Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 430
Filtrar
1.
Biomed Pharmacother ; 134: 111168, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33395598

RESUMO

Axonal demyelination is a consistent pathological characteristic of Spinal cord injury (SCI). Promoting differentiation of oligodendrocytes is of importance for remyelination. Conversion of reactive astrocytes with stem cell potential to oligodendrocytes is proposed as an innovative strategy for SCI repair. Neuregulin-1 (Nrg1) plays an essential role in the differentiation of oligodendrocytes. Therefore, it's a potential treatment for demyelination in SCI that using Nrg1 to drive reactive astrocytes toward oligodendrocyte lineage cells. In this study, tumor necrosis factor-α (TNF-α) was used to induce dedifferentiation of primary rat spinal cord astrocytes into reactive astrocytes and Nrg1 was used to induce astrocytes in vitro and in vivo. The results showed that astrocytes treated with TNF-α expressed immaturity markers CD44 and Musashi1 at mRNA and protein levels, indicating that TNF-α induced the stem cell state of astrocytes. Nrg1 induced reactive astrocytes to express oligodendrocyte markers PDGFR-α and O4 at mRNA and protein levels, indicating that Nrg1 directly converts reactive astrocytes toward oligodendrocyte lineage cells. Moreover, upregulation of PI3K-AKT-mTOR signaling activation in response to Nrg1 was observed. In rats with SCI, intrathecal treatment with Nrg1 converted reactive astrocytes to oligodendrocyte lineage cells, inhibited astrogliosis, promoted remyelination, protected axons and eventually improved BBB score. All the biological effects of Nrg1 were significantly reversed by the co-administration of Nrg1 and ErbB inhibitor, suggesting that Nrg1 functioned through the receptor ErbB. Our findings indicate that Nrg1 is sufficient to trans-differentiate reactive astrocytes to oligodendrocytes via the PI3K-AKT-mTOR signaling pathway and repair SCI. Delivery of Nrg1 for the remyelination processes could be a promising strategy for spinal cord repair.


Assuntos
Astrócitos/efeitos dos fármacos , Linhagem da Célula , Transdiferenciação Celular/efeitos dos fármacos , Neuregulina-1/farmacologia , Oligodendroglia/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Medula Espinal/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Astrócitos/enzimologia , Astrócitos/patologia , Células Cultivadas , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Feminino , Bainha de Mielina/metabolismo , Oligodendroglia/enzimologia , Oligodendroglia/patologia , Ratos Sprague-Dawley , Transdução de Sinais , Medula Espinal/enzimologia , Medula Espinal/patologia , Traumatismos da Medula Espinal/enzimologia , Traumatismos da Medula Espinal/patologia , Fator de Necrose Tumoral alfa/farmacologia
2.
Cancer Sci ; 111(7): 2508-2525, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32415868

RESUMO

Human epidermal growth factor receptor 4 (HER4) isoforms have oncogenic or tumor suppressor functions depending on their susceptibility to proteolytic cleavage and HER4 intracellular domain (4ICD) translocation. Here, we report that the neuregulin 1 (NRG1) tumor suppressor mechanism through the HER4 JMa/CYT1 isoform can be mimicked by the agonist anti-HER4 Ab C6. Neuregulin 1 induced cleavage of poly(ADP-ribose) polymerase (PARP) and sub-G1 DNA fragmentation, and also reduced the metabolic activity of HER3- /HER4+ cervical (C-33A) and ovarian (COV318) cancer cells. This effect was confirmed in HER4 JMa/CYT1-, but not JMa/CYT2-transfected BT549 triple-negative breast cancer cells. Neuregulin 1 favored 4ICD cleavage and retention in mitochondria in JMa/CYT1-transfected BT549 cells, leading to reactive oxygen species (ROS) production through mitochondrial depolarization. Similarly, the anti-HER4 Ab C6, which binds to a conformational epitope located on a.a. 575-592 and 605-620 of HER4 domain IV, induced 4ICD cleavage and retention in mitochondria, and mimicked NRG1-mediated effects on PARP cleavage, ROS production, and mitochondrial membrane depolarization in cancer cells. In vivo, C6 reduced growth of COV434 and HCC1187 tumor cell xenografts in nude mice. Biasing 4ICD trafficking to mitochondria with anti-HER4 Abs to mimic NRG1 suppressor functions could be an alternative anticancer strategy.


Assuntos
Anticorpos Monoclonais/farmacologia , Receptor ErbB-4/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Anticorpos Monoclonais/imunologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Mapeamento de Epitopos , Humanos , Espaço Intracelular/metabolismo , Camundongos , Mitocôndrias/metabolismo , Neuregulina-1/farmacologia , Transporte Proteico/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptor ErbB-4/imunologia
3.
Biochim Biophys Acta Mol Cell Res ; 1867(3): 118562, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31669265

