Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.350
Filtrar
1.
J Environ Manage ; 357: 120721, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565027

RESUMO

Accurate and frequent nitrate estimates can provide valuable information on the nitrate transport dynamics. The study aimed to develop a data-driven modeling framework to estimate daily nitrate concentrations at low-frequency nitrate monitoring sites using the daily nitrate concentration and stream discharge information of a neighboring high-frequency nitrate monitoring site. A Long Short-Term Memory (LSTM) based deep learning (DL) modeling framework was developed to predict daily nitrate concentrations. The DL modeling framework performance was compared with two well-established statistical models, including LOADEST and WRTDS-Kalman, in three selected basins in Iowa, USA: Des Moines, Iowa, and Cedar River. The developed DL model performed well with NSE >0.70 and KGE >0.70 for 67% and 79% nitrate monitoring sites, respectively. DL and WRTDS-Kalman models performed better than the LOADEST in nitrate concentration and load estimation for all low-frequency sites. The average NSE performance of the DL model in daily nitrate estimation is 20% higher than that of the WRTDS-Kalman model at 18 out of 24 sites (75%). The WRTDS-Kalman model showed unrealistic fluctuations in the estimated daily nitrate time series when the model received limited observed nitrate data (less than 50) for simulation. The DL model indicated superior performance in winter months' nitrate prediction (60% of cases) compared to WRTDS-Kalman models (33% of cases). The DL model also better represented the exceedance days from the USEPA maximum contamination level (MCL). Both the DL and WRTDS-Kalman models demonstrated similar performance in annual stream nitrate load estimation, and estimated values are close to actual nitrate loads.


Assuntos
Aprendizado Profundo , Nitratos , Nitratos/análise , Rios , Monitoramento Ambiental , Modelos Estatísticos
2.
Bull Environ Contam Toxicol ; 112(4): 55, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565721

RESUMO

In August 2021, the Mar Menor, a saltwater lagoon located in the Region of Murcia (Spain), suffered a tragic environmental episode of dystrophic crisis and anoxia. The appearance of numerous dead fish in different areas of the lagoon over the course of days put all the authorities and the population of the area on alert. This paper shows a case study of what happened in the lagoon in terms of the presence of the most common inorganic pollutants. Measurements of the concentration of nitrogen species, phosphates and main heavy metals were carried out at different sampling sites in the Mar Menor from May 2021 to November 2022. Chemical analyses were carried out for each of the species under study. These analyses provide valuable information about the dystrophic crisis caused by a classic eutrophication process that began with the excessive nutrient input into the Mar Menor. Ion chromatography and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) were used as instrumentation for the quantification of these samples. The species whose values were greatly increased after the tragic episode described above were nitrates. The concentration varied significantly at the different sampling sites throughout the study. On the last sampling date, decreased concentrations of all the species were measured at each of the sampling sites, coinciding with the apparent good state of the lagoon.


Assuntos
Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Nitratos/análise , Espanha
3.
Sci Rep ; 14(1): 7830, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570538

RESUMO

Groundwater pollution by nitrate has is a major concern in the Tehran-Karaj aquifer, Iran, where the wells provide up to 80% of the water supply for a population of more than 18 million-yet detailed human health risks associated with nitrate are unknown due to the lack of accessible data to adequately cover the aquifer in both place and time. Here, using a rich dataset measured annually in more than 75 wells, we mapped the non-carcinogenic risk of nitrate in the aquifer between 2007 and 2018, a window with the most extensive anthropogenic activities in this region. Nitrate concentration varied from ~ 6 to ~ 150 mg/L, around three times greater than the standard level for drinking use, i.e. 50 mg/L. Samples with a non-carcinogenic risk of nitrate, which mainly located in the eastern parts of the study region, threatened children's health, the most vulnerable age group, in almost all of the years during the study period. Our findings revealed that the number of samples with a positive risk of nitrate for adults decreased in the aquifer from 2007 (17 wells) to 2018 (6 wells). Although we hypothesized that unsustainable agricultural practices, the growing population, and increased industrial activities could have increased the nitrate level in the Tehran-Karaj aquifer, improved sanitation infrastructures helped to prevent the intensification of nitrate pollution in the aquifer during the study period. Our compilation of annually mapped non-carcinogenic risks of nitrate is beneficial for local authorities to understand the high-risk zones in the aquifer and for the formulation of policy actions to protect the human health of people who use groundwater for drinking and other purposes in this densely populated region.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Criança , Adulto , Humanos , Nitratos/análise , Irã (Geográfico) , Poluentes Químicos da Água/análise , Água Subterrânea/química , Abastecimento de Água , Monitoramento Ambiental
4.
Environ Geochem Health ; 46(5): 151, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578445

