RESUMO
TIR domains are NAD-degrading enzymes that function during immune signaling in prokaryotes, plants, and animals. In plants, most TIR domains are incorporated into intracellular immune receptors termed TNLs. In Arabidopsis, TIR-derived small molecules bind and activate EDS1 heterodimers, which in turn activate RNLs, a class of cation channel-forming immune receptors. RNL activation drives cytoplasmic Ca2+ influx, transcriptional reprogramming, pathogen resistance, and host cell death. We screened for mutants that suppress an RNL activation mimic allele and identified a TNL, SADR1. Despite being required for the function of an autoactivated RNL, SADR1 is not required for defense signaling triggered by other tested TNLs. SADR1 is required for defense signaling initiated by some transmembrane pattern recognition receptors and contributes to the unbridled spread of cell death in lesion simulating disease 1. Together with RNLs, SADR1 regulates defense gene expression at infection site borders, likely in a non-cell autonomous manner. RNL mutants that cannot sustain this pattern of gene expression are unable to prevent disease spread beyond localized infection sites, suggesting that this pattern corresponds to a pathogen containment mechanism. SADR1 potentiates RNL-driven immune signaling not only through the activation of EDS1 but also partially independently of EDS1. We studied EDS1-independent TIR function using nicotinamide, an NADase inhibitor. Nicotinamide decreased defense induction from transmembrane pattern recognition receptors and decreased calcium influx, pathogen growth restriction, and host cell death following intracellular immune receptor activation. We demonstrate that TIR domains can potentiate calcium influx and defense and are thus broadly required for Arabidopsis immunity.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Cálcio/metabolismo , Receptores Imunológicos/metabolismo , Niacinamida/metabolismo , Imunidade Vegetal/genética , Doenças das Plantas/genéticaRESUMO
In aging and disease, cellular nicotinamide adenine dinucleotide (NAD+) is depleted by catabolism to nicotinamide (NAM). NAD+ supplementation is being pursued to enhance human healthspan and lifespan. Activation of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting step in NAD+ biosynthesis, has the potential to increase the salvage of NAM. Novel NAMPT-positive allosteric modulators (N-PAMs) were discovered in addition to the demonstration of NAMPT activation by biogenic phenols. The mechanism of activation was revealed through the synthesis of novel chemical probes, new NAMPT co-crystal structures, and enzyme kinetics. Binding to a rear channel in NAMPT regulates NAM binding and turnover, with biochemical observations being replicated by NAD+ measurements in human cells. The mechanism of action of N-PAMs identifies, for the first time, the role of the rear channel in the regulation of NAMPT turnover coupled to productive and nonproductive NAM binding. The tight regulation of cellular NAMPT via feedback inhibition by NAM, NAD+, and adenosine 5'-triphosphate (ATP) is differentially regulated by N-PAMs and other activators, indicating that different classes of pharmacological activators may be engineered to restore or enhance NAD+ levels in affected tissues.
Assuntos
NAD , Nicotinamida Fosforribosiltransferase , Humanos , Citocinas/metabolismo , Longevidade , NAD/metabolismo , Niacinamida/farmacologia , Niacinamida/metabolismo , Nicotinamida Fosforribosiltransferase/química , Nicotinamida Fosforribosiltransferase/metabolismo , Sítio AlostéricoRESUMO
Disrupted biological function, manifesting through the hallmarks of aging, poses one of the largest threats to healthspan and risk of disease development, such as metabolic disorders, cardiovascular ailments, and neurodegeneration. In recent years, numerous geroprotectors, senolytics, and other nutraceuticals have emerged as potential disruptors of aging and may be viable interventions in the immediate state of human longevity science. In this review, we focus on the decrease in nicotinamide adenine dinucleotide (NAD+) with age and the supplementation of NAD+ precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), in combination with other geroprotective compounds, to restore NAD+ levels present in youth. Furthermore, these geroprotectors may enhance the efficacy of NMN supplementation while concurrently providing their own numerous health benefits. By analyzing the prevention of NAD+ degradation through the inhibition of CD38 or supporting protective downstream agents of SIRT1, we provide a potential framework of the CD38/NAD+/SIRT1 axis through which geroprotectors may enhance the efficacy of NAD+ precursor supplementation and reduce the risk of age-related diseases, thereby potentiating healthspan in humans.
