Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.158
Filtrar
1.
J Environ Sci (China) ; 146: 91-102, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969465

RESUMO

In this study, a gravity-driven membrane (GDM) filtration system and hydroponic system (cultivating basil and lettuce) were combined for nutrient recovery from primary municipal wastewater. The GDM system was optimized by increasing the periodic air sparging flow rate from 1 to 2 L/min (∼15 hr per 3-4 days), resulting in a ∼52% reduction of irreversible fouling. However, the total fouling was not alleviated, and the water productivity remained comparable. The GDM-filtrated water was then delivered to hydroponic systems, and the effects of hydroponic operation conditions on plant growth and heavy metal uptake were evaluated, with fertilizer- and tap water-based hydroponic systems and soil cultivation system (with tap water) for comparison. It was found that (i) the hydroponic system under batch mode facilitated to promote vegetable growth with higher nutrient uptake rates compared to that under flow-through feed mode; (ii) a shift in nutrient levels in the hydroponic system could impact plant growth (such as plant height and leaf length), especially in the early stages. Nevertheless, the plants cultivated with the GDM-treated water had comparable growth profiles to those with commercial fertilizer or in soils. Furthermore, the targeted hazard quotient levels of all heavy metals for the plants in the hydroponic system with the treated water were greatly lower than those with the commercial fertilizer. Especially, compared to the lettuce, the basil had a lower heavy metal uptake capability and displayed a negligible impact on long-term human health risk, when the treated water was employed for the hydroponic system.


Assuntos
Filtração , Hidroponia , Nutrientes , Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Nutrientes/análise , Nutrientes/metabolismo , Cerâmica , Membranas Artificiais , Poluentes Químicos da Água/análise , Gravitação , Fertilizantes
3.
Front Immunol ; 15: 1415794, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957469

RESUMO

Endocytosis represents a category of regulated active transport mechanisms. These encompass clathrin-dependent and -independent mechanisms, as well as fluid phase micropinocytosis and macropinocytosis, each demonstrating varying degrees of specificity and capacity. Collectively, these mechanisms facilitate the internalization of cargo into cellular vesicles. Pregnancy is one such physiological state during which endocytosis may play critical roles. A successful pregnancy necessitates ongoing communication between maternal and fetal cells at the maternal-fetal interface to ensure immunologic tolerance for the semi-allogenic fetus whilst providing adequate protection against infection from pathogens, such as viruses and bacteria. It also requires transport of nutrients across the maternal-fetal interface, but restriction of potentially harmful chemicals and drugs to allow fetal development. In this context, trogocytosis, a specific form of endocytosis, plays a crucial role in immunological tolerance and infection prevention. Endocytosis is also thought to play a significant role in nutrient and toxin handling at the maternal-fetal interface, though its mechanisms remain less understood. A comprehensive understanding of endocytosis and its mechanisms not only enhances our knowledge of maternal-fetal interactions but is also essential for identifying the pathogenesis of pregnancy pathologies and providing new avenues for therapeutic intervention.


Assuntos
Endocitose , Troca Materno-Fetal , Humanos , Gravidez , Endocitose/imunologia , Feminino , Troca Materno-Fetal/imunologia , Animais , Transporte Biológico , Nutrientes/metabolismo , Tolerância Imunológica , Placenta/imunologia , Placenta/metabolismo
4.
Sci Rep ; 14(1): 15062, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38956110

RESUMO

Soil salinity is a major nutritional challenge with poor agriculture production characterized by high sodium (Na+) ions in the soil. Zinc oxide nanoparticles (ZnO NPs) and biochar have received attention as a sustainable strategy to reduce biotic and abiotic stress. However, there is a lack of information regarding the incorporation of ZnO NPs with biochar to ameliorate the salinity stress (0, 50,100 mM). Therefore, the current study aimed to investigate the potentials of ZnO NPs application (priming and foliar) alone and with a combination of biochar on the growth and nutrient availability of spinach plants under salinity stress. Results demonstrated that salinity stress at a higher rate (100 mM) showed maximum growth retardation by inducing oxidative stress, resulted in reduced photosynthetic rate and nutrient availability. ZnO NPs (priming and foliar) alone enhanced growth, chlorophyll contents and gas exchange parameters by improving the antioxidant enzymes activity of spinach under salinity stress. While, a significant and more pronounced effect was observed at combined treatments of ZnO NPs with biochar amendment. More importantly, ZnO NPs foliar application with biochar significantly reduced the Na+ contents in root 57.69%, and leaves 61.27% of spinach as compared to the respective control. Furthermore, higher nutrient contents were also found at the combined treatment of ZnO NPs foliar application with biochar. Overall, ZnO NPs combined application with biochar proved to be an efficient and sustainable strategy to alleviate salinity stress and improve crop nutritional quality under salinity stress. We inferred that ZnO NPs foliar application with a combination of biochar is more effectual in improving crop nutritional status and salinity mitigation than priming treatments with a combination of biochar.