RESUMO

During stress conditions such as pressure overload and acute ischemia, the myocardial endothelium releases neuregulin-1ß (NRG-1), which acts as a cardioprotective factor and supports recovery of the heart. Recently, we demonstrated that recombinant human (rh)NRG-1 enhances glucose uptake in neonatal rat ventricular myocytes via the ErbB2/ErbB4 heterodimer and PI3Kα. The present study aimed to further elucidate the mechanism whereby rhNRG-1 activates glucose uptake in comparison to the well-established insulin and to extend the findings to adult models. Combinations of rhNRG-1 with increasing doses of insulin did not yield any additive effect on glucose uptake measured as 3H-deoxy-d-glucose incorporation, indicating that the mechanisms of the two stimuli are similar. In c-Myc-GLUT4-mCherry-transfected neonatal rat cardiomyocytes, rhNRG-1 increased sarcolemmal GLUT4 by 16-fold, similar to insulin. In contrast to insulin, rhNRG-1 did not phosphorylate IRS-1 at Tyr612, indicating that IRS-1 is not implicated in the signal transmission. Treatment of neonatal rats with rhNRG-1 induced a signaling response comparable with that observed in vitro, including increased ErbB4-pTyr1284, Akt-pThr308 and Erk1/2-pThr202/Tyr204. In contrast, in adult cardiomyocytes rhNRG-1 only increased the phosphorylation of Erk1/2 without having any significant effect on Akt and AS160 phosphorylation and glucose uptake, suggesting that rhNRG-1 function in neonatal cardiomyocytes differs from that in adult cardiomyocytes. In conclusion, our results show that similar to insulin, rhNRG-1 can induce glucose uptake by activating the PI3Kα-Akt-AS160 pathway and GLUT4 translocation. Unlike insulin, the rhNRG-1-induced effect is not mediated by IRS proteins and is observed in neonatal, but not in adult rat cardiomyocytes.


Assuntos
Transportador de Glucose Tipo 4/genética , Miócitos Cardíacos/metabolismo , Neuregulina-1/genética , Receptor ErbB-3/genética , Animais , Animais Recém-Nascidos , Glucose/metabolismo , Humanos , Miocárdio/metabolismo , Miocárdio/patologia , Neuregulina-1/farmacologia , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Receptor de Insulina/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato
4.
Exp Brain Res ; 237(12): 3351-3362, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31720762

RESUMO

Traumatic brain injury (TBI) is a serious health problem in the world. However, little is known about the pathogenesis and molecular mechanisms of TBI. Here, we show that TBI activates neuregulin 1 (NRG1)-ErbB4 signaling, with an increased expression of NRG1 and ErbB4 in the traumatic region. Specifically knocking out ErbB4 in parvalbumin-positive (PV+) interneurons exacerbates motor function deficits in mice after TBI. Consistently, PV-ErbB4-/- mice showed larger necrotic area and more edema when compared with PV-ErbB4+/+ mice. Replenishment of NRG1 through intranasal application of the recombinant protein in PV-ErbB4+/+ mice enhanced neurological function. Moreover, using an in vitro neuronal culture system, we found that NRG1-ErbB4 signaling protects neurons from glutamate-induced death, and such protective effects could be diminished by GABA receptor antagonist. These results indicate that NRG-ErbB4 signaling protects cortical neurons from TBI-induced damage, and such effect is probably mediated by promoting GABA activity. Taken together, these findings unveil a previously unappreciated role for NRG1-ErB4 signaling in preventing neuronal cell death during functional recovery after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Ácido Glutâmico/metabolismo , Neuregulina-1/metabolismo , Neurônios/metabolismo , Neuroproteção/fisiologia , Lobo Parietal , Receptor ErbB-4/metabolismo , Recuperação de Função Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Comportamento Animal/fisiologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Morte Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Antagonistas GABAérgicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuregulina-1/farmacologia , Lobo Parietal/lesões , Lobo Parietal/metabolismo , Lobo Parietal/patologia , Lobo Parietal/fisiopatologia , Receptor ErbB-4/deficiência
5.
Neuropeptides ; 78: 101963, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31522857

RESUMO

BACKGROUND: Neuregulin-1ß (NRG1 ß) is associated with various neurological disorders such as schizophrenia, depression and Parkinson's disease. However, its role in Alzheimer's (AD) has not been understood yet. Here, we have studied the effect of NRG1 ß and extracellular-signal-regulated kinase (ERK) signaling on special and associative memories and emotional stress in AD model of rats. METHODS: Fifty six male Wistar rats were divided into eight groups of: Saline + Saline, Aß + Saline, Aß + NRG1ß (5 µg/5 ul), Aß + PBS, Aß + NRG1ß + PD98059 (PD, 5 µg/2 µl), Aß + NRG1ß + Saline and Saline + PD. AD model was induced by intracerebroventricular (ICV) injection of beta-amyloid protein (Aß1-42, 4 µg/2 µl). The cognitive performances of rats were evaluated using Morris Water Maze (MWM) and Step through passive avoidance. Also locomotors activity and emotionality of animals were considered in an Open field test. Data were analyzed by one way Anova one way, repeated measure and T-test. RESULTS: Significant improvement was found in spatial learning and memory assessed by total time spent in target quadrant [F (4, 32) = 12.4, p = 0.001], escape latency [F (4, 32) = 15.767, p = 0.001] and distance moved [F (4, 32) = 5.55, p = 0.002], in Aß + NRG1ß compared with Aß + Saline in MWM. Also Aß + NRG1ß showed long latencies to enter into the dark compartment [F (4, 32) = 6.43, p = 0.001], but short time spent [F (4, 32) =6.93, p = 0.001] compared with control. Administration of an ERK inhibitor (PD98059, 5 µg, 15 min before NRG1ß) didn't completely block learning memory restored by NRG1ß in AD model (p = 0.7). No significant between groups differences was found in emotional stress characteristics in open field, except the grooming numbers which were higher in Saline + PD compared with Saline + Saline (p = 0.02). CONCLUSION: Our findings indicate that NRG1ß restores cognitive dysfunctions induced by amyloid ß through signaling pathways possibly other than Erk1/2, with no significant change in anxiety, locomotion and vegetative activities.