Assuntos
NAD , Sirtuína 1 , Humanos , Adolescente , NAD/metabolismo , Senoterapia , Niacinamida/farmacologia , Niacinamida/metabolismo , Mononucleotídeo de Nicotinamida , Nucleotídeos , Suplementos NutricionaisRESUMO
Glaucoma is the leading cause of irreversible blindness and is a major health and economic burden. Current treatments do not address the neurodegenerative component of glaucoma. In animal models of glaucoma, the capacity to maintain retinal nicotinamide adenine dinucleotide (NAD) pools declines early during disease pathogenesis. Treatment with nicotinamide, an NAD precursor through the NAD salvage pathway, robustly protects against neurodegeneration in a number of glaucoma models and improves vision in existing glaucoma patients. However, it remains unknown in humans what retinal cell types are able to process nicotinamide to NAD and how these are affected in glaucoma. To address this, we utilized publicly available RNA-sequencing data (bulk, single cell, and single nucleus) and antibody labelling in highly preserved enucleated human eyes to identify expression of NAD synthesizing enzyme machinery. This identifies that the neural retina favors expression of the NAD salvage pathway, and that retinal ganglion cells are particularly enriched for these enzymes. NMNAT2, a key terminal enzyme in the salvage pathway, is predominantly expressed in retinal ganglion cell relevant layers of the retina and declines in glaucoma. These findings suggest that human retinal ganglion cells can directly utilize nicotinamide and could maintain a capacity to do so in glaucoma, showing promise for ongoing clinical trials.
Assuntos
Glaucoma , NAD , Animais , Humanos , NAD/metabolismo , Niacinamida/metabolismo , Retina/patologia , Glaucoma/patologia , Nervo Óptico/patologia , Células Ganglionares da Retina/patologiaRESUMO
The role of nicotinamide adenine dinucleotide (NAD+) in ageing has emerged as a critical factor in understanding links to a wide range of chronic diseases. Depletion of NAD+, a central redox cofactor and substrate of numerous metabolic enzymes, has been detected in many major age-related diseases. However, the mechanisms behind age-associated NAD+ decline remains poorly understood. Despite limited conclusive evidence, supplements aimed at increasing NAD+ levels are becoming increasingly popular. This review provides renewed insights regarding the clinical utility and benefits of NAD+ precursors, namely nicotinamide (NAM), nicotinic acid (NA), nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), in attenuating NAD+ decline and phenotypic characterization of age-related disorders, including metabolic, cardiovascular and neurodegenerative diseases. While it is anticipated that NAD+ precursors can play beneficial protective roles in several conditions, they vary in their ability to promote NAD+ anabolism with differing adverse effects. Careful evaluation of the role of NAD+, whether friend or foe in ageing, should be considered.
Assuntos
NAD , Doenças Neurodegenerativas , Humanos , NAD/metabolismo , Niacinamida/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Suplementos Nutricionais , Envelhecimento/metabolismoRESUMO
Declining nicotinamide adenine dinucleotide (NAD+ ) concentration in the brain during aging contributes to metabolic and cellular dysfunction and is implicated in the pathogenesis of aging-associated neurological disorders. Experimental therapies aimed at boosting brain NAD+ levels normalize several neurodegenerative phenotypes in animal models, motivating their clinical translation. Dietary intake of NAD+ precursors, such as nicotinamide riboside (NR), is a safe and effective avenue for augmenting NAD+ levels in peripheral tissues in humans, yet evidence supporting their ability to raise NAD+ levels in the brain or engage neurodegenerative disease pathways is lacking. Here, we studied biomarkers in plasma extracellular vesicles enriched for neuronal origin (NEVs) from 22 healthy older adults who participated in a randomized, placebo-controlled crossover trial (NCT02921659) of oral NR supplementation (500 mg, 2x /day, 6 weeks). We demonstrate that oral NR supplementation increases NAD+ levels in NEVs and decreases NEV levels of Aß42, pJNK, and pERK1/2 (kinases involved in insulin resistance and neuroinflammatory pathways). In addition, changes in NAD(H) correlated with changes in canonical insulin-Akt signaling proteins and changes in pERK1/2 and pJNK. These findings support the ability of orally administered NR to augment neuronal NAD+ levels and modify biomarkers related to neurodegenerative pathology in humans. Furthermore, NEVs offer a new blood-based window into monitoring the physiologic response of NR in the brain.