Assuntos
Carvão Vegetal , Fotossíntese , Folhas de Planta , Estresse Salino , Spinacia oleracea , Óxido de Zinco , Zinco , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/metabolismo , Spinacia oleracea/crescimento & desenvolvimento , Carvão Vegetal/farmacologia , Carvão Vegetal/química , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Fotossíntese/efeitos dos fármacos , Zinco/farmacologia , Zinco/metabolismo , Nutrientes/metabolismo , Clorofila/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Antioxidantes/metabolismo , Solo/química , Estresse Oxidativo/efeitos dos fármacos , Salinidade
5.
FASEB J ; 38(13): e23799, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38979938

RESUMO

Maternal Zika virus (ZIKV) infection during pregnancy has been associated with severe intrauterine growth restriction (IUGR), placental damage, metabolism disturbances, and newborn neurological abnormalities. Here, we investigated the impact of maternal ZIKV infection on placental nutrient transporters and nutrient-sensitive pathways. Immunocompetent (C57BL/6) mice were injected with Low (103 PFU-ZIKVPE243) or High (5 × 107 PFU-ZIKVPE243) ZIKV titers at gestational day (GD) 12.5, and tissue was collected at GD18.5 (term). Fetal-placental growth was impaired in male fetuses, which exhibited higher placental expression of the ZIKV infective marker, eukaryotic translation initiation factor 2 (eIF2α), but lower levels of phospho-eIF2α. There were no differences in fetal-placental growth in female fetuses, which exhibited no significant alterations in placental ZIKV infective markers. Furthermore, ZIKV promoted increased expression of glucose transporter type 1 (Slc2a1/Glut1) and decreased levels of glucose-6-phosphate in female placentae, with no differences in amino acid transport potential. In contrast, ZIKV did not impact glucose transporters in male placentae but downregulated sodium-coupled neutral amino acid 2 (Snat2) transporter expression. We also observed sex-dependent differences in the hexosamine biosynthesis pathway (HBP) and O-GlcNAcylation in ZIKV-infected pregnancies, showing that ZIKV can disturb placental nutrient sensing. Our findings highlight molecular alterations in the placenta caused by maternal ZIKV infection, shedding light on nutrient transport, sensing, and availability. Our results also suggest that female and male placentae employ distinct coping mechanisms in response to ZIKV-induced metabolic changes, providing insights into therapeutic approaches for congenital Zika syndrome.


Assuntos
Desenvolvimento Fetal , Camundongos Endogâmicos C57BL , Placenta , Transdução de Sinais , Infecção por Zika virus , Zika virus , Animais , Feminino , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia , Gravidez , Camundongos , Placenta/metabolismo , Placenta/virologia , Masculino , Desenvolvimento Fetal/fisiologia , Complicações Infecciosas na Gravidez/virologia , Complicações Infecciosas na Gravidez/metabolismo , Nutrientes/metabolismo , Transportador de Glucose Tipo 1/metabolismo
6.
Sci Adv ; 10(27): eadn8356, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968348

RESUMO

Eukaryotic phytoplankton, also known as algae, form the basis of marine food webs and drive marine carbon sequestration. Algae must regulate their motility and gravitational sinking to balance access to light at the surface and nutrients in deeper layers. However, the regulation of gravitational sinking remains largely unknown, especially in motile species. Here, we quantify gravitational sinking velocities according to Stokes' law in diverse clades of unicellular marine microalgae to reveal the cell size, density, and nutrient dependency of sinking velocities. We identify a motile algal species, Tetraselmis sp., that sinks faster when starved due to a photosynthesis-driven accumulation of carbohydrates and a loss of intracellular water, both of which increase cell density. Moreover, the regulation of cell sinking velocities is connected to proliferation and can respond to multiple nutrients. Overall, our work elucidates how cell size and density respond to environmental conditions to drive the vertical migration of motile algae.


