Membrana Celular/fisiologia , Herpesvirus Humano 1/fisiologia , Neurônios/virologia , Proteínas Virais/metabolismo , Montagem de Vírus/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Citoplasma/virologia , Complexo de Golgi/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Células Vero , Proteínas Estruturais Virais/metabolismo , Vírion/metabolismo
14.
Cell Mol Life Sci ; 77(24): 5079-5099, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32577796

RESUMO

Human immunodeficiency virus type 1 (HIV-1) transactivator of transcription (Tat) is a potent mediator involved in the development of HIV-1-associated neurocognitive disorders (HAND). Tat is expressed even in the presence of antiretroviral therapy (ART) and is able to enter the central nervous system (CNS) through a variety of ways, where Tat can interact with microglia, astrocytes, brain microvascular endothelial cells, and neurons. The presence of low concentrations of extracellular Tat alone has been shown to lead to dysregulated gene expression, chronic cell activation, inflammation, neurotoxicity, and structural damage in the brain. The reported effects of Tat are dependent in part on the specific HIV-1 subtype and amino acid length of Tat used. HIV-1 subtype B Tat is the most common subtype in North American and therefore, most studies have been focused on subtype B Tat; however, studies have shown many genetic, biologic, and pathologic differences between HIV subtype B and subtype C Tat. This review will focus primarily on subtype B Tat where the full-length protein is 101 amino acids, but will also consider variants of Tat, such as Tat 72 and Tat 86, that have been reported to exhibit a number of distinctive activities with respect to mediating CNS damage and neurotoxicity.


Assuntos
Complexo AIDS Demência/genética , Sistema Nervoso Central/patologia , Infecções por HIV/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Complexo AIDS Demência/patologia , Complexo AIDS Demência/terapia , Terapia Antirretroviral de Alta Atividade , Astrócitos/metabolismo , Astrócitos/patologia , Astrócitos/virologia , Sistema Nervoso Central/virologia , Regulação Viral da Expressão Gênica/genética , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/genética , HIV-1/patogenicidade , Humanos , Microglia/metabolismo , Microglia/patologia , Microglia/virologia , Neurônios/metabolismo , Neurônios/patologia , Neurônios/virologia
15.
ALTEX ; 37(4): 665-671, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32591839

RESUMO

Reports from Wuhan suggest that 36% of COVID-19 patients show neurological symptoms, and cases of viral encephalitis have been reported, suggesting that the virus is neurotropic under unknown circumstances. This is well established for other coronaviruses. In order to understand why some patients develop such symptoms and others do not, we address herein the infectability of the central nervous system (CNS). Reports that the ACE2 receptor ­ critical for virus entry into lung cells ­ is found in different neurons support this expectation. We employed a human induced pluripotent stem cell (iPSC)- derived BrainSphere model, which we used earlier for Zika, Dengue, HIV and John Cunningham virus infection studies. We detected the expression of the ACE2 receptor, but not TMPRSS2, in the model. Incubating the BrainSpheres for 6 hours with SARS-CoV-2 at a multiplicity of infection (MOI) of 0.1 led to infection of a fraction of neural cells with replication of the virus evident at 72 hpi. Virus particles were found in the neuronal cell body extending into apparent neurite structures. PCR measurements corroborated the replication of the virus, suggesting at least a tenfold increase in virus copies per total RNA. Leveraging state-of-the-art 3D organotypic cell culture, which has been shown to allow both virus infection and modeling of (developmental) neurotoxicity but is at the same time simple enough to be transferred and used in a BSL-3 environment, we demonstrate, for the first time, the potential critically important neurotropism of SARS-CoV-2.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Células-Tronco Pluripotentes Induzidas/virologia , Neurônios/virologia , Pneumonia Viral/virologia , Tropismo , Humanos , Modelos Biológicos , Pandemias
16.
Neurotox Res ; 38(1): 1-7, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: covidwho-244976