Assuntos
Vesículas Extracelulares , Doenças Neurodegenerativas , Idoso , Humanos , Biomarcadores , Vesículas Extracelulares/metabolismo , Insulina , NAD/metabolismo , Niacinamida/farmacologia , Niacinamida/metabolismoRESUMO
The antidiabetic effects of quercetin and metformin are well known. However, their synergistic effect in reversing the symptoms of diabetes-induced endothelial dysfunction remains unknown. In this study, we have investigated their synergistic effect in streptozotocin (STZ)-nicotinamide induced diabetic rats. Seventy-five rats were divided into five groups; normal control, diabetic control, treatment groups (10 mg/kg quercetin, 180 mg/kg metformin, and combined). The plasma glucose and lipid levels, liver enzymes, ex-vivo studies on aortic rings, histology of liver, kidney, pancreas, abdominal aorta and thoracic aorta, and immunohistochemical studies were carried out. The findings revealed that the combination of quercetin and metformin showed a greater antidiabetic effect than either drug, and rendered protection to the endothelium. The combination effectively reversed the hyperglycemia-induced endothelial dysfunction in diabetic rats. Furthermore, it also reversed the dysregulated expression of eNOS, 3-nitrotyrosine, VCAM-1, CD31 and SIRT-1. Overall, the present study's findings demonstrate that quercetin potentiates the activity of metformin to control the complications associated with diabetes.
Assuntos
Diabetes Mellitus Experimental , Metformina , Doenças Vasculares , Ratos , Animais , Estreptozocina/farmacologia , Metformina/uso terapêutico , Quercetina/uso terapêutico , Diabetes Mellitus Experimental/metabolismo , Niacinamida/metabolismo , Endotélio Vascular/metabolismo , Hipoglicemiantes/uso terapêutico , Doenças Vasculares/metabolismoRESUMO
Recently in Cell Metabolism, Challapa et al. used isotope labeling to track NAD metabolism in host tissues and the gut microbiota. They describe a symbiotic relationship in which the gut microbiota uses host-derived nicotinamide to generate NAD and in return, produces nicotinic acid for host NAD biosynthesis.
Assuntos
NAD , Niacina , NAD/metabolismo , Niacinamida/metabolismo , Niacina/metabolismoRESUMO
Among all the NAD+ precursors, nicotinamide riboside (NR) has gained the most attention as a potent NAD+-enhancement agent. This recently discovered vitamin, B3, has demonstrated excellent safety and efficacy profiles and is orally bioavailable in humans. Boosting intracellular NAD+ concentrations using NR has been shown to provide protective effects against a broad spectrum of pathological conditions, such as neurodegenerative diseases, diabetes, and hearing loss. In this review, an integrated overview of NR research will be presented. The role NR plays in the NAD+ biosynthetic pathway will be introduced, followed by a discussion on the synthesis of NR using chemical and enzymatic approaches. NR's effects on regulating normal physiology and pathophysiology will also be presented, focusing on the studies published in the last five years.
Assuntos
NAD , Niacinamida , Humanos , NAD/metabolismo , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Compostos de Piridínio , VitaminasRESUMO
The reconfiguration of the primary metabolism is essential in plant-pathogen interactions. We compared the local metabolic responses of cucumber leaves inoculated with Pseudomonas syringae pv lachrymans (Psl) with those in non-inoculated systemic leaves, by examining the changes in the nicotinamide adenine dinucleotides pools, the concentration of soluble carbohydrates and activities/gene expression of carbohydrate metabolism-related enzymes, the expression of photosynthesis-related genes, and the tricarboxylic acid cycle-linked metabolite contents and enzyme activities. In the infected leaves, Psl induced a metabolic signature with an altered [NAD(P)H]/[NAD(P)+] ratio; decreased glucose and sucrose contents, along with a changed invertase gene expression; and increased glucose turnover and accumulation of raffinose, trehalose, and myo-inositol. The accumulation of oxaloacetic and malic acids, enhanced activities, and gene expression of fumarase and l-malate dehydrogenase, as well as the increased respiration rate in the infected leaves, indicated that Psl induced the tricarboxylic acid cycle. The changes in gene expression of ribulose-l,5-bis-phosphate carboxylase/oxygenase large unit, phosphoenolpyruvate carboxylase and chloroplast glyceraldehyde-3-phosphate dehydrogenase were compatible with a net photosynthesis decline described earlier. Psl triggered metabolic changes common to the infected and non-infected leaves, the dynamics of which differed quantitatively (e.g., malic acid content and metabolism, glucose-6-phosphate accumulation, and glucose-6-phosphate dehydrogenase activity) and those specifically related to the local or systemic response (e.g., changes in the sugar content and turnover). Therefore, metabolic changes in the systemic leaves may be part of the global effects of local infection on the whole-plant metabolism and also represent a specific acclimation response contributing to balancing growth and defense.
Assuntos
Carbono-Nitrogênio Ligases , Cucumis sativus , Pseudomonas syringae/fisiologia , Cucumis sativus/genética , Cucumis sativus/metabolismo , Carbono/metabolismo , Fosfoenolpiruvato Carboxilase/genética , beta-Frutofuranosidase/metabolismo , Malato Desidrogenase/metabolismo , Rafinose/metabolismo , Trealose/metabolismo , NAD/metabolismo , Fumarato Hidratase , Glucose-6-Fosfato/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Folhas de Planta/metabolismo , Fotossíntese/fisiologia , Metabolismo dos Carboidratos , Sacarose/metabolismo , Fosfatos/metabolismo , Oxigenases/metabolismo , Inositol/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Niacinamida/metabolismo , Adenina/metabolismo , Glucose/metabolismoRESUMO
NNMT uses SAM as a cofactor to catalyze the methylation of nicotinamide, producing 1-methylnicotinamide. Recent studies have shown that NNMT upregulation in cancer-associated fibroblasts (CAFs) is required to maintain the CAF phenotype in high-grade serous carcinoma. These observations suggest that NNMT should be evaluated as a therapeutic target, especially in cancer. Although several small-molecule inhibitors of NNMT have been identified, there remains a need for highly potent and selective inhibitors with excellent in vivo activity and ADME properties that can be used as reliable chemical probes. We have identified azaindoline carboxamide 38 as a selective and potent NNMT inhibitor with favorable PK/PD and safety profiles as well as excellent oral bioavailability and pharmaceutical properties. Our mechanistic studies indicate that 38 binds uncompetitively with SAM but competitively with nicotinamide consistent with its binding in the nicotinamide binding site and likely forming a positive interaction with SAM.
Assuntos
Niacinamida , Nicotinamida N-Metiltransferase , Niacinamida/farmacologia , Niacinamida/metabolismo , Sítios de Ligação , MetilaçãoRESUMO
In this study, we aim to verify whether swim training can improve lactate metabolism, NAD+ and NADH levels, as well as modify the activity of glycolytic and NADH shuttle enzymes and monocarboxylate transporters (MCTs) in skeletal muscle of amyotrophic lateral sclerosis (ALS) mice. ALS mice (SOD1G93A) (n = 7 per group) were analyzed before the onset of ALS, at first disease symptoms (trained and untrained), and the last stage of disease (trained and untrained), and then compared with a wild-type (WT) group of mice. The blood lactate and the skeletal muscle concentration of lactate, NAD+ and NADH, MCT1 and MCT4 protein levels, as well as lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) activities in skeletal muscle were determined by fluorometric, Western blotting, liquid chromatography-MS3 spectrometry, and spectrometric methods. In the untrained terminal ALS group, there were decreased blood lactate levels (p < 0.001) and increased skeletal muscle lactate levels (p < 0.05) as compared with a WT group of mice. The amount of nicotinamide adenine dinucleotides in the ALS groups were also significantly reduced as well as LDH activity and the level of MCT1. Swim training increased lactate levels in the blood (p < 0.05 vs. ALS TERMINAL untrained). In addition, cytosolic MDH activity and the cMDH/LDH 2.1 ratio were significantly higher in trained vs. untrained mice (p < 0.05). The data indicate significant dysfunction of lactate metabolism in ALS mice, associated with a reduction in muscle anaerobic metabolism and NADH transporting enzymes, as well as swim-induced compensation of energy demands in the ALS mice.
Assuntos
Esclerose Amiotrófica Lateral , NAD , Adenina/metabolismo , Esclerose Amiotrófica Lateral/metabolismo , Animais , Modelos Animais de Doenças , Ácido Láctico/metabolismo , Malato Desidrogenase/metabolismo , Camundongos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Músculo Esquelético/metabolismo , NAD/metabolismo , Niacinamida/metabolismoRESUMO
Linalool showed a broad-spectrum antibacterial effect, but few studies have elucidated the antibacterial mechanism of linalool on Pseudomonas fragi (P. fragi) to date. The present study aimed to uncover the antimicrobial activity and potential mechanism of linalool against P. fragi by determining key enzyme activities and metabolites combined with a high-throughput method and metabolomic pathway analysis. As a result, linalool had excellent inhibitory activity against P. fragi with MIC of 1.5 mL/L. In addition, the presence of linalool significantly altered the intracellular metabolic profile and a total of 346 differential metabolites were identified, of which 201 were up-regulated and 145 were down-regulated. The highlight pathways included beta-alanine metabolism, pantothenic acid and CoA metabolism, alanine, aspartate and glutamate metabolism, nicotinate and nicotinamide metabolism. Overall, linalool could cause metabolic disorders in cells, and the main metabolic pathways involved energy metabolism, amino acid metabolism and nucleic acid metabolism. In particular, the results of intracellular ATP content and related enzymatic activities (ATPase, SDH, and GOT) also highlighted that energy limitation and amino acid disturbance occurred intracellularly. Together, these findings provided new insights into the mechanism by which linalool inhibited P. fragi and theoretical guidance for its development as a natural preservative.
Assuntos
Anti-Infecciosos , Niacina , Ácidos Nucleicos , Pseudomonas fragi , Insuficiência Respiratória , Monoterpenos Acíclicos , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Anti-Infecciosos/metabolismo , Ácido Aspártico/metabolismo , Coenzima A/metabolismo , Glutamatos/metabolismo , Humanos , Metabolômica , Niacina/metabolismo , Niacinamida/metabolismo , Ácidos Nucleicos/metabolismo , Ácido Pantotênico , Pseudomonas fragi/metabolismoRESUMO
Nicotinamide N-methyltransferase (NNMT) is a metabolic regulator that catalyzes the methylation of nicotinamide (Nam) using the co-factor S-adenosyl-L-methionine to form 1-methyl-nicotinamide (MNA). Overexpression of NNMT and the presence of the active metabolite MNA is associated with a number of diseases including metabolic disorders. We conducted a high-throughput screening campaign that led to the identification of a tricyclic core as a potential NNMT small molecule inhibitor series. Elaborate medicinal chemistry efforts were undertaken and hundreds of analogs were synthesized to understand the structure activity relationship and structure property relationship of this tricyclic series. A lead molecule, JBSNF-000028, was identified that inhibits human and mouse NNMT activity, reduces MNA levels in mouse plasma, liver and adipose tissue, and drives insulin sensitization, glucose modulation and body weight reduction in a diet-induced obese mouse model of diabetes. The co-crystal structure showed that JBSNF-000028 binds below a hairpin structural motif at the nicotinamide pocket and stacks between Tyr-204 (from Hairpin) and Leu-164 (from central domain). JBSNF-000028 was inactive against a broad panel of targets related to metabolism and safety. Interestingly, the improvement in glucose tolerance upon treatment with JBSNF-000028 was also observed in NNMT knockout mice with diet-induced obesity, pointing towards the glucose-normalizing effect that may go beyond NNMT inhibition. JBSNF-000028 can be a potential therapeutic option for metabolic disorders and developmental studies are warranted.
Assuntos
Doenças Metabólicas , Nicotinamida N-Metiltransferase , Animais , Glucose , Humanos , Doenças Metabólicas/tratamento farmacológico , Camundongos , Niacinamida/metabolismo , Niacinamida/farmacologia , Nicotinamida N-Metiltransferase/metabolismo , Nitrosaminas , Obesidade/tratamento farmacológico , Tiramina/análogos & derivadosRESUMO
BACKGROUND: Early life stress (ELS) is associated with the development of schizophrenia later in life. The hippocampus develops significantly during childhood and is extremely reactive to stress. In rodent models, ELS can induce neuroinflammation, hippocampal neuronal loss, and schizophrenia-like behavior. While nicotinamide (NAM) can inhibit microglial inflammation, it is unknown whether NAM treatment during adolescence reduces hippocampal neuronal loss and abnormal behaviors induced by ELS. METHODS: Twenty-four hours of maternal separation (MS) of Wistar rat pups on post-natal day (PND)9 was used as an ELS. On PND35, animals received a single intraperitoneal injection of BrdU to label dividing neurons and were given NAM from PND35 to PND65. Behavioral testing was performed. Western blotting and immunofluorescence staining were used to detect nicotinamide adenine dinucleotide (NAD+)/Sirtuin3 (Sirt3)/superoxide dismutase 2 (SOD2) pathway-related proteins. RESULTS: Compared with controls, only MS animals in the adult stage (PND56-65) but not the adolescent stage (PND31-40) exhibited pre-pulse inhibition deficits and cognitive impairments mimicking schizophrenia symptoms. MS decreased the survival and activity of puberty-born neurons and hippocampal NAD+ and Sirt3 expression in adulthood. These observations were related to an increase in acetylated SOD2, microglial activation, and significant increases in pro-inflammatory IL-1ß, TNF-α, and IL-6 expression. All the effects of MS at PND9 were reversed by administering NAM in adolescence (PND35-65). CONCLUSIONS: MS may lead to schizophrenia-like phenotypes and persistent hippocampal abnormalities. NAM may be a safe and effective treatment in adolescence to restore normal hippocampal function and prevent or ameliorate schizophrenia-like behavior.
Assuntos
Privação Materna , Sirtuína 3 , Animais , Bromodesoxiuridina/metabolismo , Cognição , Hipocampo/metabolismo , Interleucina-6/metabolismo , NAD/metabolismo , NAD/farmacologia , Neurônios/metabolismo , Niacinamida/metabolismo , Niacinamida/farmacologia , Ratos , Ratos Wistar , Maturidade Sexual , Fator de Necrose Tumoral alfa/metabolismoRESUMO
BACKGROUND: Radiation damage to salivary gland is inevitable in head and neck cancer patients receiving radiotherapy. Safe and effective treatments for protecting salivary glands from radiation are still unavailable. Mitochondrial damage is a critical mechanism in irradiated salivary gland; however, treatment targeting mitochondria has not received much attention. Nicotinamide is a key component of the mitochondrial metabolism. Here, we investigated the effects and underlying mechanisms of nicotinamide on protecting irradiated submandibular gland. METHODS: Submandibular gland cells and tissues were randomly divided into four groups: control, nicotinamide alone, radiation alone, and radiation with nicotinamide pretreatment. Cell viability was detected by PrestoBlue cell viability reagent. Histopathological alterations were observed with HE staining. Pilocarpine-stimulated saliva was measured from Wharton's duct. Cell apoptosis was determined by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. Nicotinamide phosphoribosyl transferase was examined with immunofluorescence. The levels of nicotinamide adenine dinucleotide, mitochondrial membrane potential, and adenosine triphosphate were measured with the relevant kits. The mitochondrial ultrastructure was observed under transmission electron microscopy. RESULTS: Nicotinamide significantly mitigated radiation damage both in vitro and in vivo. Also, nicotinamide improved saliva secretion and reduced radiation-induced apoptosis in irradiated submandibular glands. Moreover, nicotinamide improved nicotinamide phosphoribosyl transferase and the levels of nicotinamide adenine dinucleotide/adenosine triphosphate and mitochondrial membrane potential, all of which were decreased by radiation in submandibular gland cells. Importantly, nicotinamide protected the mitochondrial ultrastructure from radiation. CONCLUSION: These findings demonstrate that nicotinamide alleviates radiation damage in submandibular gland by replenishing nicotinamide adenine dinucleotide and maintaining mitochondrial function and ultrastructure, suggesting that nicotinamide could be used as a prospective radioprotectant for preventing radiation sialadenitis.
Assuntos
Lesões por Radiação , Glândula Submandibular , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , DNA Nucleotidilexotransferase/metabolismo , DNA Nucleotidilexotransferase/farmacologia , Humanos , Mitocôndrias , NAD/metabolismo , NAD/farmacologia , Niacinamida/metabolismo , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Pilocarpina/farmacologia , Estudos Prospectivos , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Ratos , Ratos Wistar , Glândula Submandibular/metabolismoRESUMO
This study aimed to investigate the putative role of nicotinamide N-methyltransferase in the metabolic response of human aortic endothelial cells. This enzyme catalyses S-adenosylmethionine-mediated methylation of nicotinamide to methylnicotinamide. This reaction is accompanied by the reduction of the intracellular nicotinamide and S-adenosylmethionine content. This may affect NAD+ synthesis and various processes of methylation, including epigenetic modifications of chromatin. Particularly high activity of nicotinamide N-methyltransferase is detected in liver, many neoplasms as well as in various cells in stressful conditions. The elevated nicotinamide N-methyltransferase content was also found in endothelial cells treated with statins. Although the exogenous methylnicotinamide has been postulated to induce a vasodilatory response, the specific metabolic role of nicotinamide N-methyltransferase in vascular endothelium is still unclear. Treatment of endothelial cells with bacterial lipopolysaccharide evokes several metabolic and functional consequences which built a multifaceted physiological response of endothelium to bacterial infection. Among the spectrum of biochemical changes substantially elevated protein level of nicotinamide N-methyltransferase was particularly intriguing. Here it has been shown that silencing of the nicotinamide N-methyltransferase gene influences several changes which are observed in cells treated with lipopolysaccharide. They include altered energy metabolism and rearrangement of the mitochondrial network. A complete explanation of the mechanisms behind the protective consequences of the nicotinamide N-methyltransferase deficiency in cells treated with lipopolysaccharide needs further investigation.
Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Nicotinamida N-Metiltransferase , Cromatina/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Metabolismo Energético , Humanos , Lipopolissacarídeos/farmacologia , NAD/metabolismo , Niacinamida/metabolismo , Niacinamida/farmacologia , Nicotinamida N-Metiltransferase/genética , Nicotinamida N-Metiltransferase/metabolismo , S-Adenosilmetionina/metabolismoRESUMO
Human-associated streptococci have not been viewed as productive sources of natural products. Against expectation, bioinformatic searches recently revealed a large collection of diverse biosynthetic gene clusters coding for ribosomally synthesized and post-translationally modified peptides (RiPPs) in streptococcal genomes. The most abundant of these, the tqq gene cluster, is specific to Streptococcus suis, a burdensome agricultural pathogen and zoonotic agent. Herein, we used high-throughput elicitor screening to identify both small molecule elicitors and products of the tqq cluster. We show that the B3 vitamin niacin effectively elicits the tqq cluster leading to the biosynthesis of a family of RiPP natural products, which we termed threoglucins and characterized structurally. The defining feature of threoglucins is an aliphatic ether bond giving rise to a substituted 1,3-oxazinane heterocycle in the peptide backbone. Isolation of 22 congeners of threoglucins facilitated structure activity relationship studies, demonstrating the requirement for the oxazinane substructure and a Trp-Tyr C-terminal dyad for biological activity, namely antibiotic persistence and allolysis at low and high doses, respectively. Potential therapeutic applications of threoglucins are discussed.