Assuntos
Tamanho Celular , Nutrientes , Nutrientes/metabolismo , Gravitação , Fitoplâncton/fisiologia , Fitoplâncton/metabolismo , Fotossíntese , Microalgas/metabolismo
7.
Trop Anim Health Prod ; 56(6): 201, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990398

RESUMO

The aim of this study was to explore the effect of replacing protein pellets with soybean grain in high-concentrate diets with or without the addition of silage, on the intake, digestibility, and rumen and blood parameters of feedlot cattle in tropical regions. Four cannulated, crossbred steers were used, 4.5 ± 0.5 years old, with an average weight of 685.55 ± 111.78 kg. The steers were distributed in a 4 × 4 Latin square, in a 2 × 2 factorial scheme (two sources of protein: protein pellets or whole soybean grain, with or without added dietary bulk). There was no effect (P ≥ 0.109) from the interaction between the source of protein and the addition of silage to the diet on dry matter (DM) and nutrient intake, or the digestibility (P ≥ 0.625) of DM or crude protein (CP). However, both factors affected (P ≤ 0.052) the intake of DM, neutral detergent fiber (NDF), and non-fiber carbohydrates (NFC), as well as the independent digestibility (P ≤ 0.099) of fat, NFC, total carbohydrates (TC), and total cholesterol concentration. There was an effect (P ≤ 0.053) from the interaction between the source of protein and the addition of silage to the diet on the digestibility of NDF and total digestible nutrients (TDN), as well as on the glycose concentration (P = 0.003). Blood parameters (i.e. protein, albumin, creatinine, triglycerides, aspartate aminotransferase (AST), and alanine aminotransferase (ALT)) were not affected (P ≥ 0.139) by the source of protein, the addition of silage, or their interaction. Lastly, including 150 g/kg silage DM in a high-grain diet, and using soybean grain as a source of protein in substitution of protein pellet could be a suitable nutritional strategy to ensure adequate DM and nutrient intake and digestibility, with no detrimental effects on rumen and blood parameters of feedlot cattle in the tropics.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Dieta , Digestão , Glycine max , Rúmen , Clima Tropical , Animais , Bovinos/sangue , Bovinos/fisiologia , Bovinos/metabolismo , Rúmen/metabolismo , Masculino , Ração Animal/análise , Digestão/fisiologia , Dieta/veterinária , Silagem/análise , Proteínas Alimentares/metabolismo , Proteínas Alimentares/administração & dosagem , Nutrientes/metabolismo
9.
Cell Metab ; 36(7): 1619-1633.e5, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959864

RESUMO

Population-level variation and mechanisms behind insulin secretion in response to carbohydrate, protein, and fat remain uncharacterized. We defined prototypical insulin secretion responses to three macronutrients in islets from 140 cadaveric donors, including those with type 2 diabetes. The majority of donors' islets exhibited the highest insulin response to glucose, moderate response to amino acid, and minimal response to fatty acid. However, 9% of donors' islets had amino acid responses, and 8% had fatty acid responses that were larger than their glucose-stimulated insulin responses. We leveraged this heterogeneity and used multi-omics to identify molecular correlates of nutrient responsiveness, as well as proteins and mRNAs altered in type 2 diabetes. We also examined nutrient-stimulated insulin release from stem cell-derived islets and observed responsiveness to fat but not carbohydrate or protein-potentially a hallmark of immaturity. Understanding the diversity of insulin responses to carbohydrate, protein, and fat lays the groundwork for personalized nutrition.


Assuntos
Diabetes Mellitus Tipo 2 , Secreção de Insulina , Insulina , Ilhotas Pancreáticas , Proteômica , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Feminino , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Pessoa de Meia-Idade , Nutrientes/metabolismo , Adulto , Glucose/metabolismo , Idoso , Ácidos Graxos/metabolismo
10.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000100

RESUMO

Phosphorus (P) and iron (Fe) are two essential mineral nutrients in plant growth. It is widely observed that interactions of P and Fe could influence their availability in soils and affect their homeostasis in plants, which has received significant attention in recent years. This review presents a summary of latest advances in the activation of insoluble Fe-P complexes by soil properties, microorganisms, and plants. Furthermore, we elucidate the physiological and molecular mechanisms underlying how plants adapt to Fe-P interactions. This review also discusses the current limitations and presents potential avenues for promoting sustainable agriculture through the optimization of P and Fe utilization efficiency in crops.