Assuntos
Aprendizagem por Associação/efeitos dos fármacos , Neuregulina-1/farmacologia , Aprendizagem Espacial/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Flavonoides/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
6.
Int J Mol Med ; 44(4): 1255-1266, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31432099

RESUMO

The primary mechanism underlying sepsis­induced cardiac dysfunction is loss of endothelial barrier function. Neuregulin­1 (NRG­1) exerts its functions on multiple targets. The present study aimed to identify the protective effects of NRG­1 in myocardial cells, including endothelial, anti­inflammatory and anti­apoptotic effects. Subsequent to lipopolysaccharide (LPS)­induced sepsis, rats were administered with either a vehicle or recombinant human NRG­1 (rhNRG­1; 10 µg/kg/day) for one or two days. H9c2 cardiomyoblasts were subjected to LPS (10 µg/ml) treatment for 12 and 24 h with or without rhNRG­1 (1 µg/ml). Survival rates were recorded at 48 h following sepsis induction. The hemodynamic method was performed to evaluate cardiac function, and myocardial morphology was observed. Von Willebrand Factor levels were detected using an immunofluorescence assay. Serum levels of tumor necrosis factor α, interleukin­6, intercellular cell adhesion molecule­1 and vascular endothelial growth factor were detected using an enzyme­linked immunosorbent assay; the reductase method was performed to detect serum nitric oxide levels. Apoptosis rates were determined using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Ras homolog family member A (RhoA) and Rho­associated protein kinase 1 (ROCK1) protein levels were assessed using western blotting. Transmission electron microscopy was used to observe endothelial cells and myocardial ultrastructure changes. Results revealed that NRG­1­treated rats displayed less myocardial damage compared with sham rats. NRG­1 administration strengthened the barrier function of the vasculature, reduced the secretion of endothelial­associated biomarkers and exerted anti­inflammatory and anti­apoptotic effects. In addition, NRG­1 inhibited RhoA and ROCK1 signaling. The results revealed that NRG­1 improves cardiac function, increases the survival rate of septic rats and exerts protective effects via multiple targets throughout the body. The present results contribute to the development of a novel approach to reverse damage to myocardial and endothelial cells during sepsis.


Assuntos
Cardiotônicos/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Cardiopatias/etiologia , Cardiopatias/fisiopatologia , Neuregulina-1/farmacologia , Sepse/complicações , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Permeabilidade Capilar/efeitos dos fármacos , Citocinas/metabolismo , Cardiopatias/tratamento farmacológico , Cardiopatias/mortalidade , Testes de Função Cardíaca , Humanos , Mediadores da Inflamação , Miocárdio/metabolismo , Miocárdio/patologia , Miocárdio/ultraestrutura , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Ligação Proteica , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/farmacologia
7.
Exp Cell Res ; 382(2): 111473, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31233741

RESUMO

ErbB3, which belongs to the epidermal growth factor receptor (EGFR) or ErbB family of receptor tyrosine kinases, is involved in progression of several human cancers and a tight regulation of its expression is crucial. An important mechanism for regulation of ErbB proteins is endocytosis and we recently showed that ErbB3, contrary to other ErbB proteins, like EGFR and ErbB2, is constitutively internalized and degraded. Several studies show that protein kinase C (PKC) can regulate the activation, localization and stability of EGFR and ErbB2. Activation of PKC causes their down-regulation from the plasma membrane, but instead of being degraded the receptors accumulate in an endosomal recycling compartment. Since little is known about possible connections between ErbB3 and PKC, we have in the present study investigated effects PKC activity has on ErbB3 stability and intracellular trafficking. While PKC inhibition tends to increase ErbB3 degradation, activation of PKC causes ErbB3 stabilization. The stabilization was not due to inhibited internalization, on the contrary we find that expression of ErbB3 at the plasma membrane is reduced upon PMA-induced PKC activation. However, while endocytosed ErbB3 under normal conditions and upon PKC inhibition is found in early endosomal antigen 1 (EEA1) positive early endosomes and lysosomal-associated membrane protein 1 (LAMP1) positive late endosomes/lysosomes, indicating that it follows the classic degradative pathway, ErbB3 localizes to EEA1 and LAMP1 negative compartments upon PMA-induced activation of PKC. Altogether this shows that PKC regulates the stability of ErbB3, and knockdown experiments show that PKCδ is essential in this process. A likely explanation is that PKC regulates endosomal sorting of ErbB3 and that activated PKC sorts ErbB3 away from the degradative pathway.