RESUMO

As a severe and highly contagious infectious disease, coronavirus disease 2019 (COVID-19) has caused a global pandemic. Several case reports have demonstrated that the respiratory system is the main target in patients with COVID-19, but the disease is not limited to the respiratory system. Case analysis indicated that the nervous system can be invaded by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and that 36.4% of COVID-19 patients had neurological symptoms. Importantly, the involvement of the CNS may be associated with poor prognosis and disease worsening. Here, we discussed the symptoms and evidence of nervous system involvement (directly and indirectly) caused by SARS-CoV-2 infection and possible mechanisms. CNS symptoms could be a potential indicator of poor prognosis; therefore, the prevention and treatment of CNS symptoms are also crucial for the recovery of COVID-19 patients.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/complicações , Doenças do Sistema Nervoso/etiologia , Pneumonia Viral/complicações , Transtornos Cerebrovasculares/epidemiologia , Transtornos Cerebrovasculares/etiologia , Terapia Combinada , Transtornos da Consciência/epidemiologia , Transtornos da Consciência/etiologia , Infecções por Coronavirus/psicologia , Infecções por Coronavirus/virologia , Tontura/epidemiologia , Tontura/etiologia , Encefalite Viral/epidemiologia , Encefalite Viral/etiologia , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Fadiga/epidemiologia , Fadiga/etiologia , Cefaleia/epidemiologia , Cefaleia/etiologia , Humanos , Hipertensão Intracraniana/epidemiologia , Hipertensão Intracraniana/etiologia , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/epidemiologia , Transtornos Mentais/etiologia , Transtornos Mentais/terapia , Transtornos do Humor/tratamento farmacológico , Transtornos do Humor/epidemiologia , Transtornos do Humor/etiologia , Transtornos do Humor/terapia , Doenças do Sistema Nervoso/epidemiologia , Neurônios/metabolismo , Neurônios/virologia , Nervo Olfatório/virologia , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/psicologia , Pneumonia Viral/virologia , Prevalência , Prognóstico , Psicoterapia , Psicotrópicos/uso terapêutico , Receptores Virais/metabolismo , Estudos Retrospectivos , Transtornos das Sensações/epidemiologia , Transtornos das Sensações/etiologia , Glicoproteína da Espícula de Coronavírus/metabolismo
17.
PLoS One ; 15(5): e0232585, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32374750

RESUMO

Neurotropic flavivirus Japanese encephalitis virus (JEV) and West Nile virus (WNV) are amongst the leading causes of encephalitis. Using label-free quantitative proteomics, we identified proteins differentially expressed upon JEV (gp-3, RP9) or WNV (IS98) infection of human neuroblastoma cells. Data are available via ProteomeXchange with identifier PXD016805. Both viruses were associated with the up-regulation of immune response (IFIT1/3/5, ISG15, OAS, STAT1, IRF9) and the down-regulation of SSBP2 and PAM, involved in gene expression and in neuropeptide amidation respectively. Proteins associated to membranes, involved in extracellular matrix organization and collagen metabolism represented major clusters down-regulated by JEV and WNV. Moreover, transcription regulation and mRNA processing clusters were also heavily regulated by both viruses. The proteome of neuroblastoma cells infected by JEV or WNV was significantly modulated in the presence of mosquito saliva, but distinct patterns were associated to each virus. Mosquito saliva favored modulation of proteins associated with gene regulation in JEV infected neuroblastoma cells while modulation of proteins associated with protein maturation, signal transduction and ion transporters was found in WNV infected neuroblastoma cells.


Assuntos
Culicidae/metabolismo , Encefalite Japonesa/metabolismo , Neurônios/patologia , Proteoma/metabolismo , Febre do Nilo Ocidental/metabolismo , Animais , Linhagem Celular Tumoral , Culicidae/virologia , Vírus da Encefalite Japonesa (Subgrupo)/isolamento & purificação , Encefalite Japonesa/patologia , Encefalite Japonesa/virologia , Feminino , Humanos , Neurônios/metabolismo , Neurônios/virologia , Proteoma/análise , Saliva/metabolismo , Saliva/virologia , Febre do Nilo Ocidental/patologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/isolamento & purificação
18.
Med Sci (Paris) ; 36(5): 479-486, 2020 May.
Artigo em Francês | MEDLINE | ID: mdl-32452370

RESUMO

Infection of the brain with various types of pathogens, and the resulting inflammatory response, is becoming increasingly important in our understanding of the etiology of Alzheimer's disease (AD). The fact that several genes identified as risk factors are actually involved in the modulation of the immune response, as well as the very diversity of the infectious agents identified as possible actors in the evolution of this disease, argue in favor of the neuro-inflammatory hypothesis, as does the demonstration that the protein Aß, one of the most important markers of AD, is an antimicrobial peptide. Among others, herpes viruses (mainly, but not only, HSV-1), which can establish latent infections in brain neurons, especially in the elder population, punctuated by episodes of reactivation following stress or immunosuppression, appear as very strong candidates to play an etiological role, if only as cofactors, of AD. Recent results show that, in human and rat neurons, infection with HSV-1 increases the formation of Aß along the amyloidogenic pathway, as well as the phosphorylation of Tau proteins, another essential marker of AD. The growing evidence that chronic infections and defense mechanisms, including inflammatory processes, are at the heart of AD, warrants reviewing antiviral drugs such as acyclovir, and possibly vaccination, as potential avenues for AD control.


