RESUMO
TIR domains are NAD-degrading enzymes that function during immune signaling in prokaryotes, plants, and animals. In plants, most TIR domains are incorporated into intracellular immune receptors termed TNLs. In Arabidopsis, TIR-derived small molecules bind and activate EDS1 heterodimers, which in turn activate RNLs, a class of cation channel-forming immune receptors. RNL activation drives cytoplasmic Ca2+ influx, transcriptional reprogramming, pathogen resistance, and host cell death. We screened for mutants that suppress an RNL activation mimic allele and identified a TNL, SADR1. Despite being required for the function of an autoactivated RNL, SADR1 is not required for defense signaling triggered by other tested TNLs. SADR1 is required for defense signaling initiated by some transmembrane pattern recognition receptors and contributes to the unbridled spread of cell death in lesion simulating disease 1. Together with RNLs, SADR1 regulates defense gene expression at infection site borders, likely in a non-cell autonomous manner. RNL mutants that cannot sustain this pattern of gene expression are unable to prevent disease spread beyond localized infection sites, suggesting that this pattern corresponds to a pathogen containment mechanism. SADR1 potentiates RNL-driven immune signaling not only through the activation of EDS1 but also partially independently of EDS1. We studied EDS1-independent TIR function using nicotinamide, an NADase inhibitor. Nicotinamide decreased defense induction from transmembrane pattern recognition receptors and decreased calcium influx, pathogen growth restriction, and host cell death following intracellular immune receptor activation. We demonstrate that TIR domains can potentiate calcium influx and defense and are thus broadly required for Arabidopsis immunity.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Cálcio/metabolismo , Receptores Imunológicos/metabolismo , Niacinamida/metabolismo , Imunidade Vegetal/genética , Doenças das Plantas/genéticaRESUMO
BACKGROUND: Neuropathic pain (NP) is one of the most common types of chronic pain and significantly compromises the quality of life. Autophagy is an intracellular catabolic process that is required to maintain cellular homeostasis in response to various stresses. The role of autophagy-related genes in the diagnosis and treatment of neuropathic pain remains unclear. METHODS: We identified autophagy-related differentially expressed genes (ARDEGs) and differentially expressed miRNAs (DE-miRNAs) in neuropathic pain by bioinformatics analysis of the GSE145226 and GSE145199 datasets. These ARDEGs and their co-expressed genes were subjected to Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, Gene Set Enrichment Analysis (GSEA) and friends analysis. Meanwhile, we constructed TFs-ARDEGs, miRNA-ARDEGs regulatory network through ChIPBase database and the HTFtarget database, multiMir R package. Finally, we performed immune infiltration analysis of ARDEGs by Single Sample Gene Set Enrichment Analysis (ssGSEA). RESULTS: We identified 2 potential autophagy-related differentially expressed genes (Sirt2 and ST7) that may be closely associated with the pathogenesis of neuropathic pain. GO, KEGG and GSEA analysis revealed that these two ARDEGs were mainly enriched in pyridine nucleotide metabolic process, nicotinamide nucleotide metabolic process, Nicotinate and nicotinamide metabolism, NF-κB pathway, KRAS signaling, P53 pathway. In the TFs-ARDEGs and miRNA-ARDEGs regulatory network, miR-140-5p and Cebpb were predicted to be as crucial regulators in the progression of NP. For the ssGSEA results, Sirt2 was positively correlated with Eosinophil and Effector memory CD8+ T cell infiltration, which suggested that it may be involved in the regulation of neuroimmune-related signaling. CONCLUSION: Two autophagy-related differentially expressed genes, especially Sirt2, may be potential biomarkers for NP, providing more evidence about the crucial role of autophagy in neuropathic pain.