RESUMO

Nitrate attenuation during river bank infiltration is the key process for reducing nitrogen pollution. Temperature is considered to be an important factor affecting nitrate attenuation. However, the magnitude and mechanism of its impact have not been clear for a long time. In this study, the effects of temperature and temperature gradient on the nitrate denitrification rate were investigated via static batch and dynamic soil column simulation experiments. The results showed that temperature had a significant effect on the denitrification rate. Temperature effects were first observed in denitrifying bacteria. At low temperatures, the microorganism diversity was low, resulting in a lower denitrification rate constant. The static experimental results showed that the denitrification rate at 19 °C was approximately 2.4 times that at 10 °C. The dynamic soil column experiment established an exponential positive correlation between the nitrate denitrification decay kinetic constant and temperature. The affinity of denitrifying enzymes for nitrate in the reaction substrate was ordered as follows: decreasing temperature gradient (30 °C → 10 °C) > zero temperature gradient (10 °C) > increasing temperature gradient condition (0 °C → 10 °C). This study provides a theoretical basis for the biogeochemical processes underlying river bank infiltration, which will help aid in the development and utilization of groundwater resources.


Assuntos
Nitratos , Rios , Nitratos/análise , Temperatura , Desnitrificação , Compostos Orgânicos , Nitrogênio/análise , Solo/química
5.
J Water Health ; 22(3): 550-564, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557570

RESUMO

Onsite wastewater treatment systems (OWTSs) and private wells are commonly used in Eastern North Carolina, USA. Water from private wells is not required to be tested after the initial startup, and thus persons using these wells may experience negative health outcomes if their water is contaminated with waste-related pollutants including bacteria, nitrate or synthetic chemicals such as hexafluoropropylne oxide dimer acid and its ammonium salt (GenX). Water samples from 18 sites with OWTSs and groundwater wells were collected for nitrate, Escherichia coli (E. coli), total coliform, and GenX concentration analyses. Results showed that none of the 18 water supplies were positive for E. coli, nitrate concentrations were all below the maximum contaminant level of 10 mg L-1, and one well had 1 MPN 100 mL-1 of total coliform. However, GenX was detected in wastewater collected from all 18 septic tanks and 22% of the water supplies tested had concentrations that exceeded the health advisory levels for GenX. Water supplies with low concentrations of traditionally tested for pollutants (nitrate, E. coli) may still pose health risks due to elevated concentrations of emerging contaminants like GenX and thus more comprehensive and routine water testing is suggested for this and similar persistent compounds.


Assuntos
Poluentes Ambientais , Água Subterrânea , Poluentes Químicos da Água , Águas Residuárias , Nitratos/análise , North Carolina , Escherichia coli , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Abastecimento de Água , Poços de Água , Água Subterrânea/microbiologia , Compostos Orgânicos
6.
Sci Total Environ ; 926: 171702, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508256