Assuntos
Proteína Quinase C-delta/metabolismo , Receptor ErbB-3/metabolismo , Carbazóis/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Endocitose/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Células MCF-7 , Neuregulina-1/farmacologia , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Ubiquitinação/efeitos dos fármacos
8.
Neurobiol Learn Mem ; 162: 47-58, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31103466

RESUMO

For social mammals, recognition of conspecifics and discrimination of each other (social memory) is crucial to living in a stable colony. Here, we investigated whether kallikrein-related peptidase 8 (KLK8)-neuregulin 1 (NRG1)-ErbB signaling is crucial for social discrimination behavior using the social discrimination three chamber behavioral test. Klk8 knockout mice (NRG1-deactivated mice) exhibited normal social approach but impaired social discrimination. Intraventricular injection of recombinant NRG1177-246 into Klk8 knockout mice reversed this impaired social discrimination. This study reveals that KLK8 is a key regulator of NRG1-ErbB signaling, which contributes to social discrimination behavior.


Assuntos
Comportamento Animal/fisiologia , Calicreínas/metabolismo , Comportamento Social , Discriminação Social , Animais , Comportamento Animal/efeitos dos fármacos , Calicreínas/genética , Camundongos , Camundongos Knockout , Neuregulina-1/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
9.
J Muscle Res Cell Motil ; 40(1): 43-51, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30989579

RESUMO

The aim of this study was to investigate the protective effects of neuregulin-1ß (NRG-1ß) on sepsis-induced diaphragm atrophy and the possible underlying mechanisms. Sprague-Dawley rats were randomly divided into sham, sepsis and NRG groups. Sepsis was induced by cecal ligation and puncture (CLP). In the NRG group, rats received tail vein injections of NRG-1ß (10 µg/kg) every 12 h for 72 h after CLP. At 3 days after surgery, diaphragm contractile forces were measured by determining the force-frequency curve and muscle fiber areas by hematoxylin-eosin staining. Moreover, the NRG-1 expression level in the diaphragm was detected by Western blotting. Furthermore, the proteins in the PI3K/Akt signaling pathway and its downstream Akt-mTOR and Akt-FOXO axes were detected by Western blotting analysis. In L6 myotubes treated with lipopolysaccharide (LPS) and NRG-1ß, PI3K/Akt signaling pathway-related protein expression was further determined using the PI3K inhibitor LY294002. Exogenous NRG-1ß could compensate for sepsis-induced diminished NRG-1 in the diaphragm and attenuate the reduction in diaphragm contractile forces and muscle fiber areas during sepsis. Moreover, NRG-1ß treatment could activate the PI3K/Akt signaling pathway in the diaphragm during sepsis. The inhibition of p70S6K and 4E-BP1 on the Akt-mTOR axis and the increased expression of Murf1 on the Akt-FOXO axis were reversed after NRG-1 treatment. In addition, NRG-1ß could activate the PI3K/Akt signaling pathway in L6 myotubes treated with LPS, while the PI3K inhibitor LY294002 blocked the effects of NRG-1ß. NRG-1 expression in the diaphragm was reduced during sepsis, and exogenously administered recombinant human NRG-1ß could attenuate sepsis-induced diaphragm atrophy by activating the PI3K/Akt signaling pathway.


Assuntos
Diafragma/metabolismo , Atrofia Muscular/metabolismo , Neuregulina-1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sepse/metabolismo , Transdução de Sinais , Animais , Cromonas/farmacologia , Diafragma/patologia , Diafragma/fisiopatologia , Modelos Animais de Doenças , Humanos , Masculino , Morfolinas/farmacologia , Contração Muscular/efeitos dos fármacos , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Neuregulina-1/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Ratos , Ratos Sprague-Dawley , Sepse/complicações , Sepse/patologia , Sepse/fisiopatologia
10.
Behav Brain Res ; 365: 141-149, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30826297

RESUMO

Neuregulin1 (NRG1) is an effective neuroprotectant. Previously we demonstrated that the expression of hippocampal NRG1/ErbB4 gradually decreased and correlates with neuronal apoptosis during chronic cerebral hypoperfusion (CCH). Here we aimed to further investigate the protective role of NRG1 in CCH. AG1478, an ErbB4 inhibitor, was used to explore the involvement of ErbB4 receptors in NRG1's action. Permanent bilateral common carotid artery occlusion (2VO) or sham operation was performed in Sprague-Dawley rats. NRG1 (100 µM) and AG1478 (50 mM) was administered intraventricularly. Eight weeks post-surgery, cognitive impairment was analyzed using Morris water maze (MWM) and radial arm water maze (RAWM) tests, followed by histological assessment of the survival and apoptosis of hippocampal CA1 neurons using NeuN and TUNEL immunostaining respectively. Expression of apoptosis-related proteins and ErbB4 activation (pErbB4/ErbB4) was evaluated by Western blotting. The results showed that NRG1 significantly improved the performances in MWM (spatial learning and memory) and RAWM (spatial working and reference memory), attenuated hippocampal CA1 neuronal loss and apoptosis, upregulated the expression of pErbB4/ErbB4 and the anti-apoptotic protein Bcl-2, and downregulated the expression of pro-apoptotic proteins of Cleaved (Cl)-caspase3 and Bax. In addition, the protective effects of NRG1 could be partly abolished by AG1478. Taken together, our study suggested that NRG1 ameliorates cognitive impairment and neuronal apoptosis partly via ErbB4 receptors in rats with CCH.