Assuntos
MicroRNAs , Neuralgia , Humanos , Sirtuína 2 , Qualidade de Vida , MicroRNAs/genética , Neuralgia/genética , Autofagia/genética , Biologia Computacional , Niacinamida , NucleotídeosRESUMO
Traumatic brain injury (TBI) is one of the main factors of death and disability in adults with a high incidence worldwide. Nervous system injury, as the most common and serious secondary injury after TBI, determines the prognosis of TBI patients. NAD+ has been confirmed to have neuroprotective effects in neurodegenerative diseases, but its role in TBI remains to be explored. In our study, nicotinamide mononucleotides (NMN), a direct precursor of NAD+, was used to explore the specific role of NAD+ in rats with TBI. Our results showed that NMN administration markedly attenuated histological damages, neuronal death, brain edema, and improved neurological and cognitive deficits in TBI rats. Moreover, NMN treatment significantly suppressed activated astrocytes and microglia after TBI, and further inhibited the expressions of inflammatory factor. Besides, RNA sequencing was used to access the differently expressed genes (DEGs) and their enriched (Kyoto Encyclopedia of Genes and Genomes) KEGG pathways between Sham, TBI, and TBI+NMN. We found that 1589 genes were significantly changed in TBI and 792 genes were reversed by NMN administration. For example, inflammatory factor CCL2, toll like receptors TLR2 and TLR4, proinflammatory cytokines IL-6, IL-11 and IL1rn which were activated after TBI and were decreased by NMN treatment. GO analysis also demonstrated that inflammatory response was the most significant biological process reversed by NMN treatment. Moreover, the reversed DEGs were typically enriched in NF-Kappa B signaling pathway, Jak-STAT signaling pathway and TNF signaling pathway. Taken together, our data showed that NMN alleviated neurological impairment via anti-neuroinflammation in traumatic brain injury and the mechanisms may involve TLR2/4-NF-κB signaling.
Assuntos
Lesões Encefálicas Traumáticas , Niacinamida , Animais , Ratos , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Mononucleotídeo de Nicotinamida , NAD , Receptor 2 Toll-Like , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológicoRESUMO
Synchrony has been used to describe simple beat entrainment as well as correlated mental processes between people, leading some to question whether the term conflates distinct phenomena. Here we ask whether simple synchrony (beat entrainment) predicts more complex attentional synchrony, consistent with a common mechanism. While eye-tracked, participants listened to regularly spaced tones and indicated changes in volume. Across multiple sessions, we found a reliable individual difference: some people entrained their attention more than others, as reflected in beat-matched pupil dilations that predicted performance. In a second study, eye-tracked participants completed the beat task and then listened to a storyteller, who had been previously recorded while eye-tracked. An individual's tendency to entrain to a beat predicted how strongly their pupils synchronized with those of the storyteller, a corollary of shared attention. The tendency to synchronize is a stable individual difference that predicts attentional synchrony across contexts and complexity.
Assuntos
Percepção Auditiva , Midríase , Humanos , Cafeína , Individualidade , NiacinamidaRESUMO
Nicotinamide adenine dinucleotide (NAD+) is crucial for energy metabolism, oxidative stress, DNA damage repair, longevity regulation, and several signaling processes. To date, several NAD+ synthesis pathways have been found in microbiota and mammals, but the potential relationship between gut microbiota and their hosts in regulating NAD+ homeostasis remains largely unknown. Here, we showed that an analog of the first-line tuberculosis drug pyrazinamide, which is converted by nicotinamidase/pyrazinamidase (PncA) to its active form, affected NAD+ level in the intestines and liver of mice and disrupted the homeostasis of gut microbiota. Furthermore, by overexpressing modified PncA of Escherichia coli, NAD+ levels in mouse liver were significantly increased, and diet-induced non-alcoholic fatty liver disease (NAFLD) was ameliorated in mice. Overall, the PncA gene in microbiota plays an important role in regulating NAD+ synthesis in the host, thereby providing a potential target for modulating host NAD+ level.
Assuntos
Niacina , Hepatopatia Gordurosa não Alcoólica , Animais , Niacina/farmacologia , Niacinamida/farmacologia , Hepatopatia Gordurosa não Alcoólica/etiologia , NAD , Dieta , Escherichia coli , MamíferosRESUMO
BACKGROUND: Immunosuppressed organ-transplant recipients have an increased incidence of, and mortality from, skin cancer. Nicotinamide (vitamin B3) enhances the repair of ultraviolet (UV) radiation-induced DNA damage, reduces the cutaneous immunosuppressive effects of UV radiation, and reduces the incidence of keratinocyte cancers (including squamous-cell and basal-cell carcinomas) and actinic keratoses among high-risk immunocompetent patients. Whether oral nicotinamide is useful for skin-cancer chemoprevention in organ-transplant recipients is unclear. METHODS: In this phase 3 trial, we randomly assigned, in a 1:1 ratio, organ-transplant recipients who had had at least two keratinocyte cancers in the past 5 years to receive 500 mg of nicotinamide or placebo twice daily for 12 months. Participants were examined for skin lesions by dermatologists at 3-month intervals for 12 months. The primary end point was the number of new keratinocyte cancers during the 12-month intervention period. Secondary end points included the numbers of squamous-cell and basal-cell carcinomas during the 12-month intervention period, the number of actinic keratoses until 6 months after randomization, safety, and quality of life. RESULTS: A total of 158 participants were enrolled, with 79 assigned to the nicotinamide group and 79 to the placebo group. The trial was stopped early owing to poor recruitment. At 12 months, there were 207 new keratinocyte cancers in the nicotinamide group and 210 in the placebo group (rate ratio, 1.0; 95% confidence interval, 0.8 to 1.3; P = 0.96). No significant between-group differences in squamous-cell and basal-cell carcinoma counts, actinic keratosis counts, or quality-of-life scores were observed. Adverse events and changes in blood or urine laboratory variables were similar in the two groups. CONCLUSIONS: In this 12-month, placebo-controlled trial, oral nicotinamide therapy did not lead to lower numbers of keratinocyte cancers or actinic keratoses in immunosuppressed solid-organ transplant recipients. (Funded by the National Health and Medical Research Council; ONTRANS Australian New Zealand Clinical Trials Registry number, ACTRN12617000599370.).
Assuntos
Antineoplásicos , Niacinamida , Neoplasias Cutâneas , Transplantados , Humanos , Austrália , Carcinoma Basocelular/etiologia , Carcinoma Basocelular/prevenção & controle , Carcinoma de Células Escamosas/etiologia , Carcinoma de Células Escamosas/prevenção & controle , Quimioprevenção , Ceratose Actínica/etiologia , Ceratose Actínica/prevenção & controle , Niacinamida/administração & dosagem , Niacinamida/uso terapêutico , Qualidade de Vida , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/prevenção & controle , Hospedeiro Imunocomprometido , Transplante de Órgãos/efeitos adversos , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Raios Ultravioleta/efeitos adversosRESUMO
Artificial intelligence (AI)-based analysis has recently been adopted in the examination of histological slides via the digitization of glass slides using a digital scanner. In this study, we examined the effect of varying the staining color tone and magnification level of a dataset on the result of AI model prediction in hematoxylin and eosin stained whole slide images (WSIs). The WSIs of liver tissues with fibrosis were used as an example, and three different datasets (N20, B20, and B10) were prepared with different color tones and magnifications. Using these datasets, we built five models trained Mask R-CNN algorithm by a single or mixed dataset of N20, B20, and B10. We evaluated their model performance using the test dataset of three datasets. It was found that the models that were trained with mixed datasets (models B20/N20 and B10/B20), which consist of different color tones or magnifications, performed better than the single dataset trained models. Consequently, superior performance of the mixed models was obtained from the actual prediction results of the test images. We suggest that training the algorithm with various staining color tones and multi-scaled image datasets would be more optimized for consistent remarkable performance in predicting pathological lesions of interest.