Assuntos
Ferro , Fósforo , Plantas , Solo , Fósforo/metabolismo , Ferro/metabolismo , Solo/química , Plantas/metabolismo , Nutrientes/metabolismo , Produtos Agrícolas/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Microbiologia do Solo
11.
GM Crops Food ; 15(1): 233-247, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-39008437

RESUMO

Advances in genetic modification (GM) techniques have generated huge interest in improving nutrient utilization, maximizing nutrient uptake, and conserving soil in the pursuit of sustainable agriculture. Unfortunately, little is still known about the recent advancements in the application of GM tactics to enhance each of these areas. This review explores the latest GM strategies intended to support soil conservation, maximize nutrient uptake, and improve nutrient utilization in farming, highlighting the critical roles that soil health and nutrient management play in sustainable farming. GM strategies such as improving the efficiency of nutrient uptake through enhanced root systems and increased nutrient transport mechanisms are well discussed. This study suggests that addressing potential obstacles, such as ethical and regulatory concerns, is a necessity for long-term sustainability applications of GM technologies to raise agricultural yields.


Assuntos
Produtos Agrícolas , Nutrientes , Solo , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Nutrientes/metabolismo , Plantas Geneticamente Modificadas/genética , Agricultura/métodos , Conservação dos Recursos Naturais/métodos
12.
Environ Geochem Health ; 46(9): 328, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012544

RESUMO

Alpine ecosystems are important terrestrial carbon (C) pools, and microbial decomposers play a key role in litter decomposition. Microbial metabolic limitations in these ecosystems, however, remain unclear. The objectives of this study aim to elucidate the characteristics of microbial nutrient limitation and their C use efficiency (CUE), and to evaluate their response to environmental factors. Five ecological indicators were utilized to assess and compare the degree of microbial elemental homeostasis and the nutrient limitations of the microbial communities among varying stages of litter decomposition (L, F, and H horizon) along an altitudinal gradient (2800, 3000, 3250, and 3500 m) under uniform vegetation (Abies fabri) on Gongga Mountain, eastern Tibetan Plateau. In this study, microorganisms in the litter reached a strictly homeostatic of C content exclusively during the middle stage of litter decomposition (F horizon). Based on the stoichiometry of soil enzymes, we observed that microbial N- and P-limitation increased during litter degradation, but that P-limitation was stronger than N-limitation at the late stages of degradation (H horizon). Furthermore, an increase in microbial CUE corresponded with a reduction in microbial C-limitation. Additionally, redundancy analysis (RDA) based on forward selection further showed that microbial biomass C (MBC) is closely associated with the enzyme activities and their ratios, and MBC was also an important factor in characterizing changes in microbial nutrient limitation and CUE. Our findings suggest that variations in MBC, rather than N- and P-related components, predominantly influence microbial metabolic processes during litter decomposition on Gongga Mountain, eastern Tibetan Plateau.


Assuntos
Carbono , Microbiologia do Solo , Carbono/metabolismo , Nitrogênio/metabolismo , Tibet , Fósforo/metabolismo , Nutrientes/metabolismo , Folhas de Planta/metabolismo , Solo/química , Biomassa , Ecossistema , Bactérias/metabolismo
13.
Sci Rep ; 14(1): 16007, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992147

RESUMO

This study addresses the effect of using animal excreta on the nutritional content of forages, focusing on macro- and micro-element concentrations (nitrogen; N, phosphorus; P, sulphur; S, copper; Cu, zinc; Zn, manganese; Mn, selenium; Se) from animal feed to excreta, soil, and plants. Data were collected from pot and field trials using separate applications of sheep or cattle urine and faeces. Key findings indicate that soil organic carbon (SOC) and the type of excreta significantly influences nutrient uptake by forages, with varied responses among the seven elements defined above. Although urine contributes fewer micronutrients compared to faeces (as applied at a natural volume/mass basis, respectively), it notably improves forage yield and micronutrient accumulation, thus potentially delivering positive consequences at the farm level regarding economic performance and soil fertility when swards upon clayey soil types receive said urine in temperate agro-climatic regions (i.e., South West England in the current context). In contrast, faeces application in isolation hinders Se and Mn uptake, once again potentially delivering unintended consequences such as micronutrient deficiencies in areas of high faeces deposition. As it is unlikely that (b)ovine grazing fields will receive either urine or faeces in isolation, we also explored combined applications of both excreta types which demonstrates synergistic effects on N, Cu, and Zn uptake, with either synergistic or dilution effects being observed for P and S, depending largely on SOC levels. Additionally, interactions between excreta types can result in dilution or antagonistic effects on Mn and Se uptake. Notably, high SOC combined with faeces reduces Mn and Se in forages, raising concerns for grazed ruminant systems under certain biotic situations, e.g., due to insufficient soil Se levels typically observed in UK pastures for livestock growth. These findings underscore the importance of considering SOC and excreta nutritional composition when designing forage management to optimize nutrient uptake. It should be noted that these findings have potential ramifications for broader studies of sustainable agriculture through system-scale analyses, as the granularity of results reported herein elucidate gaps in knowledge which could affect, both positively and negatively, the interpretation of model-based environmental impact assessments of cattle and sheep production (e.g., in the case of increased yields [beneficial] or the requirement of additional synthetic supplementation [detrimental]).


Assuntos
Ração Animal , Fezes , Solo , Urina , Animais , Fezes/química , Bovinos , Solo/química , Ovinos , Urina/química , Ração Animal/análise , Nutrientes/análise , Nutrientes/metabolismo , Ruminantes/fisiologia , Nitrogênio/metabolismo , Nitrogênio/urina , Nitrogênio/análise , Fósforo/urina , Fósforo/análise , Fósforo/metabolismo
14.
Sci Rep ; 14(1): 15028, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951538

RESUMO

Honey bees are important insect pollinators that provide critical pollination services to fruit and nut crops in the US. They face challenges likely due to pressures associated with agricultural intensification related habitat loss. To better understand this, pollen preferences of foraging bees and the nutritional profile of pollen brought into hives by foraging bees in crop fields and nut orchards can provide valuable information. We trained bees to forage on bee-collected pollen from hives placed for pollination services in almond orchards, sunflower fields, or mixed species from inter-row plantings. Using bees trained to a certain kind of hive pollen, we applied a binary scoring system, to test preferences of these preconditioned foragers. We also performed metabolomic analyses of the hive pollen used for training and testing to elucidate their nutritional content. Irrespective of preconditioning, bees collected all the available choice pollen types, predominantly choosing hive-collected mixed species pollen (MSP), followed by almond orchard pollen. The hive-collected MSP was chemically diverse, richest in cholesterol, vitamins, and phytochemicals quercetin, kaempferol, coumarin, and quinine, but was not consistently high for essential amino acids and polyunsaturated fatty acids. Although diversity in chemical profiles may not directly relate to plant species diversity, our results suggest that foragers collect a variety of pollen types when available reiterating the importance of diverse floral resources.


Assuntos
Nutrientes , Pólen , Polinização , Abelhas/fisiologia , Animais , Nutrientes/análise , Nutrientes/metabolismo , Prunus dulcis , Comportamento Alimentar/fisiologia
15.
Sci Rep ; 14(1): 16305, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009646

RESUMO

The agronomic stability and nutritional importance of 30 (Test genotypes: 29 + Check: 1 = 30) promising horse gram mutants were evaluated in this multi-environment-based experiment (MEE). Attempts were made to (i) identify stable mutants for agronomic traits through AMMI and GGE biplot models, (ii) quantify nutritional traits, (iii) understand the linkage between yield and nutritional traits, and (iv) estimate physical (PP) and cooking properties (CP) of selected genotypes to fix their food-chain usability. The ANOVA of the pooled data exhibited significant differences among environments (E), genotypes (G), and GxE interaction. The combined AMMI and GGE results helped to identify a few good-yielding and stable genotypes (GYSM) (G1, G25, G3, and G27). The yield advantages of these GYSMs over the parent PAIYUR 2 are 42.99%, 34.63%, 28.68%, and 30.59% respectively. The nutrient profiling of mutants revealed (i) a significant coefficient of variation for macronutrients (fat: 29.98%; fibre: 20.72%, and protein: 5.01%), (ii) a good range of variation for micronutrients, and (iii) helped to identify macro (MaNSM) and micro nutrient-specific mutants (MiNSM). The relationship analysis between yield and nutrient traits ascertained that yield had (i) positivity with protein (r2 = 0.69) and negativity for micronutrients except for Mn (r2 = 0.63), Cu (r2 = 0.46), and B (r2 = 0.01) in GYSM, (ii) positivity with protein and fibre in MaNSM, and (iii) negativity with micronutrients in MiNSM. Of the GYSM, G1 and G25 offer scope for commercial exploitation, and their PP and CP analyses revealed that G1 can be used for pastry and baked product preparation while G25 for weaning foods. Cooking time exhibited positivity with seed size parameters and negativity with water absorption capacity (r2 = - 0.53). An LC-MS-MS-based amino acid (AA) fractionation study showed the effect of induced mutagenesis on the contents of amino acids and also revealed the significance of horse gram for its lysine and methionine contents.


Assuntos
Genótipo , Mutação , Valor Nutritivo , Fabaceae/genética , Nutrientes/metabolismo , Nutrientes/análise
16.
Vet Med Sci ; 10(4): e1470, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38923734

RESUMO

BACKGROUND: The intestine of young ruminants is in the developmental stage and has weaker resistance to the changes of external environment. Improving intestinal health is vital to promoting growth of young ruminants. This study investigated effects of guanidino acetic acid (GAA) and rumen-protected betaine (RPB) supplementation on growth, dietary nutrient digestion and GAA metabolism in the small intestine of sheep. METHODS: Eighteen healthy Kazakh rams (27.46 ± 0.10 kg of body weight and 3-month old) were categorized into control, test group I and test group II, which were fed a basal diet, 1500 mg/kg GAA and 1500 mg/kg GAA + 600 mg/kg RPB, respectively. RESULTS: Compared with control group, test group II had increased (p < 0.05) average daily gain, plasma creatine level, ether extract (EE) and phosphorus digestibility on day 30. On day 60, the EE apparent digestibility, jugular venous plasma GAA, GAA content in the duodenal mucosa and GAA content in the jejunal and ileal mucosa of test group II were higher (p < 0.05) than other groups. Transcriptome analysis revealed that the differentially expressed genes (DEGs) involved in the duodenal pathways of oxidative phosphorylation and non-alcoholic fatty liver disease were significantly altered in test group II versus test group I (p < 0.05). Moreover, in the jejunum, the MAPK signalling pathway, complement and coagulation cascade and B-cell receptor signalling pathway were significantly enriched, with ATPase, solute carrier transporter protein, DHFR, SI, GCK, ACACA and FASN being the significantly DEGs (p < 0.05). CONCLUSION: Dietary supplementation of RPB on top of GAA in sheep diets may promote sheep growth and development by improving the body's energy, amino acid, glucose and lipid metabolism capacity.


Assuntos
Ração Animal , Betaína , Creatina , Dieta , Suplementos Nutricionais , Digestão , Glicina , Animais , Suplementos Nutricionais/análise , Betaína/metabolismo , Betaína/administração & dosagem , Ração Animal/análise , Dieta/veterinária , Masculino , Digestão/efeitos dos fármacos , Creatina/metabolismo , Glicina/análogos & derivados , Glicina/administração & dosagem , Glicina/metabolismo , Ovinos/fisiologia , Ovinos/metabolismo , Carneiro Doméstico/fisiologia , Carneiro Doméstico/metabolismo , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Distribuição Aleatória , Nutrientes/metabolismo
17.
J Dairy Sci ; 107(7): 4587-4604, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38942562