Assuntos
Cognição/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Neuregulina-1/farmacologia , Receptor ErbB-4/metabolismo , Animais , Apoptose/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Hipocampo/irrigação sanguínea , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Quinazolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor ErbB-4/antagonistas & inibidores , Aprendizagem Espacial/efeitos dos fármacos , Lobo Temporal/metabolismo , Lobo Temporal/patologia , Tirfostinas/farmacologia
11.
Cancer Med ; 8(3): 1258-1268, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30701699

RESUMO

HER2-targeted therapy, especially the anti-HER2 antibody trastuzumab, is standard for HER2-positive breast cancer; however, its efficacy is limited in a subpopulation of patients. HER3 ligand (heregulin)-dependent HER2-HER3 interactions play a critical role in the evasion of apoptosis and are therefore a target for oncotherapy to treat HER2-positive breast cancer. The anti-HER2 antibody pertuzumab and anti-HER3 antibody patritumab both target this heregulin-HER3-HER2 complex in different ways. This study examined the anticancer efficacy of dual HER2 and HER3 blockade in trastuzumab-resistant HER2-positive breast cancer. HER2-positive SKBR3 or BT474 cells overexpressing heregulin (SKBR3-HRG, BT474-HRG) were used to evaluate the efficacy of trastuzumab, pertuzumab, and patritumab in vitro by performing cell viability, immunoblotting, and clonogenic assays. The effects of these agents were then evaluated in vivo using BT474-HRG and an intrinsic heregulin-expressing and HER2-positive JIMT-1 xenograft models. SKBR3-HRG and BT474-HRG cells lost sensitivity to trastuzumab, which was accompanied by Akt activation. Unexpectedly, trastuzumab in combination with pertuzumab or patritumab also showed limited efficacy toward these cells. In contrast, trastuzumab/pertuzumab/patritumab triple treatment demonstrated potent anticancer efficacy, concomitant with strong repression of Akt. Finally, in heregulin-expressing BT474-HRG and JIMT-1 xenograft models, the addition of pertuzumab and patritumab to trastuzumab also enhanced antitumor efficacy leading to tumor regression. The current study found that triple blockade of HER2 and HER3 using trastuzumab, pertuzumab, and patritumab could overcome resistance to trastuzumab therapy in heregulin-expressing and HER2-positive breast cancer, which could be exploited clinically.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trastuzumab/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Ligantes , Camundongos , Neuregulina-1/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Neuroscience ; 404: 510-518, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30731156

RESUMO

Brachial plexus root avulsion (BPRA) results in the complete loss of motor function in the upper limb, mainly due to the death of spinal motoneurons (MNs). The survival of spinal MNs is the key to the recovery of motor function. Neuregulin-1 (Nrg1) plays fundamental roles in nervous system development and nerve repair. However, its functional role in BPRA remains unclear. On the basis of our findings that Nrg1 is down-regulated in the ventral horn in a mouse model of BPRA, Nrg1 may be associated with BPRA. Here, we investigated whether recombinant Nrg1ß (rNrg1ß) can enhance the survival of spinal MNs and improve functional recovery in mice following BPRA. In vitro studies on primary cultured mouse MNs showed that rNrg1ß increased the survival rate in a dose-dependent manner, reaching a peak at 5 nM, which increased the survival rate and enhanced the pERK levels in MNs under H2O2-induced oxidative stress. In vivo studies revealed that rNrg1ß improved the functional recovery of elbow flexion, promoted the survival of MNs, enhanced the re-innervation of biceps brachii, and decreased the muscle atrophy. These results suggest that Nrg1 may provide a potential therapeutic strategy for root avulsion.


Assuntos
Plexo Braquial/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Neuregulina-1/uso terapêutico , Radiculopatia/tratamento farmacológico , Recuperação de Função Fisiológica/efeitos dos fármacos , Animais , Plexo Braquial/fisiopatologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/fisiologia , Neuregulina-1/farmacologia , Radiculopatia/fisiopatologia , Recuperação de Função Fisiológica/fisiologia
13.
Transl Res ; 207: 44-55, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30639369

RESUMO

CD151/Tspan24 (SFS-1, PETA3) is one of the best characterized members of the tetraspanin family, whose involvement in breast cancer (BCa) progression was demonstrated both in vitro and in vivo. We have recently reported that in ErbB2-overexpressing BCa cells grown in 3D laminin-rich extracellular matrix, CD151 regulated basal phosphorylation and homodimerization of ErbB2 and sensitized the cells to Herceptin (trastuzumab). Following from these data, we have here analyzed an involvement of CD151 in regulation of ErbB2/ErbB3 heterodimerization and its impact on cell response to Herceptin. CD151 was found to: (1) impair ErbB2/ErbB3 heterodimerization, (2) inhibit heregulin-dependent cell growth in 3D and signaling, and (3) counteract the protective effect of heregulin on Herceptin-mediated growth inhibition. Analysis of tissue samples demonstrated for the first time clinical significance of CD151 in patients with ErbB2-overexpressing BCa undergone trastuzumab-based therapy. Consistent with in vitro results, CD151 impact on disease outcome was ErbB3-dependent. In patients with ErbB3-negative tumors, CD151 significantly improved both overall survival (OS) (hazard ratio [HR] = 0.19, P = 0.034) and progression-free survival (PFS) (HR = 0.36, P = 0.043), while in ErbB3-positive cases it had no significant effect on patient survival (OS: HR = 3.33, P = 0.283; PFS: HR = 2.40, P = 0.208). These results support previous findings and show that CD151 acts as an important component of ErbB2 signaling axis in BCa cells, affecting their sensitivity to ErbB2-targeting therapy.