Assuntos
Algoritmos , Inteligência Artificial , Pesquisa , Cafeína , Amarelo de Eosina-(YS) , Excipientes , NiacinamidaRESUMO
Animals need discriminating auditory fear memory (DAFM) to survive, but the related neural circuits of DAFM remain largely unknown. Our study shows that DAFM depends on acetylcholine (ACh) signal in the auditory cortex (ACx), which is projected from the nucleus basalis (NB). At the encoding stage, optogenetic inhibition of cholinergic projections of NB-ACx obfuscates distinct tone-responsive neurons of ACx recognizing from fear-paired tone to fear-unpaired tone signals, while simultaneously regulating the neuronal activity and reactivation of basal lateral amygdala (BLA) engram cells at the retrieval stage. This NBACh-ACx-BLA neural circuit for the modulation of DAFM is especially dependent on the nicotinic ACh receptor (nAChR). A nAChR antagonist reduces DAFM and diminishes the increased magnitude of ACx tone-responsive neuronal activity during the encoding stage. Our data suggest a critical role of NBACh-ACx-BLA neural circuit in DAFM: manipulation of the NB cholinergic projection to the ACx via nAChR during the encoding stage affects the activation of ACx tone-responsive neuron clusters and the BLA engram cells during the retrieval stage, thus modulating the DAFM.
Assuntos
Córtex Auditivo , Receptores Nicotínicos , Animais , Neurônios Colinérgicos , Acetilcolina , Medo , Niacinamida , Colinérgicos/farmacologiaRESUMO
Intron recognition by the spliceosome mainly depends on conserved intronic sequences such as 5' splice sites, 3' splice sites, and branch sites. Therefore, even substitution of just a single nucleotide in a 5' or 3' splice site abolishes the splicing at the mutated site and leads to cryptic splice site usage. A number of disease-causative mutations have been found in 5' and 3' splice sites, but the genes with these mutations still maintain the correct protein-coding sequence, so recovery of splicing at the mutated splice site may produce a normal protein. Mutations in the spliceosome components have been shown to change the balance between the conformational transition and disassembly of the spliceosome, which affects the decision about whether the reaction of the incorporated substrate will proceed. In addition, the lower disassembly rate caused by such mutations induces splicing of the mutated splice site. We hypothesized that small compounds targeting the spliceosome may include a compound mimicking the effect of those mutations. Thus, we screened a small-compound library and identified a compound, BAY61-3606, that changed the cellular small nuclear ribonucleoprotein composition and also showed activity of enhancing splicing at the mutated 3' splice site of the reporter gene, as well as splicing at the suboptimal 3' splice site of endogenous cassette exons. These results indicate that further analysis of the mechanism of action of BAY61-3606 could enable modulation of the fidelity of splicing.
Assuntos
Sítios de Splice de RNA , Spliceossomos , Sítios de Splice de RNA/genética , Spliceossomos/genética , Spliceossomos/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Niacinamida , MutaçãoRESUMO
Hepatitis A virus (HAV) infection often causes acute hepatitis, which results in a case fatality rate of 0.2% and fulminant hepatitis in 0.5% of cases. However, no specific potent anti-HAV drug is available on the market to date. In the present study, we focused on inhibition of HAV internal ribosomal entry site (IRES)-mediated translation and investigated novel therapeutic drugs through drug repurposing by screening for inhibitors of HAV IRES-mediated translation and cell viability using a reporter assay and cell viability assay, respectively. The initial screening of 1,158 drugs resulted in 77 candidate drugs. Among them, nicotinamide significantly inhibited HAV HA11-1299 genotype IIIA replication in Huh7 cells. This promising drug also inhibited HAV HM175 genotype IB subgenomic replicon and HAV HA11-1299 genotype IIIA replication in a dose-dependent manner. In the present study, we found that nicotinamide inhibited the activation of activator protein 1 (AP-1) and that knockdown of c-Jun, which is one of the components of AP-1, inhibited HAV HM175 genotype IB IRES-mediated translation and HAV HA11-1299 genotype IIIA and HAV HM175 genotype IB replication. Taken together, the results showed that nicotinamide inhibited c-Jun, resulting in the suppression of HAV IRES-mediated translation and HAV replication, and therefore, it could be useful for the treatment of HAV infection. IMPORTANCE Drug screening methods targeting HAV IRES-mediated translation with reporter assays are attractive and useful for drug repurposing. Nicotinamide (vitamin B3, niacin) has been shown to effectively inhibit HAV replication. Transcription complex activator protein 1 (AP-1) plays an important role in the transcriptional regulation of cellular immunity or viral replication. The results of this study provide evidence that AP-1 is involved in HAV replication and plays a role in the HAV life cycle. In addition, nicotinamide was shown to suppress HAV replication partly by inhibiting AP-1 activity and HAV IRES-mediated translation. Nicotinamide may be useful for the control of acute HAV infection by inhibiting cellular AP-1 activity during HAV infection processes.
Assuntos
Vírus da Hepatite A , Niacinamida , Proteínas Proto-Oncogênicas c-jun , Humanos , Avaliação Pré-Clínica de Medicamentos , Hepatite A , Vírus da Hepatite A/efeitos dos fármacos , Vírus da Hepatite A/fisiologia , Niacinamida/farmacologia , Biossíntese de Proteínas , Fator de Transcrição AP-1/genética , Replicação Viral/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-jun/genéticaRESUMO
Epithelial ovarian cancer is the most lethal gynecological malignancy, owing notably to its high rate of therapy-resistant recurrence in spite of good initial response to chemotherapy. Although poly(ADP-ribose) polymerase inhibitors (PARPi) have shown promise for ovarian cancer treatment, extended therapy usually leads to acquired PARPi resistance. Here we explored a novel therapeutic option to counter this phenomenon, combining PARPi and inhibitors of nicotinamide phosphoribosyltransferase (NAMPT). Cell-based models of acquired PARPi resistance were created through an in vitro selection procedure. Using resistant cells, xenograft tumors were grown in immunodeficient mice, while organoid models were generated from primary patient tumor samples. Intrinsically PARPi-resistant cell lines were also selected for analysis. Our results show that treatment with NAMPT inhibitors effectively sensitized all in vitro models to PARPi. Adding nicotinamide mononucleotide, the resulting NAMPT metabolite, abrogated the therapy-induced cell growth inhibition, demonstrating the specificity of the synergy. Treatment with olaparib (PARPi) and daporinad (NAMPT inhibitor) depleted intracellular NAD+ , induced double-strand DNA breaks, and promoted apoptosis as monitored by caspase-3 cleavage. The two drugs were also synergistic in mouse xenograft models and clinically relevant patient-derived organoids. Therefore, in the context of PARPi resistance, NAMPT inhibition could offer a promising new option for ovarian cancer patients.
Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Niacinamida , Neoplasias Ovarianas/tratamento farmacológico , Fosfatos de DinucleosídeosRESUMO
In aging and disease, cellular nicotinamide adenine dinucleotide (NAD+) is depleted by catabolism to nicotinamide (NAM). NAD+ supplementation is being pursued to enhance human healthspan and lifespan. Activation of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting step in NAD+ biosynthesis, has the potential to increase the salvage of NAM. Novel NAMPT-positive allosteric modulators (N-PAMs) were discovered in addition to the demonstration of NAMPT activation by biogenic phenols. The mechanism of activation was revealed through the synthesis of novel chemical probes, new NAMPT co-crystal structures, and enzyme kinetics. Binding to a rear channel in NAMPT regulates NAM binding and turnover, with biochemical observations being replicated by NAD+ measurements in human cells. The mechanism of action of N-PAMs identifies, for the first time, the role of the rear channel in the regulation of NAMPT turnover coupled to productive and nonproductive NAM binding. The tight regulation of cellular NAMPT via feedback inhibition by NAM, NAD+, and adenosine 5'-triphosphate (ATP) is differentially regulated by N-PAMs and other activators, indicating that different classes of pharmacological activators may be engineered to restore or enhance NAD+ levels in affected tissues.