RESUMO

The objective was to evaluate the effects of separate offering of feed ingredients (SF) and frequency of concentrate feeding versus offering a TMR, on lactational performance, ruminal fermentation, enteric CH4 emissions, nutrient digestibility, N use efficiency, milk fatty acid profile, and blood variables in mid-lactation dairy cows. Twenty-four Holstein cows (12 primi- and 12 multiparous) averaging (±SD) 141 ± 35 DIM and 43 ± 6 kg/d of milk yield (MY) at the beginning of the study were used in a replicated 3 × 3 Latin square design experiment with 3 periods of 28 d each, composed of 7 d for adaptation to the diets, 11 d for estimation of net energy and metabolizable protein requirements, and 10 d for data and samples collection. Cows were grouped based on parity, DIM, and MY into 4 Latin squares. Treatment allocation was balanced for carryover effects, and cows within square were assigned to (1) basal diet fed ad libitum as TMR; (2) basal diet fed as SF with forages fed ad libitum and concentrates fed 3×/d (SF×3); or (3) basal diet fed as SF with forages fed ad libitum and concentrates fed 6×/d (SF×6). Compared with TMR, SF decreased total DMI by 1.2 kg/d. Treatments did not affect MY, milk components, or ECM yield, except for a decrease in milk fat concentration and an increase in milk urea N by SF×3, compared with TMR. Feed efficiency (kg of MY/kg of DMI) was increased by 7% in SF, compared with TMR. Ruminal molar proportion of acetate and acetate-to-propionate ratio were decreased, whereas molar proportion of propionate was increased by SF×3, compared with TMR and SF×6. There was a 9% decrease in daily CH4 production by SF, compared with TMR. Enteric CH4 yield (per kg of DMI) was not affected by treatments in the current study. Methane intensity per kilogram of MY tended to be decreased by 10% in SF, compared with TMR. The sums of odd- and branched-chain, odd-chain, and anteiso milk fatty acids tended to be or were increased by SF, compared with TMR. Intake of nutrients tended to be or were decreased by SF, compared with TMR. The digestibility of amylase-treated NDF tended to be decreased and ADF digestibility was decreased by 3% in SF, compared with TMR. Urinary and fecal N excretions were not affected by treatments. As a percentage of total N intake, separate offering of feed ingredients increased milk N secretion, indicating an increased N use efficiency by SF, compared with TMR. Blood total fatty acid concentration was decreased by SF relative to TMR. Compared with both TMR and SF×6, SF×3 increased blood urea N concentration. Overall, feed and N use efficiencies were increased by separate offering of feed ingredients, and increasing the frequency of concentrate feeding promoted ruminal fermentation effects similar to those obtained by feeding a TMR.


Assuntos
Ração Animal , Dieta , Lactação , Metano , Leite , Animais , Bovinos , Feminino , Leite/química , Leite/metabolismo , Dieta/veterinária , Metano/metabolismo , Digestão , Nutrientes/metabolismo , Rúmen/metabolismo , Fermentação
18.
BMC Plant Biol ; 24(1): 602, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926662

RESUMO

BACKGROUND: Anisodus tanguticus (Maxim.) Pascher (A. tanguticus) is a valuable botanical for extracting tropane alkaloids, which are widely used in the pharmaceutical industry. Implementing appropriate cultivation methods can improve both the quality and yield of A. tanguticus. A two-year field experiment was conducted from 2021 to 2023 using a single-factor randomized complete block design replicated three times. The study examined the effects of different nutrient levels (nitrogen: 0, 75, 150, 225, 300, 375 kg/ha; phosphorus: 0, 600, 750, 900, 1050, 1200 kg/ha; potassium: 0, 75, 112.5, 150, 187.5, 225 kg/ha) on the growth, primary alkaloid contents, and alkaloid yield of A. tanguticus at different growth stages (S-Greening, S-Growing, S-Wilting; T-Greening, T-Growing, and T-Wilting) in both the roots and aboveground portions. RESULTS: Our results demonstrate that nutrient levels significantly affect the growth and alkaloid accumulation in A. tanguticus. High nitrogen levels (375 kg/ha) notably increased both root and aboveground biomass, while phosphorus had a minimal effect, especially on aboveground biomass. For alkaloid content (scopolamine, anisodamine, anisodine, atropine), a moderate nitrogen level (225 kg/ha) was most effective, followed by low potassium (75 kg/ha), with phosphorus showing a limited impact. Increased phosphorus levels led to a decrease in scopolamine content. During the T-Growing period, moderate nitrogen addition (225 kg/ha) yielded the highest alkaloid levels per unit area (205.79 kg/ha). In the T-Wilting period, low potassium (75 kg/ha) and low phosphorus (750 kg/ha) resulted in alkaloid levels of 146.91 kg/ha and 142.18 kg/ha, respectively. This indicates nitrogen has the most substantial effect on alkaloid accumulation, followed by potassium and phosphorus. The Douglas production function analysis suggests focusing on root biomass and the accumulation of scopolamine and atropine in roots to maximize alkaloid yield in A. tanguticus cultivation. CONCLUSIONS: Our findings show that the optimum harvesting period for A. tanguticus is the T-Wilting period, and that the optimal nitrogen addition is 225 kg/ha, the optimal potassium addition is 75 kg/ha, and the optimal phosphorus addition is 600 kg/ha or less.