Assuntos
Doença de Alzheimer/etiologia , Herpesviridae/fisiologia , Inflamação/complicações , Neurônios/imunologia , Neurônios/virologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/terapia , Doença de Alzheimer/virologia , Animais , Antivirais/uso terapêutico , Infecções por Herpesviridae/complicações , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/patologia , Humanos , Inflamação/patologia , Inflamação/virologia , Neuroimunomodulação/fisiologia , Neurônios/patologia , Ratos , Fatores de Risco , Transdução de Sinais/fisiologia
19.
J Virol ; 94(15)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32461310

RESUMO

Herpes simplex virus 1 (HSV-1) establishes a lifelong latent infection in peripheral nerve ganglia. Periodically, the virus reactivates from this latent reservoir and is transported to the original site of infection. Strains of HSV-1 have been noted to vary greatly in their virulence and reactivation efficiencies in animal models. While HSV-1 strain 17syn + can be readily reactivated, strain KOS(M) shows little to no reactivation in the mouse and rabbit models of induced reactivation. Additionally, 17syn + is markedly more virulent in vivo than KOS. This has raised questions regarding potential strain-specific differences in neuroinvasion and neurovirulence and their contribution to differences in the establishment of latency (or ability to spread back to the periphery) and to the reactivation phenotype. To determine if any difference in the ability to reactivate between strains 17syn + and KOS(M) is manifest at the level of neurons, we utilized a recently characterized human neuronal cell line model of HSV latency and reactivation (LUHMES). We found that KOS(M) established latency with a higher number of viral genomes than strain 17syn + Strikingly, we show that the KOS(M) viral genomes have a higher burden of heterochromatin marks than strain 17syn + The increased heterochromatin profile for KOS(M) correlates with the reduced expression of viral lytic transcripts during latency and impaired induced reactivation compared to that of 17syn + These results suggest that genomes entering neurons from HSV-1 infections with strain KOS(M) are more prone to rapid heterochromatinization than those of 17syn + and that this results in a reduced ability to reactivate from latency.IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes a lifelong infection in neuronal cells. The virus periodically reactivates and causes recurrent disease. Strains of HSV-1 vary greatly in their virulence and potential to reactivate in animal models. Although these differences are phenotypically well defined, factors contributing to the strains' abilities to reactivate are largely unknown. We utilized a human neuronal cell line model of HSV latency and reactivation (LUHMES) to characterize the latent infection of two HSV-1 wild-type strains. We find that strain-specific differences in reactivation are recapitulated in LUHMES. Additionally, these differences correlate with the degree of heterochromatinization of the latent genomes. Our data suggest that the epigenetic state of the viral genome is an important determinant of reactivation that varies in a strain-specific manner. This work also shows the first evidence of strain-specific differences in reactivation outside the context of the whole animal at a human neuronal cell level.


Assuntos
Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , Modelos Biológicos , Neurônios/metabolismo , Ativação Viral/fisiologia , Latência Viral/fisiologia , Linhagem Celular , Herpes Simples/genética , Herpes Simples/patologia , Humanos , Neurônios/patologia , Neurônios/virologia
20.
Neurotox Res ; 38(1): 1-7, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32399719

RESUMO

As a severe and highly contagious infectious disease, coronavirus disease 2019 (COVID-19) has caused a global pandemic. Several case reports have demonstrated that the respiratory system is the main target in patients with COVID-19, but the disease is not limited to the respiratory system. Case analysis indicated that the nervous system can be invaded by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and that 36.4% of COVID-19 patients had neurological symptoms. Importantly, the involvement of the CNS may be associated with poor prognosis and disease worsening. Here, we discussed the symptoms and evidence of nervous system involvement (directly and indirectly) caused by SARS-CoV-2 infection and possible mechanisms. CNS symptoms could be a potential indicator of poor prognosis; therefore, the prevention and treatment of CNS symptoms are also crucial for the recovery of COVID-19 patients.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/complicações , Doenças do Sistema Nervoso/etiologia , Pneumonia Viral/complicações , Transtornos Cerebrovasculares/epidemiologia , Transtornos Cerebrovasculares/etiologia , Terapia Combinada , Transtornos da Consciência/epidemiologia , Transtornos da Consciência/etiologia , Infecções por Coronavirus/psicologia , Infecções por Coronavirus/virologia , Tontura/epidemiologia , Tontura/etiologia , Encefalite Viral/epidemiologia , Encefalite Viral/etiologia , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Fadiga/epidemiologia , Fadiga/etiologia , Cefaleia/epidemiologia , Cefaleia/etiologia , Humanos , Hipertensão Intracraniana/epidemiologia , Hipertensão Intracraniana/etiologia , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/epidemiologia , Transtornos Mentais/etiologia , Transtornos Mentais/terapia , Transtornos do Humor/tratamento farmacológico , Transtornos do Humor/epidemiologia , Transtornos do Humor/etiologia , Transtornos do Humor/terapia , Doenças do Sistema Nervoso/epidemiologia , Neurônios/metabolismo , Neurônios/virologia , Nervo Olfatório/virologia , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/psicologia , Pneumonia Viral/virologia , Prevalência , Prognóstico , Psicoterapia , Psicotrópicos/uso terapêutico , Receptores Virais/metabolismo , Estudos Retrospectivos , Transtornos das Sensações/epidemiologia , Transtornos das Sensações/etiologia , Glicoproteína da Espícula de Coronavírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA