Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.462
Filtrar
1.
Anticancer Res ; 39(7): 3487-3492, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31262872

RESUMO

BACKGROUND/AIM: Despite intensive chemotherapy, the survival rates for high-risk neuroblastoma, most of which have MYCN amplification, remain low. Overexpression of N-myc oncoprotein promotes expression of cancer-associated properties. We recently found that combination of all-trans retinoic acid (ATRA) with the ß1-integrin-activating peptide TNIIIA2 attenuated cancer-associated properties of neuroblastoma cells through N-Myc degradation. However, ATRA has serious side-effects and there are concerns about late adverse effects. The aim of this study was to examine the effects of the combination of acyclic retinoid (ACR) with TNIIIA2 on neuroblastoma. MATERIALS AND METHODS: The effects of ACR and TNIIIA2 were examined by neuroblastoma cell proliferation and survival assays as well as by using a neuroblastoma xenograft model. The levels of N-Myc and cancer-associated malignant properties were assayed by western blot and colony formation assay, respectively. RESULTS: Combining ACR, which is clinically safe, with TNIIIA2 induced proteasomal degradation of N-Myc and reduction of neuroblastoma cell malignant properties. An in vivo experiment showed therapeutic potential. CONCLUSION: ACR-TNIIIA2 combination treatment may be efficacious and clinical safe chemotherapy for high-risk neuroblastoma.


Assuntos
Antineoplásicos/uso terapêutico , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/tratamento farmacológico , Peptídeos/uso terapêutico , Tenascina/uso terapêutico , Tretinoína/análogos & derivados , Animais , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Peptídeos/farmacologia , Fenótipo , Tenascina/farmacologia , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Carga Tumoral/efeitos dos fármacos
2.
Anticancer Res ; 39(7): 3579-3584, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31262882

RESUMO

BACKGROUND/AIM: Neuroblastoma (NB) is the most common extracranial solid tumor in childhood; treatments with greater effectiveness are required for NB, especially in advanced cases. This study aimed at evaluating the combined effect of anaplastic lymphoma kinase (ALK) inhibitor alectinib and histone deacetylase inhibitor vorinostat on NB cell lines harboring wild-type or mutated ALK. MATERIALS AND METHODS: Cytotoxicity was examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide assay. Protein expression was analyzed using western blotting. RESULTS: Combination treatment with alectinib and vorinostat had a synergistic effect on growth inhibition of the NB cell line with ALK R1275Q mutation. Cleavage of caspase-3 and poly-(ADP-ribose) polymerase increased, indicating enhanced caspase-dependent apoptosis. In addition, this combination reduced the protein levels of MYCN proto-oncogene and nuclear factor kappa B, both of which are important for NB tumorigenesis and progression. CONCLUSION: Combined treatment with alectinib and vorinostat might be a novel therapeutic option for NB harboring the ALK R1275Q mutation.


Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Carbazóis/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Neuroblastoma/tratamento farmacológico , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Vorinostat/farmacologia , Quinase do Linfoma Anaplásico/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Mutação , Proteína Proto-Oncogênica N-Myc/metabolismo , NF-kappa B/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo
3.
Anticancer Res ; 39(7): 3595-3599, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31262884

RESUMO

BACKGROUND/AIM: Activation of AKT serine/ threonine kinase (AKT) predicts poor outcome in neuroblastoma, which highlights the potential of the AKT pathway as a promising target for neuroblastoma treatment. Several studies reported that blockade of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs) reduces proliferation in glioblastoma or lung cancer by inhibiting AKT and extracellular signal-related kinase (ERK) pathways. In this study, we examined the effect of the AMPAR antagonist perampanel on human neuroblastoma cells. MATERIALS AND METHODS: Cell proliferation, caspase activity, and western blot assays were performed to determine the effect of perampanel on the KP-N-SI9s human neuroblastoma cell line. RESULTS: Perampanel inhibited cell proliferation without triggering apoptosis in neuroblastoma cells. Down-regulation of AKT protein levels, AKT phosphorylation, and ERK1/2 phosphorylation were also observed in neuroblastoma cells with perampanel treatment. CONCLUSION: Perampanel inhibits neuroblastoma cell proliferation through down-regulation of AKT and ERK pathways and has potential for the treatment of neuroblastoma.