RESUMO

Decentralized agriculture, improper monitoring of cultivation conditions, and leaching of contaminants into lands led to the contamination of crops with various potentially toxic elements (PTEs). However, it is essential to know more about the profile level and associated risk of these contaminants and their origin, especially in high-water content crops. This study aimed to investigate the concentration of PTEs in melons of one of Iran's southern cities and follow that health risk assessment in the target population for the first time. Results of the present study confirmed that although the mean concentration of some metals was lower than the safety standard (Cr: 4.6 ± 2 mg/kg and Pb: 7.4 ± 4 mg/kg), their nutritional value was unfavorable regarding some micronutrients (Cu: 88.8 ± 27 mg/kg and Zn: 480 ± 275 mg/kg). The highest metal concentration in cantaloupe was iron (1706.47 mg/kg, p-value<0.05), and nitrate concentration in all melon types was 2.59-524.54 mg/kg (p-value<0.05). Principal component analysis (PCA) with K-means clustering and the Positive Matrix Factorization (PMF) model have shown that contaminants in melons originated from human activities. So, excessive use of agricultural fertilizers is a possible source of nitrates in melons, which have 93 % of factor loading values. The health risk assessment also showed that melons' carcinogenic and non-carcinogenic risk using the deterministic method was lower than the permissible limit (HQ < 1, ILCR 1 in the children group for the 95th percentile. Furthermore, the level of certainty in the carcinogenesis risk for children, women, and men was estimated at 86.48 %, 64.67 %, and 61.30 %, respectively. Also, the consumption rate was determined as the most important parameter in the sensitivity analysis. As a consequence, there is a potential health risk for Iranians after the consumption of melon due to PTEs and nitrate levels that also originated from anthropogenic sources.


Assuntos
Metais Pesados , População do Oriente Médio , Poluentes do Solo , Criança , Humanos , Feminino , Nitratos/análise , Irã (Geográfico) , Monitoramento Ambiental/métodos , Metais Pesados/análise , Medição de Risco , Poluentes do Solo/análise , Solo , China
7.
Sci Total Environ ; 926: 171943, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527546

RESUMO

Monoculture plantations in China, characterized by the continuous cultivation of a single species, pose challenges to timber accumulation and understory biodiversity, raising concerns about sustainability. This study investigated the impact of continuous monoculture plantings of Chinese fir (Cunninghamia lanceolata [Lamb.] Hook.) on soil properties, dissolved organic matter (DOM), and microorganisms over multiple generations. Soil samples from first to fourth-generation plantations were analyzed for basic chemical properties, DOM composition using Fourier transform ion cyclotron resonance mass spectrometry, and microorganisms via high-throughput sequencing. Results revealed a significant decline in nitrate nitrogen content with successive rotations, accompanied by an increase in easily degradable compounds like carbohydrates, aliphatic/proteins, tannins, Carbon, Hydrogen, Oxygen and Nitrogen- (CHON) and Carbon, Hydrogen, Oxygen and Sulfur- (CHOS) containing compounds. However, the recalcitrant compounds, such as lignin and carboxyl-rich alicyclic molecules (CRAMs), condensed aromatics and Carbon, Hydrogen and Oxygen- (CHO) containing compounds decreased. Microorganism diversity, abundance, and structure decreased with successive plantations, affecting the ecological niche breadth of fungal communities. Bacterial communities were strongly influenced by DOM composition, particularly lignin/CRAMs and tannins. Continuous monoculture led to reduced soil nitrate, lignin/CRAMs, and compromised soil quality, altering chemical properties and DOM composition, influencing microbial community assembly. This shift increased easily degraded DOM, accelerating soil carbon and nitrogen cycling, ultimately reducing soil carbon sequestration. From environmental point of view, the study emphasizes the importance of sustainable soil management practices in continuous monoculture systems. Particularly the findings offer valuable insights for addressing challenges associated with monoculture plantations and promoting long-term ecological sustainability.