Assuntos
Neoplasias da Mama/metabolismo , Multimerização Proteica , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Tetraspanina 24/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Intervalo Livre de Doença , Feminino , Humanos , Pessoa de Meia-Idade , Neuregulina-1/farmacologia , Multimerização Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Trastuzumab/farmacologia
14.
Pharmacology ; 103(1-2): 68-75, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30513516

RESUMO

The Medial Habenular (MHb) and the Lateral Habenular nuclei are 2 main parts of the habenular complex (Hb). Recent studies showed that MHb plays an important role in memory, and in the expression of ErbB4. However, the expression of MHb ErbB4 receptor and its role in fear memory is not well understood. In this study, western blotting and quantitative real-time polymerase chain reaction were used to assess the protein and mRNA levels of ErbB4 in the process of contextual fear conditioning. A pharmacological approach was used to block and stimulate the ErbB4 receptor. Contextual fear conditioning tests induced a significant increase on the expression of ErbB4 at various times in the Hb and the MHb. Moreover, the blockade and stimulation of MHb ErbB4 receptors did not affect the fear formation but impaired and improved the contextual-dependent fear expression. Furthermore, in vitro electrophysiological recordings showed that the blockade of the MHb ErbB4 receptor reduced the presynaptic gamma-amino butyric acid release. ErbB4 is a susceptible gene for schizophrenia and the above findings may provide new insights into the mechanisms of fear-related responses.


Assuntos
Medo/fisiologia , Habenula/metabolismo , Memória/fisiologia , Receptor ErbB-4/metabolismo , Animais , Escala de Avaliação Comportamental , Condicionamento Clássico , Medo/psicologia , Reação de Congelamento Cataléptica/efeitos dos fármacos , Habenula/efeitos dos fármacos , Habenula/fisiologia , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Neuregulina-1/farmacologia , Pirimidinas/farmacologia , Quinazolinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor ErbB-4/agonistas , Receptor ErbB-4/antagonistas & inibidores , Receptor ErbB-4/genética , Tirfostinas/farmacologia
15.
Int J Dermatol ; 58(2): 242-249, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30074619

RESUMO

BACKGROUND: Paracrine cross-talk exists between the fibroblasts of dermis and epidermal cells through secretions of various growth factors. Melanocytes present at the basement layer of the epidermis and respond to various factors secreted by underlying dermal fibroblasts in the dermis to regulate the function of the skin. OBJECTIVE: Therefore the study was planned to check the expression of fibroblast-derived factor neuregulin1 (NRG1) in vitiligo skin and its effect on melanocytes. METHODS: For this study, relative gene expression at mRNA level of NRG1 in the vitiligo skin was analyzed by qRT-PCR, and protein analysis was done by immunohistochemistry. Effect of different concentrations of NRG1 was checked on the cultured melanocytes by melanin content assay, proliferation assay, and tyrosinase (TYR) assay. The effect of NRG1 was also checked on the level of melanocyte regulatory genes (MITF, c-KIT, TYR, DCT). RESULTS: Expression of NRG1 was significantly less in lesional dermis of vitiligo patients as compared to nonlesional and healthy control dermis both at mRNA as well as protein level. NRG1 treatment showed significant increase in proliferation, melanin content, TYR level, and gene expression level of melanocyte specific genes. CONCLUSION: Treatment of NRG1 to the cultured melanocytes increases proliferation and pigmentation. Lower expression of NRG1 in the lesional dermis of vitiligo patients inhibits the melanocyte growth. Therefore this study hypothesized that low expression of NRG1 in lesional skin of vitiligo patients might have a possible role in the melanocyte loss and vitiligo pathogenesis.


Assuntos
Neuregulina-1/genética , Neuregulina-1/metabolismo , RNA Mensageiro/metabolismo , Pele/metabolismo , Vitiligo/metabolismo , Adulto , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Melaninas/metabolismo , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Neuregulina-1/farmacologia , Proteínas Proto-Oncogênicas c-kit/genética , Adulto Jovem
16.
Clin Exp Pharmacol Physiol ; 46(3): 255-265, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30339273

RESUMO

We have previously shown that treatment with recombinant human neuregulin-1 (rhNRG-1) improves pulmonary arterial hypertension (PAH) in a monocrotaline (MCT)-induced animal model, by decreasing pulmonary arterial remodelling and endothelial dysfunction, as well as by restoring right ventricular (RV) function. Additionally, rhNRG-1 treatment showed direct myocardial anti-remodelling effects in a model of pressure loading of the RV without PAH. This work aimed to study the intrinsic cardiac effects of rhNRG-1 on experimental PAH and RV pressure overload, and more specifically on diastolic stiffness, at both the ventricular and cardiomyocyte level. We studied the effects of chronic rhNRG-1 treatment on ventricular passive stiffness in RV and LV samples from MCT-induced PAH animals and in the RV from animals with compensated and decompensated RV hypertrophy, through a mild and severe pulmonary artery banding (PAB). We also measured passive tension in isolated cardiomyocytes and quantified the expression of myocardial remodelling-associated genes and calcium handling proteins. Chronic rhNRG-1 treatment decreased passive tension development in RV and LV isolated from animals with MCT-induced PAH. This decrease was associated with increased phospholamban phosphorylation, and with attenuation of the expression of cardiac maladaptive remodelling markers. Finally, we showed that rhNRG-1 therapy decreased RV remodelling and cardiomyocyte passive tension development in PAB-induced RV hypertrophy animals, without compromising cardiac function, pointing to cardiac-specific effects in both hypertrophy stages. In conclusion, we demonstrated that rhNRG-1 treatment decreased RV intrinsic diastolic stiffness, through the improvement of calcium handling and cardiac remodelling signalling.


Assuntos
Diástole/fisiologia , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Neuregulina-1/farmacologia , Rigidez Vascular/efeitos dos fármacos , Disfunção Ventricular Direita/tratamento farmacológico , Animais , Sinalização do Cálcio/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Neuregulina-1/uso terapêutico , Ratos , Ratos Wistar , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Remodelação Ventricular/efeitos dos fármacos
17.
Neurotox Res ; 35(2): 401-409, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30328584

RESUMO

Neuregulin 1 (NRG1) exhibits potent neuroprotective properties. The aim of the present study was to investigate the antioxidative effects and underlying mechanisms of NRG1 against H2O2-induced oxidative stress in primary rat cortical neurons. The expression level of the excitatory amino acid carrier 1 (EAAC1) protein was measured by Western blotting and immunocytochemistry. The levels of lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) generation, superoxide dismutase (SOD) activity, GPx activity, and mitochondrial membrane potential (∆ψm) were determined to examine cell death and the antioxidant properties of NRG1 in primary rat cortical neurons. H2O2 reduced the expression of EAAC1 in a dose-dependent manner. We found that pretreatment with NRG1 attenuated the H2O2-induced reduction in EAAC1 expression. Moreover, NRG1 reduced the cell death and oxidative stress induced by H2O2. In addition, NRG1 attenuated H2O2-induced reductions in antioxidant enzyme activity and ∆ψm. Our data indicate a role for NRG1 in protecting against oxidative stress via the regulation of EAAC1. These observations may provide novel insights into the mechanisms of NRG1 activity during oxidative stress and may reveal new therapeutic targets for regulating the oxidative stress associated with various neurological diseases.


Assuntos
Transportador 3 de Aminoácido Excitatório/metabolismo , Peróxido de Hidrogênio/toxicidade , Neuregulina-1/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley
18.
Skelet Muscle ; 8(1): 29, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30219099

RESUMO

BACKGROUND: The formation of intrafusal muscle (IM) fibers and their contact with afferent proprioceptive axons is critical for construction, function, and maintenance of the stretch reflex. Many factors affect the formation of IM fibers. Finding new factors and mechanisms of IM fiber formation is essential for the reconstruction of stretch reflex arc after injury. METHODS: We established a coculture system of organotypic dorsal root ganglion (DRG) explants and dissociated skeletal muscle (SKM) cells. The formation of IM fibers was observed in this coculture system after neuregulin-1ß (NRG-1ß) incubation. RESULTS: We found that NRG-1ß promoted outgrowth of neurites and migration of neurons from the organotypic DRG explants and that this correlated with an induction of growth-associated protein 43 (GAP-43) expression. NRG-1ß also increased the amount of nuclear bag fibers and nuclear chain fibers by elevating the proportion of tyrosine kinase receptor C (TrkC) phenotypic DRG neurons. In addition, we found that the effects of NRG-1ß could be blocked by inhibiting ERK1/2, PI3K/Akt, and JAK2/STAT3 signaling pathways. CONCLUSION: These data imply that NRG-1ß promoted neurite outgrowth and neuronal migration from the organotypic DRG explants and that this correlated with an induction of GAP-43 expression. The modulating effects of NRG-1ß on TrkC DRG neuronal phenotype may link to promote IM fiber formation. The effects produced by NRG-1ß in this neuromuscular coculture system provide new data for the therapeutic potential on IM fiber formation after muscle injury.


Assuntos
Gânglios Espinais/citologia , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/citologia , Neuregulina-1/farmacologia , Animais , Células Cultivadas , Técnicas de Cocultura , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Sistema de Sinalização das MAP Quinases , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Crescimento Neuronal , Ratos , Receptor trkC/genética , Receptor trkC/metabolismo
19.
Mol Med ; 24(1): 39, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30134819

RESUMO

BACKGROUND: The protective effect of Neuregulin-1 (NRG-1) on heart failure is well established. In this study, we assessed whether NRG-1 could protect the heart by mimicking the cardioprotective effects of ischaemic postconditioning (IP). METHODS: We used a myocardial reperfusion injury rat model in vivo to compare the cardioprotective effects of NRG-1(3 µg/kg, iv. at the onset of reperfusion) and IP. In Langendorff isolated heart perfusion experiments, we used the erythroblastic leukaemia viral oncogene homolog 4 (ErbB4) inhibitor AG1478, a phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and a mitogen-activated protein/extracellular signal regulated kinase (MEK) inhibitor PD98059 to clarify whether the protective effects of NRG-1and IP depend on the NRG-1/ErbB4 signals and the reperfusion injury salvage kinase (RISK) pathway. Infarct size was detected by Evans blue and TTC. Apoptosis was detected by TUNEL assays. The expression of NRG-1/ErbB4 and downstream ERK1/2, AKT, AMPK and p70s6K were detected by western blotting. Hematoxylin/eosin (H&E) staining was used for histological analysis. RESULTS: We found that NRG-1 and IP had similar effects on reducing myocardial infarct size and apoptosis in vivo. NRG-1 heart protein levels were upregulated in the IP group. Phosphorylation of AKT, ERK1/2 and ErbB4 were also increased in both the IP and NRG-1 groups. Furthermore, in Langendorff analyses, the ErbB4 inhibitor AG1478 suppressed the phosphorylation of ErbB4 and the RISK pathway and aggravated myocardial edema and fiber fracture, thereby inhibited the cardioprotective effects in both the IP and NRG-1 groups. For assessment of downstream signals, the PI3K inhibitor LY294002 and the MEK inhibitor PD98059 suppressed the phosphorylation of AKT and ERK1/2 respectively and abolished the cardioprotective effects induced by IP and NRG-1. CONCLUSION: In conclusion, both IP and NRG-1 could reduce infarct size and apoptosis through ErbB4-dependent activation of the RISK pathway in the same model; these results indicated the therapeutic potential of NRG-1 as a pharmacological postconditioning agent against myocardial reperfusion injury.


Assuntos
Cardiotônicos/farmacologia , Pós-Condicionamento Isquêmico , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Neuregulina-1/farmacologia , Receptor ErbB-4/metabolismo , Animais , Apoptose/efeitos dos fármacos , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Infarto do Miocárdio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais
20.
Acta Biomater ; 78: 165-177, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30059799

RESUMO

The repair of nerve gap injuries longer than 3 cm is limited by the need to sacrifice donor tissue and the morbidity associated with the autograft gold standard, while decellularized grafts and biodegradable conduits are effective only in short nerve defects. The advantage of isogenic nerve implants seems to be the release of various growth factors by the denervated Schwann cells. We evaluated the effect of vascular endothelial growth factor, neurotrophins, and pleiotrophin (PTN) supplementation of multi-luminal conduits, in the repair of 3 and 4 cm nerve gaps in the rabbit peroneal nerve. In vitro screening revealed a synergistic regenerative effect of PTN with glial-derived neurotrophic factor (GDNF) in promoting sensory axon density, and motor axonal growth from spinal cord explants. In vivo, pleiotrophins were able to support nerve regrowth across a 3 cm gap. In the 4 cm lesions, PTN-GDNF had a modest effect in the number of axons distal to the implant, while increasing the mean axon diameter (1 ±â€¯0.4; p ≤ 0.001) over PTN or GDNF alone (0.80 ±â€¯0.2, 0.84 ±â€¯0.5; respectively). Some regenerated axons reinnervated muscle targets as indicated by neuromuscular junction staining. However, many were wrapped in Remak bundles, suggesting a delay in axonal sorting, explaining the limited electrophysiological function of the reinnervated muscle, and the modest recovery in toe spreading in the PTN-GDNF repaired animals. These results support the use of synergistic neurotrophic/pleiotrophic growth factors in long gap repair and underscore the need for re-myelination strategies distal to the injury site. STATEMENT OF SIGNIFICANCE: Nerve injuries due to trauma or tumor resection often result in long gaps that are challenging to repair. The best clinical option demands the use of autologous grafts that are associated with serious side effects. Bioengineered nerves are considered a good alternative, particularly if supplemented with growth factors, but current options do not match the regenerative capacity of autografts. This study revealed the synergistic effect of neurotrophins and pleiotrophins designed to achieve a broad cellular regenerative effect, and that GDNF-PTN are able to mediated axonal growth and partial functional recovery in a 4 cm nerve gap injury, albeit delays in remyelination. This report underscores the need for defining an optimal growth factor support for biosynthetic nerve implants.


Assuntos
Axônios/metabolismo , Proteínas de Transporte/farmacologia , Citocinas/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Neuregulina-1/farmacologia , Nervo Fibular/lesões , Nervo Fibular/fisiopatologia , Animais , Axônios/efeitos dos fármacos , Sinergismo Farmacológico , Potenciais Evocados/efeitos dos fármacos , Camundongos , Atividade Motora/efeitos dos fármacos , Músculos/efeitos dos fármacos , Músculos/inervação , Nervo Fibular/efeitos dos fármacos , Nervo Fibular/patologia , Coelhos , Recuperação de Função Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...