Assuntos
Antineoplásicos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neuroblastoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridonas/farmacologia , Receptores de AMPA/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Neuroblastoma/tratamento farmacológico , Fosforilação/efeitos dos fármacos
4.
Anticancer Res ; 39(7): 3687-3695, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31262895

RESUMO

BACKGROUND: Neuroblastoma is the main solid extracranial tumor of childhood. The amplification of N-myc oncogene (MYCN) and 1p deletion are the main molecular alterations. These features are what make treatment impossible, especially in high-risk patients with metastases. MATERIALS AND METHODS: Our study investigated the processes undergone by CHP-212 neuroblastoma cells, after being treated with Casiopeínas® (Cas) IIgly, IIIEa, and IIIia for 2, 10, and 24 h. RESULTS: At 2 h, all the treatments Ied to apoptosis [defined by the presence of B-cell lymphoma 2 (BCL2), BCL2-associated X protein, cytochrome c, and caspase-3]. In addition, autophagy with specific molecules beclin-1 and microtubule-associated protein 1A/1B-light chain 3 (LC3)-II/LC3-I (ratio >1). Later at 10 h, autophagy-associated proteins were observed, and at 24 h, only survival proteins nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB), and extracellular signal-regulated kinases (ERK)2/ERK1>1 were found. Another relevant finding was the presence of caspase-10 throughout the study, especially in cells treated with CasIIgly and CasIIIEa. CONCLUSION: These relationships indicate a possible mechanism of action of Casiopeínas on neuroblastoma.


Assuntos
Complexos de Coordenação/farmacologia , Neuroblastoma/metabolismo , Fenantrolinas/farmacologia , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Neuroblastoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
5.
Cell Physiol Biochem ; 53(1): 258-280, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31313541

RESUMO

BACKGROUND/AIMS: Although neuroblastoma is a heterogeneous cancer, a substantial portion overexpresses CD71 (transferrin receptor 1) and MYCN. This study provides a mechanistically driven rationale for a combination therapy targeting neuroblastomas that doubly overexpress or have amplified CD71 and MYCN. For this subset, CD71 was targeted by its natural ligand, gambogic acid (GA), and MYCN was targeted with an HDAC inhibitor, vorinostat. A combination of GA and vorinostat was then tested for efficacy in cancer and non-cancer cells. METHODS: Microarray analysis of cohorts of neuroblastoma patients indicated a subset of neuroblastomas overexpressing both CD71 and MYCN. The viability with proliferation changes were measured by MTT and colony formation assays in neuroblastoma cells. Transfection with CD71 or MYCN along with quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to detect expression changes. For pathway analysis, gene ontology (GO) and Protein-protein interaction analyses were performed to evaluate the potential mechanisms of GA and vorinostat in treated cells. RESULTS: For both GA and vorinostat, their pathways were explored for specificity and dependence on their targets for efficacy. For GA-treated cells, the viability/proliferation loss due to GA was dependent on the expression of CD71 and involved activation of caspase-3 and degradation of EGFR. It relied on the JNK-IRE1-mTORC1 pathway. The drug vorinostat also reduced cell viability/proliferation in the treated cells and this was dependent on the presence of MYCN as MYCN siRNA transfection led to a blunting of vorinostat efficacy and conversely, MYCN overexpression improved the vorinostat potency in those cells. Vorinostat inhibition of MYCN led to an increase of the pro-apoptotic miR183 levels and this, in turn, reduced the viability/proliferation of these cells. The combination treatment with GA and vorinostat synergistically reduced cell survival in the MYCN and CD71 overexpressing tumor cells. The same treatment had no effect or minimal effect on HEK293 and HEF cells used as models of non-cancer cells. CONCLUSION: A combination therapy with GA and vorinostat may be suitable for MYCN and CD71 overexpressing neuroblastomas.