Assuntos
Cunninghamia , Microbiota , Matéria Orgânica Dissolvida , Nitratos/análise , Lignina/metabolismo , Taninos/análise , Taninos/metabolismo , Solo/química , Compostos Orgânicos/análise , Compostos de Enxofre/metabolismo , Nitrogênio/análise , Carbono/análise , Hidrogênio/análise , Oxigênio/análise
8.
Sci Total Environ ; 926: 171963, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38537835

RESUMO

Significant research is focused on the ability of riparian zones to reduce groundwater nitrate contamination. Owing to the extremely high redox activity of nitrate, naturally existing electron donors, such as organic matter and iron minerals, are crucial in facilitating nitrate reduction in the riparian zone. Here, we examined the coexistence of magnetite, an iron mineral, and nitrate, a frequently observed coexisting system in sediments, to investigate nitrate reduction features at various C/N ratios and evaluate the response of microbial communities to these settings. Additionally, we aimed to use this information as a foundation for examining the effect of nutritional conditions on the nitrate reduction process in magnetite-present environments. These results emphasise the significance of organic matter in enabling dissimilatory nitrate reduction to ammonium (DNRA) and enhancing the connection between nitrate reduction and iron in sedimentary environments. In the later phases of nitrate reduction, nitrogen fixation was the prevailing process in low-carbon environments, whereas high-carbon environments tended to facilitate the breakdown of organic nitrogen. High-throughput sequencing analysis revealed a robust association between C/N ratios and alterations in microbial community composition, providing insights into notable modifications in essential functioning microorganisms. The nitrogen-fixing bacterium Ralstonia is more abundant in ecosystems with scarce organic matter. In contrast, in settings rich in organic matter, microorganisms, such as Acinetobacter and Clostridia, which may produce ammonia, play crucial roles. Moreover, the population of iron bacteria grows in such an environment. Hence, this study proposes that C/N ratios can influence Fe(II)/Fe(III) conversions and simultaneously affect the process of nitrate reduction by shaping the composition of specific microbial communities.


Assuntos
Compostos de Amônio , Nitratos , Nitratos/análise , Óxido Ferroso-Férrico , Rios , Ecossistema , Compostos Férricos , Desnitrificação , Ferro , Nitrogênio , Carbono , Oxirredução
9.
Environ Sci Technol ; 58(15): 6682-6692, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38547356

RESUMO

The atmospheric deposition of anthropogenic active nitrogen significantly influences marine primary productivity and contributes to eutrophication. The form of nitrogen deposition has been evolving annually, alongside changes in human activities. A disparity arises between observation results and simulation conclusions due to the limited field observation and research in the ocean. To address this gap, our study undertook three field cruises in the South China Sea in 2021, the largest marginal sea of China. The objective was to investigate the latest atmospheric particulate inorganic nitrogen deposition pattern and changes in nitrogen sources, employing nitrogen-stable isotopes of nitrate (δ15N-NO3-) and ammonia (δ15N-NH4+) linked to a mixing model. The findings reveal that the N-NH4+ deposition generally surpasses N-NO3- deposition, attributed to a decline in the level of NOx emission from coal combustion and an upswing in the level of NHx emission from agricultural sources. The disparity in deposition between N-NH4+ and N-NO3- intensifies from the coast to the offshore, establishing N-NH4+ as the primary contributor to oceanic nitrogen deposition, particularly in ocean background regions. Fertilizer (33 ± 21%) and livestock (20 ± 6%) emerge as the primary sources of N-NH4+. While coal combustion continues to be a significant contributor to marine atmospheric N-NO3-, its proportion has diminished to 22 (Northern Coast)-35% (background area) due to effective NOx emission controls by the countries surrounding the South China Sea, especially the Chinese Government. As coal combustion's contribution dwindles, the significance of vessel and marine biogenic emissions grows. The daytime higher atmospheric N-NO3- concentration and lower δ15N-NO3- compared with nighttime further underscore the substantial role of marine biogenic emissions.


Assuntos
Poluentes Atmosféricos , Carvão Mineral , Humanos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Nitrogênio/análise , Isótopos de Nitrogênio/análise , China , Nitratos/análise , Poeira
10.
Glob Chang Biol ; 30(3): e17256, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38532549

RESUMO

Denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) are three competing processes of microbial nitrate reduction that determine the degree of ecosystem nitrogen (N) loss versus recycling. However, the global patterns and drivers of relative contributions of these N cycling processes to soil or sediment nitrate reduction remain unknown, limiting our understanding of the global N balance and management. Here, we compiled a global dataset of 1570 observations from a wide range of terrestrial and aquatic ecosystems. We found that denitrification contributed up to 66.1% of total nitrate reduction globally, being significantly greater in estuarine and coastal ecosystems. Anammox and DNRA could account for 12.7% and 21.2% of total nitrate reduction, respectively. The contribution of denitrification to nitrate reduction increased with longitude, while the contribution of anammox and DNRA decreased. The local environmental factors controlling the relative contributions of the three N cycling processes to nitrate reduction included the concentrations of soil organic carbon, ammonium, nitrate, and ferrous iron. Our results underline the dominant role of denitrification over anammox and DNRA in ecosystem nitrate transformation, which is crucial to improving the current global soil N cycle model and achieving sustainable N management.


Assuntos
Compostos de Amônio , Nitratos , Nitratos/análise , Ecossistema , Desnitrificação , Carbono , Solo , Nitrogênio , Oxirredução
11.
Environ Int ; 185: 108546, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38458116

RESUMO

Mangrove wetlands are hotspots of the global nitrogen (N) cycle and important sinks of microplastics (MPs) due to their ecotone location between terrestrial and marine ecosystems. However, the effects of MPs on N cycle processes in mangrove ecosystems are still poorly understood. Thus, the present study assessed the impacts by adding MPs to mangrove sediments in a microcosm incubation experiment. The results showed that MPs increased dissolved organic carbon and nitrate but reduced ammonium contents in the sediments. MPs increased C:N stoichiometric and N:C-acquiring enzymatic ratios, indicating an intensified N limitation in mangrove sediments following exposure of MPs. MPs decreased microbial community diversity and shifted sediment microbial communities from r- to K-strategists, consistent with the intensified N limitation. In response, dissimilatory nitrate reduction to ammonium (DNRA) rates increased while nitrous oxide (N2O) production reduced suggesting more efficient N utilization in MPs treatments. The MPs with heteroatoms such as PLA- and PVC-MPs, increased DNRA rates by 67.5-78.7%, exhibiting a stronger impact than PE-MPs. The variation partitioning analysis revealed that the variances of DNRA rates and N2O production could be attributed to synergistic effects of physicochemical properties, nutrient limitation, and microbial community in mangrove sediments. Overall, this study provides pertinent insights into the impacts of MPs as a new carbon source on nutrient limitation and N turnover in mangrove ecosystems.


Assuntos
Compostos de Amônio , Ecossistema , Nitratos/análise , Microplásticos , Plásticos , Nitrogênio/análise , Compostos Orgânicos , Sedimentos Geológicos/química
12.
Chemosphere ; 353: 141551, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430935

RESUMO

Groundwater pollution caused by the leakage of petroleum and various fuel oils is becoming a serious environmental problem. In this study, carbon-based materials including biochar and hydrochar were applied to investigate the effects of additives on the toluene removal in the extracted groundwater under microaerobic condition with the addition of nitrate. Biochar and hydrochar could adsorb toluene, and thus enhance the toluene removal in the system. The toluene removal efficiency was 8.2-8.9 mg/(g·h) at the beginning, and then decreased with time in the control and the hydrochar treatment, while it remained the stable values in the biochar treatment, owing to the fact that biochar could reduce the NO3--N loss by partial denitrification. Moreover, biochar could prompt the growth of toluene-degrading bacteria including Thauera, Rhodococcus, Ideonella and Denitratisoma, which had the capability of denitrification. However, hydrochar could stimulated the growth of denitrifiers without toluene-degrading capacity including Candidatus Competibacter and Ferrovibrio, which might play a key role in the partial denitrification of the system. The findings are helpful for developing remediation techniques of contaminated groundwater.


Assuntos
Carvão Vegetal , Água Subterrânea , Poluentes Químicos da Água , Nitratos/análise , Desnitrificação , Poluentes Químicos da Água/análise , Biodegradação Ambiental
13.
Am Nat ; 203(4): E128-E141, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489776

RESUMO

AbstractSome plants, via their action on microorganisms, control soil nitrification (i.e., the transformation of ammonium into nitrate). We model how the covariation between plant control of nitrification and preference for ammonium versus nitrate impacts ecosystem properties such as productivity, nitrogen (N) losses, and overall resilience. We show that the control of nitrification can maximize productivity by minimizing total inorganic N losses. We initially predicted that plants with an ammonium preference should achieve the highest biomass when inhibiting nitrification, and conversely that plants preferring nitrate should achieve the highest biomass by stimulating nitrification. With a parametrization derived from the Lamto savanna (Ivory Coast), we find that productivity is maximal for plants that slightly prefer ammonium and inhibit nitrification. Such situations, however, lead to strong positive feedbacks that can cause abrupt shifts from a highly to a lowly productive ecosystem. The comparison with other parameter sets (Pawnee short-grass prairie [United States], intensively cultivated field, and a hypothetical parameter set in which ammonium is highly volatilized and nitrate inputs are high) shows that strategies yielding the highest biomass may be counterintuitive (i.e., preferring nitrate but inhibiting nitrification). We argue that the level of control yielding the highest productivity depends on ecosystem properties (quantity of N deposition, leaching rates, and baseline nitrification rates), not only preference. Finally, while contrasting N preferences offer, as expected, the possibility of coexistence through niche partitioning, we stress how control of nitrification can be framed as a niche construction process that adds an additional dimension to coexistence conditions.


Assuntos
Compostos de Amônio , Resiliência Psicológica , Nitrificação , Nitratos/análise , Ecossistema , Retroalimentação , Solo , Plantas , Nitrogênio
14.
J Environ Manage ; 356: 120770, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38552537

RESUMO

Nitrate pollution in aquifers is a global concern. Spain has developed a national strategy to recover nitrate polluted aquifers aligned with the European Union (EU) policies, specifically through the water planning under the EU Water Framework Directive. River basin management plans use PATRICAL model results to define the maximum nitrogen surplus in each polluted aquifer for the first time. The maximum nitrogen surplus allows to reach the good status in each aquifer and the model provides the number of years required. Around 30% of the aquifers in Spain is currently heavily polluted by nitrates. Model results show that 90% of these aquifers can be recovered in next 6-12 years by increasing nitrogen use efficiency and reducing nitrogen losses around 50%, which is in line with the EU Farm to Fork Strategy. The remaining aquifers require additional reductions to achieve the good status. In Spain this increase in nitrogen efficiency can be obtained with different measures including 30% reduction of current fertilization.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Espanha , Nitratos/análise , Nitrogênio/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Abastecimento de Água , Água
15.
Water Res ; 254: 121384, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479174

RESUMO

Contamination of groundwater by nitrate from intensive agriculture is a serious problem globally. Excessive fertilization has led to nitrate contamination of the Coastal Aquifer in Israel. Here we report the efficient removal of nitrate from contaminated groundwater by micellar-enhanced ultrafiltration (MEUF) using a specially tailored membrane. Graft polymerization with hydrophilic poly(methacrylate) and incorporation of porous zeolitic imidazole framework ZIF-L nanoparticles imparted antifouling properties to the membrane. The resulting modified membrane showed high water permeance (82.2 ± 1.7 L·m-2·h-1·bar-1). The efficiency of nitrate removal by MEUF was tested using cetylpyridinium chloride as a surfactant in nitrate-contaminated groundwater collected from the Coastal Aquifer of Israel. The membrane reduced nitrate levels from 40-70 to levels of 6.8-29.5 mg·L-1, depending on the groundwater composition; further reduction to 6.1-24.1 mg·L-1 with complete surfactant rejection was achieved via two-stage membrane filtration, which showed high permeate flux (between 32.1 ± 0.9 and 45.9 ± 0.6 L·m-2·h-1) at 2 bar. The membrane maintained stable separation performance during multiple cycles, and the flux recovery ratio was >93 %. Nitrate concentrations fell well below the acceptable limit for drinking water, allowing the treated water to be used without restriction. Overall, the membrane has the potential to allow efficient removal by MEUF of nitrate from contaminated groundwater.


Assuntos
Resinas Acrílicas , Água Subterrânea , Poluentes Químicos da Água , Ultrafiltração/métodos , Nitratos/análise , Micelas , Hidrogéis , Poluentes Químicos da Água/análise , Tensoativos , Água
16.
Environ Sci Pollut Res Int ; 31(16): 24412-24424, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441738

RESUMO

The crux of groundwater protection lies in a profound understanding of the sources of pollutants and their impacts on human health. This study selected 47 groundwater samples from the Fengshui mining area in central Shandong Province, China, employing advanced hydrogeochemical techniques, positive matrix factorization (PMF), and Monte Carlo analysis methods, aimed at unveiling the characteristics, origins, and health risks of water pollutants. The results indicated that the majority of samples exhibited a slightly alkaline nature. Notably, the concentrations of fluoride (F-) and nitrate (NO3-) exceeded China's safety standards in 40.43% and 23.40% of the samples, respectively. Moreover, a water quality index (WQI) below 50 was observed in approximately 68.09% of the sites, suggesting that the water quality in these areas generally met acceptable levels. However, regions with higher WQI values were predominantly located in the northern and southern parts of the mining area. PMF analysis revealed that regional geological and industrial activities were the primary factors affecting water quality, followed by mining discharges, fundamental geological and agricultural processes, and leachate enrichment activities. The health risk assessment highlighted the heightened sensitivity of the youth demographic to fluoride, with a more pronounced non-carcinogenic risk compared to nitrate, affecting about 31.89% of the youth population. Hence, it is imperative for local authorities and relevant departments to take prompt actions to remediate groundwater contamination to minimize public health risks.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Adolescente , Humanos , Monitoramento Ambiental/métodos , Nitratos/análise , Fluoretos/análise , Poluentes Químicos da Água/análise , Água Subterrânea/análise , Qualidade da Água , Compostos Orgânicos , Medição de Risco , China
17.
J Environ Manage ; 355: 120530, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452622

RESUMO

Antibiotic contamination and excessive nitrate loads are generally concurrent in aquatic ecosystems. However, little is known about the effects of nitrate input on the biodegradation of antibiotics. In this study, the effects of nitrate input on microbial degradation of erythromycin, a typical macrolide antibiotic widely detected in lake sediments, were investigated. The results showed that the nitrate input significantly inhibited the erythromycin removal and such an inhibitory effect was strengthened with the increased input dosages. Nitrate input significantly increased sediment nitrite concentration, indicating enhanced denitrification under high nitrate pressure. Bacterial network module and keystone species analysis showed that nitrate input enriched the keystone species involved in denitrification (e.g., Simplicispira and Denitratisoma). In contrast, some potential erythromycin-degrading bacteria (e.g., Desulfatiglandales, Pseudomonadales, Nitrospira) were inhibited by nitrate input. The variations in dominant bacterial groups implied competition between denitrification and erythromycin degradation in response to nitrate input. Based on the partial least squares path modeling analysis, keystone species (total effect: 0.419) and bacterial module (total effect: 0.403) showed strong association with erythromycin removal percentage. This indicated that the inhibitory effect of nitrate input on erythromycin degradation was mainly explained by bacterial network modules and keystone species. These findings will help us to assess the bioremediation potential of antibiotic-contaminated sediments suffering from excessive nitrogen discharge concurrently.