Assuntos
Alcaloides , Nitrogênio , Nutrientes , Fósforo , Fósforo/metabolismo , Nitrogênio/metabolismo , Alcaloides/metabolismo , Nutrientes/metabolismo , Potássio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Ranunculaceae/metabolismo
19.
BMC Plant Biol ; 24(1): 608, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926861

RESUMO

Microplastic (MP) pollution in terrestrial ecosystems is gaining attention, but there is limited research on its effects on leafy vegetables when combined with heavy metals. This study examines the impact of three MP types-polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS)-at concentrations of 0.02, 0.05, and 0.1% w/w, along with cadmium (Cd) and biochar (B), on germination, growth, nutrient absorption, and heavy metal uptake in red amaranth (Amaranthus tricolor L.). We found that different MP types and concentrations did not negatively affect germination parameters like germination rate, relative germination rate, germination vigor, relative germination vigor, and germination speed. However, they increased phytotoxicity and decreased stress tolerance compared to an untreated control (CK1). The presence of MPs, particularly the PS type, reduced phosphorus and potassium uptake while enhancing Cd uptake. For example, treatments PS0.02CdB, PS0.05CdB, and PS0.1CdB increased Cd content in A. tricolor seedlings by 158%, 126%, and 44%, respectively, compared to the treatment CdB (CK2). Additionally, MP contamination led to reduced plant height, leaf dry matter content, and fresh and dry weights, indicating adverse effects on plant growth. Moreover, the presence of MPs increased bioconcentration factors and translocation factors for Cd, suggesting that MPs might act as carriers for heavy metal absorption in plants. On the positive side, the addition of biochar improved several root parameters, including root length, volume, surface area, and the number of root tips in the presence of MPs, indicating potential benefits for plant growth. Our study shows that the combination of MPs and Cd reduces plant growth and increases the risk of heavy metal contamination in food crops. Further research is needed to understand how different MP types and concentrations affect various plant species, which will aid in developing targeted mitigation strategies and in exploring the mechanisms through which MPs impact plant growth and heavy metal uptake. Finally, investigating the potential of biochar application in conjunction with other amendments in mitigating these effects could be key to addressing MP and heavy metal contamination in agricultural systems.


Assuntos
Amaranthus , Cádmio , Carvão Vegetal , Microplásticos , Amaranthus/efeitos dos fármacos , Amaranthus/crescimento & desenvolvimento , Amaranthus/metabolismo , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Germinação/efeitos dos fármacos , Nutrientes/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/metabolismo
20.
Environ Microbiol ; 26(6): e16664, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38830671

RESUMO

Milk is a complex biochemical fluid that includes macronutrients and microbiota, which, together, are known to facilitate infant growth, mediate the colonization of infant microbiomes, and promote immune development. Examining factors that shape milk microbiomes and milk-nutrient interplay across host taxa is critical to resolving the evolution of the milk environment. Using a comparative approach across four cercopithecine primate species housed at three facilities under similar management conditions, we test for the respective influences of the local environment (housing facility) and host species on milk (a) macronutrients (fat, sugar, and protein), (b) microbiomes (16S rRNA), and (c) predicted microbial functions. We found that milk macronutrients were structured according to host species, while milk microbiomes and predicted function were strongly shaped by the local environment and, to a lesser extent, host species. The milk microbiomes of rhesus macaques (Macaca mulatta) at two different facilities more closely resembled those of heterospecific facility-mates compared to conspecifics at a different facility. We found similar, facility-driven patterns of microbial functions linked to physiology and immune modulation, suggesting that milk microbiomes may influence infant health and development. These results provide novel insight into the complexity of milk and its potential impact on infants across species and environments.


Assuntos
Microbiota , Leite , Nutrientes , RNA Ribossômico 16S , Animais , Leite/microbiologia , Nutrientes/metabolismo , RNA Ribossômico 16S/genética , Macaca mulatta/microbiologia , Feminino , Cercopithecidae/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Evolução Biológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...