Assuntos
Antígenos CD , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Sistemas de Liberação de Medicamentos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma , Receptores da Transferrina , Antígenos CD/genética , Antígenos CD/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Células HEK293 , Humanos , MicroRNAs/biossíntese , MicroRNAs/genética , Proteína Proto-Oncogênica N-Myc/antagonistas & inibidores , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Receptores da Transferrina/antagonistas & inibidores , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Vorinostat/farmacologia , Xantonas/farmacologia
6.
Med Oncol ; 36(8): 66, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31183633

RESUMO

Nuclear receptor subfamily 4, group A, member 3 (NR4A3) is a member of the NR4A subgroup of orphan nuclear receptors, implicated in the regulation of diverse biological functions, including metabolism, angiogenesis, inflammation, cell proliferation, and apoptosis. Although many reports have suggested the involvement of NR4A3 in the development and/or progression of tumors, its role varies among tumor types. Previously, we reported that DNA hypomethylation at NR4A3 exon 3 is associated with lower survival rate of neuroblastoma (NB) patients. As hypomethylation of this region results in reduced expression of NR4A3, our observations suggested that NR4A3 functions as a tumor suppressor in NB. However, the exact mechanisms underlying its functions have not been clarified. In the present study, we analyzed public databases and showed that reduced NR4A3 expression was associated with shorter survival period of NB in two out of three datasets. An in vitro study revealed that forced expression of NR4A3 in human NB-derived cell line NB1 resulted in elongation of neurites along with overexpression of GAP43, one of the differentiation markers of NB. On the other hand, siRNA-mediated knockdown of NR4A3 suppressed the expression level of GAP43. Interestingly, the forced expression of NR4A3 induced only the GAP43 but not the other molecules involved in NB cell differentiation, such as MYCN, TRKA, and PHOX2B. These results indicated that NR4A3 directly activates the expression of GAP43 and induces differentiated phenotypes of NB cells, without affecting the upstream signals regulating GAP43 expression and NB differentiation.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Neuroblastoma/metabolismo , Receptores de Esteroides/biossíntese , Receptores dos Hormônios Tireóideos/biossíntese , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Progressão da Doença , Proteína GAP-43/biossíntese , Técnicas de Silenciamento de Genes , Humanos , Neuritos/metabolismo , Neuritos/patologia , Neuroblastoma/genética , Neuroblastoma/patologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética , Regulação para Cima
7.
Int J Oncol ; 55(1): 93-102, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31180520

RESUMO

Neuroblastoma (NB) is one of the most common extracranial solid tumors in children, which has complex molecular mechanisms. Increasing evidence has suggested that long noncoding RNAs (lncRNAs) account for NB pathogenesis. However, the function of small nucleolar RNA host gene 16 (SNHG16) in NB is currently unclear. In the present study, publically available data and clinical specimens were employed to verify the expression of SNHG16 in NB. Colony formation, real­time cell proliferation and migration assays were performed to demonstrate the status of cellular proliferation and migration. Flow cytometry was used to examine cell cycle progression in SH­SY5Y cells, and acridine orange/ethidium bromide staining and caspase­3/7 activity measurements were applied to study cell apoptosis. To explore the underlying mechanism of SNHG16 function, an online database was used to identify potential RNA­binding proteins that bind SNHG16. The expression of SNHG16 was revealed to be in line with the clinical staging of NB, and high SNHG16 expression was positively associated with poor clinical outcome. Furthermore, SNHG16 silencing inhibited cell proliferation, repressed migration, and induced cell cycle arrest at the G0/G1 phase in SH­SY5Y cells. Additionally, apoptosis was undetectable in SH­SY5Y cells following SNHG16 silencing. Bioinformatics analysis revealed that SNHG16 regulated cell proliferation in NB through transcriptional and translational pathways. These results suggested that SNHG16 may serve important roles in the development and progression of NB, and could represent a potential target for NB therapy.


Assuntos
Neuroblastoma/genética , RNA Longo não Codificante/genética , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Criança , Pré-Escolar , Inativação Gênica , Humanos , Lactente , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Oncogenes , RNA Longo não Codificante/biossíntese , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Transfecção
8.
Chem Biol Interact ; 310: 108688, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31173752

RESUMO

Glucagon-like peptide 1 (GLP-1) has neuroprotective properties in Alzheimer's disease (AD). In this study, our aim is to explore the neuroprotective effects of liraglutide, a GLP-1 analogue, on AD-like neurodegeneration induced by H2O2 in human neuroblastoma SH-SY5Y cells. Cytotoxicity was determined by MTT assay and lactate dehydrogenase level was monitored by LDH assay. The level of lipid peroxidation and cell apoptosis rate were measured by malondialdehyde (MDA) assay and Annexin V-FITC/propidium iodide (PI) staining. Western blotting was used to assess the expression of Bcl-2, Bax, caspase-3, tau and the Akt/GSK-3ß. Liraglutide pre-treatment enhanced cell viability with reduced cytotoxicity, lipid peroxidationand and apoptosis. In addition, pre-treatment of liraglutide displayed that increased the expression of the pro-survival Bcl-2 and reduced pro-apoptotic Bax with ameliorated the hyperphosphorylation of tau and Akt/GSK-3ß signaling pathway in H2O2 stressed SH-SY5Y cells. These finding provided evidences that liraglutide protected the H2O2 induced AD-like neurodegeneration through improving Akt/GSK-3ß signaling pathway. These results suggest that liraglutide may have potential values for the treatment for AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Liraglutida/uso terapêutico , Neuroblastoma/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Estresse Oxidativo , Linhagem Celular Tumoral , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Neuroblastoma/patologia , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/etiologia , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
9.
Clin Nucl Med ; 44(9): 761-763, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31058691

RESUMO

Although increased MIBG activity in the colon is a well-described and well-known normal variant, elevated MIBG activity in the stomach is rarely seen. We describe increased I-MIBG accumulation in the stomach in a 13-year-old girl who had recurrent metastatic neuroblastoma. The activity appeared to be a new MIBG-avid lesion on the planar images. However, the SPECT/CT images revealed that the activity was inside the gastric lumen without anatomical abnormality. On a follow-up I-MIBG scan acquired 3 months later, the stomach no longer had elevated MIBG activity, while the other abnormal activity on prior study remained the same.


Assuntos
3-Iodobenzilguanidina/metabolismo , Mucosa Gástrica/metabolismo , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Estômago/diagnóstico por imagem , Adolescente , Transporte Biológico , Feminino , Humanos , Metástase Neoplásica , Neuroblastoma/diagnóstico por imagem , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Recidiva , Estômago/patologia
10.
Anal Bioanal Chem ; 411(19): 4963-4971, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31093701

RESUMO

Cu isotope fractionation was investigated in the human neuroblastoma SH-SY5Y cell line, in a proliferating/tumor phase (undifferentiated cells), and in a differentiated state (neuron-like cells), induced using retinoic acid (RA). The SH-SY5Y cell line displays genetic aberrations due to its cancerous origin, but differentiation drives the cell line towards phenotypes suitable for the research of neurological diseases (e.g., Alzheimer's disease or Parkinson's disease). Cellular Cu distribution was first explored by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging and, subsequently, Cu isotopic analysis was performed at cellular and sub-cellular levels via multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). The SH-SY5Y cells showed a re-distribution of intracellular Cu upon RA differentiation. Both undifferentiated and differentiated cells became systematically enriched in the light 63Cu isotope with increasing intracellular Cu content. Differentiated neuron-like SH-SY5Y cells showed a heavier Cu isotopic composition (+ 0.3‰) than did the undifferentiated proliferating cells when exposed to Cu for 24 h. However, after a longer exposure time (72 h), no difference was observed between both cellular phenotypes. Mitochondrial fractions were enriched in the light 63Cu isotope, compared to whole cells, for both undifferentiated and differentiated cells (no significant difference). The Cu isotopic composition of the remaining cell lysates was heavier than that of the whole cells and + 0.2‰ heavier in the differentiated cells than in the undifferentiated cells. These results indicate that neuronal differentiation affects the Cu isotope fractionation accompanying Cu uptake in the cells, but this effect does not seem to be associated with the mitochondrial Cu pathway. Cu isotope fractionation can be an interesting tool for studying Cu metabolism at a (sub)-cellular level in functional neurons. Graphical abstract.


Assuntos
Fracionamento Celular , Cobre/isolamento & purificação , Isótopos/isolamento & purificação , Neuroblastoma/metabolismo , Neurônios/metabolismo , Frações Subcelulares/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Mitocôndrias/metabolismo , Neuroblastoma/patologia , Neurônios/citologia
11.
Food Chem Toxicol ; 129: 1-12, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30995514