Assuntos
NAD , Nicotinamida Fosforribosiltransferase , Humanos , Citocinas/metabolismo , Longevidade , NAD/metabolismo , Niacinamida/farmacologia , Niacinamida/metabolismo , Nicotinamida Fosforribosiltransferase/química , Nicotinamida Fosforribosiltransferase/metabolismo , Sítio AlostéricoRESUMO
Despite the fact that sorafenib is recommended for the treatment of oncological diseases of the liver, kidneys, and thyroid gland, and recently it has been used for combination therapy of brain cancer of various genesis, there are still significant problems for its widespread and effective use. Among these problems, the presence of the blood-brain barrier of the brain and the need to use high doses of sorafenib, the existence of mechanisms for the redistribution of sorafenib and its release in the brain tissue, as well as the high resistance of gliomas and glioblastomas to therapy should be considered the main ones. Therefore, there is a need to create new methods for delivering sorafenib to brain tumors, enhancing the therapeutic potential of sorafenib and reducing the cytotoxic effects of active compounds on the healthy environment of tumors, and ideally, increasing the survival of healthy cells during therapy. Using vitality tests, fluorescence microscopy, and molecular biology methods, we showed that the selenium-sorafenib (SeSo) nanocomplex, at relatively low concentrations, is able to bypass the mechanisms of glioblastoma cell chemoresistance and to induce apoptosis through Ca2+-dependent induction of endoplasmic reticulum stress, changes in the expression of selenoproteins and selenium-containing proteins, as well as key kinases-regulators of oncogenicity and cell death. Selenium nanoparticles (SeNPs) also have a high anticancer efficacy in glioblastomas, but are less selective, since SeSo in cortical astrocytes causes a more pronounced activation of the cytoprotective pathways.
Assuntos
Antineoplásicos , Glioblastoma , Selênio , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Glioblastoma/metabolismo , Selênio/uso terapêutico , Astrócitos/metabolismo , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico , ApoptoseRESUMO
Fungal infections pose a serious challenge to human health due to the limited paucity of antifungal treatments. Starting as a hit compound screened from our compound library, a series of nicotinamide derivatives have been successfully synthesized via a facile one-step coupling reaction of aromatic carboxylic acid and amine. The synthesized compounds were evaluated for their antifungal activity against Candida albicans SC5314. Among the 37 nicotinamide derivatives screened, compound 16g was found to be the most active against C. albicans SC5314, with an MIC value of 0.25 µg/mL and without significant cytotoxicity. The rudimentary structure-activity relationships study revealed that the position of the amino and isopropyl groups of 16g was critical for its antifungal activity. In particular, compound 16g showed potent activity against six fluconazole-resistant C. albicans strains with MIC values ranging from 0.125-1 µg/mL and showed moderate activity against the other seven species of Candida, three strains of Cryptococcus neoformans, and three strains of Trichophyton. Furthermore, compound 16g showed fungicidal, anti-hyphal, and anti-biofilm activities in vitro, which were related to its ability to disrupt the cell wall of C. albicans. Taken together, 16g is a promising compound that is fungal-specific by targeting the cell wall and could be used as a lead compound for further investigation.
Assuntos
Antifúngicos , Niacinamida , Humanos , Antifúngicos/farmacologia , Niacinamida/farmacologia , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Fluconazol/farmacologia , Candida albicansRESUMO
Nicotinamide (NAM) is the amide form of niacin and one of the precursors of nicotinamide adenine dinucleotide (NAD +). NAM can be used as a dietary supplement or clinical therapeutic drug to replenish NAD + levels in the human body and participate in key bodily functions such as cellular metabolism and DNA repair. NAM has the advantage of low cost, wide availability, and sound biosafety. It also has multiple biological functions, including antibacterial effect, anti-inflammatory effect, and modulation of cellular immunity, producing significant ameliorative effects on skin and neurodegenerative diseases. However, most studies on NAM are still at the laboratory stage. Herein we reviewed the role and mechanism of NAM in the prevention and treatment of oral and systemic diseases, explored its potential as clinical therapeutic medication, provided some basis and references for the clinical application of nicotinamide in the prevention and treatment of various diseases, and discussed its prospects for future research and application.