Assuntos
Produtos Biológicos , Niacina , Streptococcus suis , Produtos Biológicos/química , Humanos , Niacina/metabolismo , Niacinamida/metabolismo , Peptídeos/química , Processamento de Proteína Pós-Traducional , Ribossomos/metabolismo , Streptococcus suis/metabolismoRESUMO
Nicotinamide nucleotide transhydrogenase (NNT) is involved in decreasing melanogenesis through tyrosinase degradation induced by cellular redox changes. Nicotinamide is a component of coenzymes, such as NAD+, NADH, NADP+, and NADPH, and its levels are modulated by NNT. Vitamin C and polydeoxyribonucleotide (PDRN) are also known to decrease skin pigmentation. We evaluated whether a mixture of nicotinamide, vitamin C, and PDRN (NVP-mix) decreased melanogenesis by modulating mitochondrial oxidative stress and NNT expression in UV-B-irradiated animals and in an in vitro model of melanocytes treated with conditioned media (CM) from UV-B-irradiated keratinocytes. The expression of NNT, GSH/GSSG, and NADPH/NADP+ in UV-B-irradiated animal skin was significantly decreased by UV-B radiation but increased by NVP-mix treatment. The expression of NNT, GSH/GSSG, and NADPH/NADP+ ratios decreased in melanocytes after CM treatment, although they increased after NVP-mix administration. In NNT-silenced melanocytes, the GSH/GSSG and NADPH/NADP+ ratios were further decreased by CM compared with normal melanocytes. NVP-mix decreased melanogenesis signals, such as MC1R, MITF, TYRP1, and TYRP2, and decreased melanosome transfer-related signals, such as RAB32 and RAB27A, in UV-B-irradiated animal skin. NVP-mix also decreased MC1R, MITF, TYRP1, TYRP2, RAB32, and RAB27A in melanocytes treated with CM from UV-irradiated keratinocytes. The expression of MC1R and MITF in melanocytes after CM treatment was unchanged by NNT silencing. However, the expression of TYRP1, TYRP2, RAB32, and RAB27A increased in NNT-silenced melanocytes after CM treatment. NVP-mix also decreased tyrosinase activity and melanin content in UV-B-irradiated animal skin and CM-treated melanocytes. In conclusion, NVP-mix decreased mitochondrial oxidative stress by increasing NNT expression and decreased melanogenesis by decreasing MC1R/MITF, tyrosinase, TYRP1, and TYRP2.
Assuntos
NADP Trans-Hidrogenases , Animais , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacologia , Dissulfeto de Glutationa/metabolismo , Melaninas , Melanócitos/metabolismo , Monofenol Mono-Oxigenase/metabolismo , NADP/metabolismo , NADP Trans-Hidrogenases/metabolismo , Niacinamida/metabolismo , Niacinamida/farmacologia , Polidesoxirribonucleotídeos/metabolismo , Vitaminas/metabolismoRESUMO
Research studies on NAD+ have proven its crucial role in aging and disease. Nicotinamide mononucleotide (NMN), as the key intermediate of NAD+, plays a significant role in supplying and maintaining NAD+ levels. In the present study, a biocatalytic method for the efficient synthesis of NMN was established. First, Escherichia coli was systematically modified to make it more conducive to the biosynthesis and accumulation of NMN. Next, the performance of nicotinamide phosphoribosyltransferase from Vibrio bacteriophage KVP40 (VpNadV) was determined, which has the best catalytic activity to produce NMN from nicotinamide. The accumulation of extracellular NMN was further increased after the introduction of an NMN transporter. Fine-tuning of gene expression and copy number led to the synthesis of NMN at the yield of 2.6 g/L at the shake flask level. The introduction of a nicotinamide transporter, BcniaP, could not obviously increase the production of NMN at the shake flask level, but it decreased the production of NMN at the bioreactor level. Finally, the titer of NMN reached 16.2 g/L with a conversion ratio of 97.0% from nicotinamide, both of which are highest according to currently available reports. The fed-batch fermentation with direct supplementation of nicotinamide could facilitate the industrial-scale production of NMN compared to that achieved by the whole-cell catalysis process. These results also represent the highest reported yield of NMN synthesized from nicotinamide in E. coli.