RESUMO

Oleuropein aglycone (OleA), the most abundant polyphenol in extra virgin olive oil (EVOO), and Hydroxythyrosol (HT), the OleA main metabolite, have attracted our interest due to their multitarget effects, including the interference with amyloid aggregation path. However, the mechanistic details of their anti-amyloid effect are not known yet. We report here a broad biophysical approach and cell biology techniques that enabled us to characterize the different molecular mechanisms by which OleA and HT modulate the Aß1-42 fibrillation, a main histopathological feature of Alzheimer's disease (AD). In particular, OleA prevents the growth of toxic Aß1-42 oligomers and blocks their successive growth into mature fibrils following its interaction with the peptide N-terminus, while HT speeds up harmless fibril formation. Our data demonstrate that, by stabilizing oligomers and fibrils, both polyphenols reduce their seeding activity and aggregate/membrane interaction on human neuroblastoma SH-SY5Y cells. These findings highlight the great potential of EVOO polyphenols and offer the possibility to validate and to optimize their use for possible AD prevention and therapy.


Assuntos
Acetatos/farmacologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Fragmentos de Peptídeos/antagonistas & inibidores , Álcool Feniletílico/análogos & derivados , Piranos/farmacologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Fenômenos Biofísicos , Linhagem Celular Tumoral , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Estresse Oxidativo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Álcool Feniletílico/farmacologia
12.
Nat Commun ; 10(1): 1530, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30948783

RESUMO

Transition between differentiation states in development occurs swift but the mechanisms leading to epigenetic and transcriptional reprogramming are poorly understood. The pediatric cancer neuroblastoma includes adrenergic (ADRN) and mesenchymal (MES) tumor cell types, which differ in phenotype, super-enhancers (SEs) and core regulatory circuitries. These cell types can spontaneously interconvert, but the mechanism remains largely unknown. Here, we unravel how a NOTCH3 intracellular domain reprogrammed the ADRN transcriptional landscape towards a MES state. A transcriptional feed-forward circuitry of NOTCH-family transcription factors amplifies the NOTCH signaling levels, explaining the swift transition between two semi-stable cellular states. This transition induces genome-wide remodeling of the H3K27ac landscape and a switch from ADRN SEs to MES SEs. Once established, the NOTCH feed-forward loop maintains the induced MES state. In vivo reprogramming of ADRN cells shows that MES and ADRN cells are equally oncogenic. Our results elucidate a swift transdifferentiation between two semi-stable epigenetic cellular states.


Assuntos
Neurônios Adrenérgicos/patologia , Reprogramação Celular/genética , Células-Tronco Mesenquimais/patologia , Neuroblastoma/patologia , Receptor Notch3/fisiologia , Neurônios Adrenérgicos/metabolismo , Linhagem Celular Tumoral , Epigênese Genética , Retroalimentação Fisiológica , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/metabolismo , Neuroblastoma/metabolismo , Receptor Notch3/genética , Receptor Notch3/metabolismo
13.
Life Sci ; 225: 117-131, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30951743

RESUMO

AIM: Alzheimer's disease (AD) is a slowly progressing neurodegenerative disorder that attributed to the increase of amyloid precursor protein (APP). Recently, evidence indicates that microRNA alterations are involved in the development of AD. In this paper, we demonstrated whether osthole could delay the occurrence of AD by regulating miRNA. METHODS: Microarray was used to discover differential miRNAs in AD. The target genes regulated by miRNA were predicted by databases; The protective effects of osthole on APP/PS1 mice were determined by Morris Water Maze, H&E and Nissl staining; The APP-SH-SY5Y cells were transfected with miRNA-101a-3p inhibitor, the expression of miRNA-101a-3p and APP mRNA in APP/PS1 mice and APP-SH-SY5Y cells were detected by RT-PCR; And western blot and ICC staining were used to detect the APP and Aß proteins expression. KEY FINDINGS: MiRNA-101a-3p was the osthole-mediated miRNA in AD and APP is the target gene. Osthole could increase the learning and memory ability in APP/PS1 mice and inhibit APP mRNA/protein expression by up-regulating miRNA-101a-3p. For exploring the underlying mechanism, miR-101a-3p inhibitor was transfected into the APP-SH-SY5Y cells. We can know that osthole had a protective effect on APP-SH-SY5Y cells, and it could raise miRNA-101a-3p expression and inhibit APP mRNA/protein expression, the formation of Aß protein was inhibited too. SIGNIFICANCE: These results emphasized that osthole had a protective effect on APP/PS1 mice and APP-SH-SY5Y cells. The main cause was due to osthole could inhibit APP expression by up-regulating miRNA-101a-3p so as to help delay the occurrence of AD.