Assuntos
NAD , Niacinamida , Humanos , Niacinamida/farmacologia , Niacinamida/uso terapêutico , NAD/metabolismo , Pele/metabolismo , Boca/metabolismo , FaceRESUMO
INTRODUCTION: Nicotinamide adenine dinucleotide (NAD) is an essential cosubstrate/coenzyme in multiple cellular redox processes and a substrate in several non-redox reactions. NADSYN1 encodes NAD synthetase 1, an enzyme in the NAD de novo synthesis pathway and the Preiss-Handler pathway, and biallelic pathogenic variants causes NAD deficiency associated with vertebral, cardiac, renal and limb defects. Szot et al. and Kortbawi et al. have reported a total of seven patients with NADSYN1 associated congenital NAD deficiency disorder with the oldest patient being seven years old. PATIENT DATA: We present a male patient age 30 with a height of 130 cm and numerous skeletal malformations including segmentation defects of the spine, rib anomalies and unequal leg length as well as bilateral ptosis, cleft palate and asymmetric dysmorphic facial features. The patient underwent surgery for an aortic stenosis due to a bicuspid valve. No malformations of the kidneys or urinary tract were identified. RESULTS: Trio exome sequencing revealed a homozygous missense variant in NADSYN1 c.1717G > A (p.Ala573Thr). Both parents were unaffected carriers of the variant. Analysis of NAD levels showed that the patient had a lower NAD pool compared to his unaffected siblings. The NAD pool rose approximately 25% after supplementation with nicotinamide, a NAD precursor for the salvage pathway. CONCLUSION: The variant was previously reported in four patients and functional analyses by Szot et al. support the pathogenicity of the variant. We report an adult patient with NADSYN1 associated congenital NAD deficiency disorder and expand the phenotypic spectrum. We also present analysis of the NAD levels before and after supplementation with nicotinamide.
Assuntos
Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida , Genética Médica , Deformidades Congênitas dos Membros , Anormalidades Musculoesqueléticas , Adulto , Criança , Humanos , Masculino , NAD , NiacinamidaRESUMO
Glaucoma is the leading cause of irreversible blindness and is a major health and economic burden. Current treatments do not address the neurodegenerative component of glaucoma. In animal models of glaucoma, the capacity to maintain retinal nicotinamide adenine dinucleotide (NAD) pools declines early during disease pathogenesis. Treatment with nicotinamide, an NAD precursor through the NAD salvage pathway, robustly protects against neurodegeneration in a number of glaucoma models and improves vision in existing glaucoma patients. However, it remains unknown in humans what retinal cell types are able to process nicotinamide to NAD and how these are affected in glaucoma. To address this, we utilized publicly available RNA-sequencing data (bulk, single cell, and single nucleus) and antibody labelling in highly preserved enucleated human eyes to identify expression of NAD synthesizing enzyme machinery. This identifies that the neural retina favors expression of the NAD salvage pathway, and that retinal ganglion cells are particularly enriched for these enzymes. NMNAT2, a key terminal enzyme in the salvage pathway, is predominantly expressed in retinal ganglion cell relevant layers of the retina and declines in glaucoma. These findings suggest that human retinal ganglion cells can directly utilize nicotinamide and could maintain a capacity to do so in glaucoma, showing promise for ongoing clinical trials.