Assuntos
Eritromicina , Nitratos , Nitratos/análise , Biodegradação Ambiental , Lagos/microbiologia , Ecossistema , Bactérias/metabolismo , Antibacterianos/farmacologia , Sedimentos Geológicos , Desnitrificação
18.
Sci Rep ; 14(1): 4153, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378817

RESUMO

In recent years groundwater contamination through nitrate contamination has increased rapidly in the managementof water research. In our study, fourteen nitrate conditioning factors were used, and multi-collinearity analysis is done. Among all variables, pH is crucial and ranked one, with a value of 0.77, which controls the nitrate concentration in the coastal aquifer in South 24 Parganas. The second important factor is Cl-, the value of which is 0.71. Other factors like-As, F-, EC and Mg2+ ranked third, fourth and fifth position, and their value are 0.69, 0.69, 0.67 and 0.55, respectively. Due to contaminated water, people of this district are suffering from several diseases like kidney damage (around 60%), liver (about 40%), low pressure due to salinity, fever, and headache. The applied method is for other regions to determine the nitrate concentration predictions and for the justifiable alterationof some management strategies.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Humanos , Nitratos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Água Subterrânea/análise , Índia , Água/análise
19.
Bioresour Technol ; 397: 130482, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403169

RESUMO

This study conducted an analysis of the variations in nitrogen metabolism pathways within constructed wetlands (CWs) using zeolite (CW-Z), ceramsite (CW-C), and lava (CW-L) under high concentration sulfamethoxazole (SMX) stress. The introduction of SMX hindered the formation of hydrogen bonds on the substrate surfaces; however, these surfaces still maintained a dense and thick biofilm. CW-Z exhibited superior removal efficiencies for ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) compared to CW-C and CW-L, with removal rates of 92.54 ± 2.88 % and 89.39 ± 6.74 %, respectively. Interestingly, the proportion of genes involved in nitrification, denitrification and nitrate reduction genes in CW-C (36.05 %) were higher than that in CW-C (29.81 %) and CW-L (29.70 %) but the interactions among nitrogen functional bacteria in CW-Z were much more complex. Further analysis of the nitrogen metabolism pathway indicated that under CW-Z enhanced dissimilatory nitrate reduction SMX stress, while CW-L enhanced assimilatory nitrate reduction process compared to CW-C.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Desnitrificação , Nitratos/análise , Sulfametoxazol , Áreas Alagadas , Compostos Orgânicos , Nitrogênio/análise
20.
Sci Total Environ ; 920: 171006, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38369137

RESUMO

Understanding the patterns and controls regulating nitrogen (N) transformation and its response to N enrichment is critical to re-evaluating soil N limitation or availability and its environmental consequences. Nevertheless, how climatic conditions affect nitrate dynamics and the response of gross N cycling rates to N enrichment in forest soils is still only rudimentarily known. Through collecting and analyzing 4426-single and 769-paired observations from 231 15N labeling studies, we found that nitrification capacity [the ratio of gross autotrophic nitrification (GAN) to gross N mineralization (GNM)] was significantly lower in tropical/subtropical (19%) than in temperate (68%) forest soils, mainly due to the higher GNM and lower GAN in tropical/subtropical regions resulting from low C/N ratio and high precipitation, respectively. However, nitrate retention capacity [the ratio of dissimilatory nitrate reduction to ammonium (DNRA) plus gross nitrate immobilization (INO3) to gross nitrification] was significantly higher in tropical/subtropical (86%) than in temperate (54%) forest soils, mainly due to the higher precipitation and GNM of tropical/subtropical regions, which stimulated DNRA and INO3. As a result, the ratio of GAN to ammonium immobilization (INH4) was significantly higher in temperate than in tropical/subtropical soils. Climatic rather than edaphic factors control heterotrophic nitrification rate (GHN) in forest soils. GHN significantly increased with increasing temperature in temperate regions and with decreasing precipitation in tropical/subtropical regions. In temperate forest soils, gross N transformation rates were insensitive to N enrichment. In tropical/subtropical forests, however, N enrichment significantly stimulated GNM, GAN and GAN to INH4 ratio, but inhibited INH4 and INO3 due to reduced microbial biomass and pH. We propose that temperate forest soils have higher nitrification capacity and lower nitrate retention capacity, implying a higher potential risk of N losses. However, tropical/subtropical forest systems shift from a conservative to a leaky N-cycling system in response to N enrichment.


Assuntos
Compostos de Amônio , Nitrogênio , Nitrogênio/análise , Nitratos/análise , Solo , Florestas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...