Assuntos
Doença de Alzheimer/prevenção & controle , Precursor de Proteína beta-Amiloide/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Cumarínicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Doença de Alzheimer/etiologia , Doença de Alzheimer/genética , Animais , Modelos Animais de Doenças , Humanos , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Presenilina-1/metabolismo , Células Tumorais Cultivadas , Regulação para Cima
14.
Cell Physiol Biochem ; 52(4): 893-907, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30964607

RESUMO

BACKGROUND/AIMS: Previous studies have shown that a 63-hour, intermittent exposure to a 50 Hz, 100 µT magnetic field (MF) induces in the NB69 line of human neuroblastoma a proliferative response that is mediated by activation of the MAPK pathways ERK1/2 and p38. The present study aims to investigate the potential involvement of the epidermal growth factor receptor (EGFR) in the field-induced cell proliferation and activation of MAPK pathways. METHODS: NB69 cultures were MF- or sham-exposed for 5 to 30 minute intervals and 63 hours. Cell proliferation and activation of MAPK-ERK1/2, -p38 and -JNK was analyzed in the presence or absence of erlotinib, an effective inhibitor of EGFR tyrosine kinase. The expression of p-EGFR and MMP-9 in the presence or absence of MF was also studied. Between 3 and 7 replicates of each experiment were performed, using between 3 and 4 samples per experimental condition and replicate. At the end of each replicate, the samples were analyzed at short times (5-30 min) through immunofluorescence and Western blotting, and the growth response was assessed (63 hours interval) through dye exclusion with Trypan blue. RESULTS: The results confirmed that field exposure induces cell proliferation and activation of ERK1/2, p38 and JNK, and revealed that these effects were blocked with erlotinib. The data also showed that, compared to shamexposed controls, the MF exposure induces early and transient increases in the expression of p-EGFR and MMP-9 at 15 and 5 min from the exposure onset, respectively. CONCLUSION: The obtained results reveal that the activation of the MAPK-ERK1/2 and -p38 pathways by the MF is mediated by the EGF receptor. Taken together with our previously published results, this dataset suggests that the proliferative response induced in NB69 by a 63-hour exposure to a weak, power frequency MF, is mediated by early transient activation of EGFR in which MMP-9 would be involved.


Assuntos
Proliferação de Células , Sistema de Sinalização das MAP Quinases , Campos Magnéticos , Proteínas de Neoplasias/metabolismo , Neuroblastoma/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Proteínas de Neoplasias/genética , Neuroblastoma/genética , Neuroblastoma/patologia
15.
Biochim Biophys Acta Bioenerg ; 1860(5): 391-401, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30885735

RESUMO

Mitochondrial uncoupling protein 2 (UCP2) is highly abundant in rapidly proliferating cells that utilize aerobic glycolysis, such as stem cells, cancer cells, and cells of the immune system. However, the function of UCP2 has been a longstanding conundrum. Considering the strict regulation and unusually short life time of the protein, we propose that UCP2 acts as a "signaling protein" under nutrient shortage in cancer cells. We reveal that glutamine shortage induces the rapid and reversible downregulation of UCP2, decrease of the metabolic activity and proliferation of neuroblastoma cells, that are regulated by glutamine per se but not by glutamine metabolism. Our findings indicate a very rapid (within 1 h) metabolic adaptation that allows the cell to survive by either shifting its metabolism to the use of the alternative fuel glutamine or going into a reversible, more quiescent state. The results imply that UCP2 facilitates glutamine utilization as an energetic fuel source, thereby providing metabolic flexibility during glucose shortage. The targeting UCP2 by drugs to intervene with cancer cell metabolism may represent a new strategy for treatment of cancers resistant to other therapies.


Assuntos
Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Glutamina/metabolismo , Proteínas de Neoplasias/biossíntese , Neuroblastoma/metabolismo , Proteína Desacopladora 2/biossíntese , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Metabolismo Energético/genética , Glucose/genética , Glucose/metabolismo , Glutamina/genética , Camundongos , Proteínas de Neoplasias/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Proteína Desacopladora 2/genética
16.
J Pediatr Surg ; 54(6): 1192-1197, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30879743