Assuntos
Glaucoma , NAD , Animais , Humanos , NAD/metabolismo , Niacinamida/metabolismo , Retina/patologia , Glaucoma/patologia , Nervo Óptico/patologia , Células Ganglionares da Retina/patologiaRESUMO
Sorafenib is currently a targeted agent widely used in the treatment of advanced hepatocellular carcinoma (aHCC). However, to date there is still a lack of a reliable marker capable of predicting sorafenib therapeutic responses. Here, we conducted a genome-wide association study (GWAS) to identify candidate single-nucleotide polymorphism outcome predictors in aHCC patients. A total of 74 real-world sorafenib-treated aHCC patients were enrolled for GWAS and outcome analysis. GWAS showed that rs1010816 (p = 2.2 × 10-7) was associated with sorafenib therapeutic response in aHCC patients. Kaplan-Meier analysis indicated that the "TT" genotype was significantly associated with a favorable therapeutic response but not significantly associated with overall survival (OS). Univariate followed by multivariate Cox proportional hazard analysis showed that ascites, main portal vein thrombosis, lower platelet count, lower total sorafenib doses, higher PALBI score in model A and higher ALBI grade in model B were significantly associated with a shorter OS. Subgroup analysis showed that only in alcoholic aHCC patients treated by sorafenib, rs1010816 "TT" genotype was significantly associated with longer OS (p = 0.021). Sorafenib had a favorable therapeutic outcome in alcoholic aHCC patients carrying rs1010816 "TT" genotype.
Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Sorafenibe/uso terapêutico , Polimorfismo de Nucleotídeo Único , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Estudo de Associação Genômica Ampla , Antineoplásicos/uso terapêutico , Resultado do Tratamento , Estudos Retrospectivos , Compostos de Fenilureia/uso terapêutico , Niacinamida/uso terapêuticoRESUMO
Disrupted biological function, manifesting through the hallmarks of aging, poses one of the largest threats to healthspan and risk of disease development, such as metabolic disorders, cardiovascular ailments, and neurodegeneration. In recent years, numerous geroprotectors, senolytics, and other nutraceuticals have emerged as potential disruptors of aging and may be viable interventions in the immediate state of human longevity science. In this review, we focus on the decrease in nicotinamide adenine dinucleotide (NAD+) with age and the supplementation of NAD+ precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), in combination with other geroprotective compounds, to restore NAD+ levels present in youth. Furthermore, these geroprotectors may enhance the efficacy of NMN supplementation while concurrently providing their own numerous health benefits. By analyzing the prevention of NAD+ degradation through the inhibition of CD38 or supporting protective downstream agents of SIRT1, we provide a potential framework of the CD38/NAD+/SIRT1 axis through which geroprotectors may enhance the efficacy of NAD+ precursor supplementation and reduce the risk of age-related diseases, thereby potentiating healthspan in humans.
Assuntos
NAD , Sirtuína 1 , Humanos , Adolescente , NAD/metabolismo , Senoterapia , Niacinamida/farmacologia , Niacinamida/metabolismo , Mononucleotídeo de Nicotinamida , Nucleotídeos , Suplementos NutricionaisRESUMO
We report [1,2,4]triazolo[3,4-b]benzothiazole (TBT) as a new inhibitor scaffold, which competes with nicotinamide in the binding pocket of human poly- and mono-ADP-ribosylating enzymes. The binding mode was studied through analogues and cocrystal structures with TNKS2, PARP2, PARP14, and PARP15. Based on the substitution pattern, we were able to identify 3-amino derivatives 21 (OUL243) and 27 (OUL232) as inhibitors of mono-ARTs PARP7, PARP10, PARP11, PARP12, PARP14, and PARP15 at nM potencies, with 27 being the most potent PARP10 inhibitor described to date (IC50 of 7.8 nM) and the first PARP12 inhibitor ever reported. On the contrary, hydroxy derivative 16 (OUL245) inhibits poly-ARTs with a selectivity toward PARP2. The scaffold does not possess inherent cell toxicity, and the inhibitors can enter cells and engage with the target protein. This, together with favorable ADME properties, demonstrates the potential of TBT scaffold for future drug development efforts toward selective inhibitors against specific enzymes.