RESUMO

PURPOSE: MYCN oncogene amplification is an independent predictor of poor prognosis in neuroblastoma. CX-5461 is a small molecular inhibitor that prevents initiation of ribosomal RNA (rRNA) synthesis by RNA Pol I, down-regulating MYCN/MYC proteins. We hypothesize that neuroblastoma tumor growth can be suppressed by CX-5461. METHODS: MYCN-amplified (KELLY, IMR5) and nonamplified (SY5Y, SKNAS) neuroblastoma cells were treated with CX-5461. MYCN/MYC expression after 24-48 h was determined by Western blot. Orthotopic neuroblastoma tumors created in mice using KELLY cells were treated with CX-5461-loaded silk films implanted locally. Tumor growth was monitored using ultrasound. Histologic evaluation of tumors was performed. RESULTS: IC50 for KELLY, IMR5, SY5Y, and SKNAS cells to CX-5461 was 0.75 µM, 0.02 µM, 0.8 µM, and 1.7 µM, respectively. CX-5461 down-regulated MYCN and MYC proteins at 0.25-1.0 µM on Western blot analysis. CX-5461-loaded silk film released 23.7±3 µg of the drug in 24 h and 48.2±3.9 µg at 120 h. KELLY tumors treated with CX-5461-loaded film reached 800 mm3 after 7.8±1.4 days, while those treated with control film reached the same size on 5.1±0.6 days (p=0.03). CX-5461-treated tumors showed collapse of nucleolar hypertrophy and MYCN protein downregulation. CONCLUSION: We demonstrated that local delivery of CX-5461 via sustained release platform can suppress orthotopic neuroblastoma tumor growth, especially those with MYCN/MYC overexpression.


Assuntos
Benzotiazóis/farmacologia , Regulação para Baixo/efeitos dos fármacos , Proteína Proto-Oncogênica N-Myc/metabolismo , Naftiridinas/farmacologia , Neuroblastoma , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cell Mol Life Sci ; 76(13): 2615-2632, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30863908

RESUMO

The Tar DNA-Binding Protein 43 (TDP-43) and its phosphorylated isoform (pTDP-43) are the major components associated with ubiquitin positive/Tau-negative inclusions found in neurons and glial cells of patients suffering of amyotrophic lateral sclerosis (ALS) or frontotemporal lobar degeneration-TDP-43 (FTLD-TDP). Many studies have revealed that TDP-43 is also in the protein inclusions associated with neurodegenerative conditions other than ALS and FTLD-TDP, thus suggesting that this protein may be involved in the pathogenesis of a variety of neurological disorders. In brains of Huntington-affected patients, pTDP-43 aggregates were shown to co-localize with mutant Huntingtin (mHtt) inclusions. Here, we show that expression of mHtt carrying 80-97 polyglutamines repeats in human cell cultures induces the aggregation and the phosphorylation of endogenous TDP-43, whereas non-pathological Htt with 25 polyglutamines repeats has no effect. Mutant Htt aggregation precedes accumulation of pTDP-43 and pTDP-43 co-localizes with mHtt inclusions reminding what it was previously described in brains of Huntington-affected patients. Detergent-insoluble fractions from cells expressing mHtt and containing mHtt-pTDP-43 co-aggregates can function as seeds for further TDP-43 aggregation in human cell culture. The human cellular prion protein PrPC was previously identified as a negative modulator of mHtt aggregation; here, we show that PrPC-mediated reduction of mHtt aggregation is tightly correlated with a decrease of TDP-43 aggregation and phosphorylation, thus confirming the close relationships between TDP-43 and mHtt.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteína Huntingtina/metabolismo , Mutação , Neuroblastoma/patologia , Peptídeos/metabolismo , Proteínas Priônicas/metabolismo , Agregados Proteicos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Proteína Huntingtina/genética , Corpos de Inclusão , Neuroblastoma/genética , Neuroblastoma/metabolismo , Fosforilação , Proteínas Priônicas/genética , Células Tumorais Cultivadas
18.
Mol Biol Rep ; 46(2): 2523-2528, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30903573

RESUMO

In this study, it was aimed to determine the effects of Amlodipine, a calcium channel blocker and vincristine (VCR) an antineoplastic, on human neuroblastomas using different doses. The cytotoxicity assays of the study were performed using the MTT method depending on time and concentration. After obtaining the mixture (up to 85% for SH-SY5Y) and sufficient branches (cortex neurons), the cells were treated with amlodipine (10 µM) and vincristine (0.5, 1 and 2 µg) at different concentrations for 24 h. MTT assay was performed by the commercially available kit (Sigma Aldrich, USA). Cells were harvested, washed and stained with PI and Annexin V, respectively, according to the manufacturer's protocol (Biovision, USA). Than analyzes were carried out. The results were quite impressive. When amlodipine (10 µM) was administered alone there was little change compared to the control. However, all doses of amlodipine (10 µM) and vincristine (0.5, 1 and 2 µg) were greater than the deaths in the doses alone (0.5, 1 and 2 µg) of vincristine alone. (P < 0.05). As a result, the combination of vincristine and amlodipine is more effective than vincristine alone in reducing the viability of cancer cells.


Assuntos
Neuroblastoma/tratamento farmacológico , Vincristina/metabolismo , Vincristina/farmacologia , Anlodipino/metabolismo , Anlodipino/farmacologia , Antineoplásicos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neuroblastoma/metabolismo
19.
Int J Biol Macromol ; 130: 878-891, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30836187

RESUMO

Myocardial Infarction Associated Transcript (MIAT) is a subnuclear lncRNA that interferes with alternative splicing and is associated with increased risk of various heart conditions and nervous system tumours. The current study aims to elucidate the role of MIAT in cell survival, apoptosis and migration in neuroblastoma and glioblastoma multiforme. To this end, MIAT was silenced by MIAT-specific siRNAs in neuroblastoma and glioblastoma cell lines, and RNA sequencing together with a series of functional assays were performed. The RNA sequencing has revealed that the expression of an outstanding number of genes is altered, including genes involved in cancer-related processes, such as cell growth and survival, apoptosis, reactive oxygen species (ROS) production and migration. Furthermore, the functional studies have confirmed the RNA sequencing leads, with our key findings suggesting that MIAT knockdown eliminates long-term survival and migration and increases basal apoptosis in neuroblastoma and glioblastoma cell lines. Taken together with the recent demonstration of the involvement of MIAT in glioblastoma, our observations suggest that MIAT could possess tumour-promoting properties, thereby acting as an oncogene, and has the potential to be used as a reliable biomarker for neuroblastoma and glioblastoma and be employed for prognostic, predictive and, potentially, therapeutic purposes for these cancers.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Neuroblastoma/genética , RNA Longo não Codificante/genética , Apoptose , Biomarcadores , Técnicas de Silenciamento de Genes , Glioblastoma/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neuroblastoma/metabolismo , Estresse Oxidativo , RNA Interferente Pequeno/genética , Análise de Sequência de RNA , Transdução de Sinais
20.
J Pharmacol Sci ; 139(3): 186-192, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30850243

RESUMO

BACKGROUND: Local anesthetics (LAs) may generate neurotoxicity in neurons. In the current study, we explored the mechanisms by which microRNA-132 (miR-132) regulated the neurotoxicity of human neuroblastoma cells (SH-SY5Y) induced by bupivacaine (BUP). METHODS: CCK-8, flow cytometry, EdU detection, qRT-PCR and western blotting were used to explore the cell viability, apoptosis and gene expression, respectively. RESULTS: In this study, we found that 600 µM BUP dramatically inhibited SH-SY5Y cells viability. In addition, BUP induced cell apoptosis and neurotoxicity via increasing active caspase-3 and cleaved PARP1 levels. More importantly, the level of miR-132 was significantly up-regulated in BUP-treated cells, which was significantly reversed by miR-132 inhibitor. In addition, dual-luciferase assay indicated IGF1R was the directly binding target of miR-132 in cells. Our study further indicated that the level of IGF1R was markedly decreased by BUP interference, while miR-132 inhibitor exerted the opposite effect. Furthermore, BUP induced apoptosis and neurotoxicity in SH-SY5Y cells were attenuated by IGF1, which further confirmed IGF1R was the downstream target of BUP in SH-SY5Y cells. CONCLUSION: In the present study, miR-132 played important roles in regulating BUP-induced neurotoxicity through IGF1R and may act as a promising molecular target for the treatment of human neurotoxicity induced by BUP.


Assuntos
Anestésicos Locais/toxicidade , Bupivacaína/toxicidade , MicroRNAs/genética , Síndromes Neurotóxicas/etiologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Humanos , Neuroblastoma/metabolismo , Síndromes Neurotóxicas/genética , Receptores de Somatomedina/metabolismo , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA