Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Life Sci ; 241: 117187, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31863776

RESUMO

AIMS: Renal interstitial fibrosis (RIF) is marked by the epithelial-mesenchymal transition (EMT) and excessive extracellular matrix deposition. The long noncoding RNA myocardial infarction-associated transcript (MIAT) facilitates RIF; however, the molecular mechanism of MIAT in RIF remains unclear. Here, we explored the possible underlying mechanisms through which MIAT modulates RIF. MATERIALS AND METHODS: MIAT expression in human renal fibrotic tissues and unilateral ureteral obstruction (UUO) model mice was detected by qPCR. Transforming growth factor ß1 (TGF-ß1) was introduced to stimulate the EMT in human renal proximal tubular epithelial (HK-2) cells. CCK8, EdU, transwell and wound healing assays were employed to measure cell viability, proliferation, and migration respectively. RNA immunoprecipitation (RIP) assays and dual luciferase reporter assays were applied to determine the relationships among MIAT, miR-145, and EIF5A2. KEY FINDINGS: MIAT was upregulated in human renal fibrotic tissues and UUO model mice compared with normal tissue adjacent to renal tumors and sham operation mice, respectively. MIAT knockdown reduced cell viability, proliferation, migration, and the EMT in HK-2 cells. Additionally, MIAT served as an endogenous sponge for miR-145 in the TGF-ß1-induced-EMT in HK-2 cells, as demonstrated by dual luciferase reporter assays and RIP assays. EIF5A2 was confirmed as a target of miR-145, and MIAT knockdown suppressed EIF5A2 expression by sponging miR-145. Downregulation of EIF5A2 partly reversed induction of the EMT by miR-145 inhibitor transfection. SIGNIFICANCE: MIAT promoted cell viability, proliferation, migration, and the EMT via regulation of the miR-145/EIF5A2 axis. These data established a potential therapy for RIF.


Assuntos
Transição Epitelial-Mesenquimal , Fibrose/patologia , Nefropatias/patologia , MicroRNAs/genética , Fatores de Iniciação de Peptídeos/metabolismo , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/metabolismo , Obstrução Ureteral/patologia , Animais , Estudos de Casos e Controles , Fibrose/genética , Fibrose/metabolismo , Regulação da Expressão Gênica , Humanos , Nefropatias/genética , Nefropatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/genética , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo
2.
Life Sci ; 239: 117015, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31678551

RESUMO

Obstructive renal injury and drug-induced nephrotoxicity are the two most common causes of renal fibrosis diseases. However, whether these two different pathogeny induced same pathological outcomes contain common genetic targets or signaling pathway, the current research has not paid great attention. GSE121190 and GSE35257 were downloaded from the Gene Expression Omnibus (GEO) database. While GSE121190 represents a differential expression profile in kidney of mice with unilateral ureteral obstruction (UUO) model, GSE35257 represents cisplatin nephrotoxicity model. By using GEO2R, 965 differential expression genes (DEGs) in GSE121190 and 930 DEGs in GSE35257 were identified. 43 co-DEGs were shared and were extracted for protein-protein interaction (PPI) analysis. Subsequently, three shared pathways including glycolysis/gluconeogenesis, fatty acid degradation and pathways in cancer were involved in two models with Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. We reconfirmed that these three pathways have relatively high scores by using Gene Set Enrichment Analysis (GSEA) software. Additionally, further bioinformatic analysis showed that Aldehyde dehydrogenase-2 (Aldh2) involved in the progression of renal fibrosis by mediating glycolysis pathway. Then real-time PCR and western blotting were performed to validate the expression of Aldh2 in kidney tissue after three different etiologies that caused renal fibrosis. Basically consistent with our bioinformatics results, our experiment showed that the expression of Aldh2 is the most significantly decreased in the UUO model, followed by ischemia-reperfusion injury (IRI) model and finally the cisplatin-induced model. Thus, Aldh2 can act as a common potential genetic target for different renal fibrosis diseases.


Assuntos
Aldeído-Desidrogenase Mitocondrial/genética , Nefropatias/tratamento farmacológico , Nefropatias/enzimologia , Aldeído-Desidrogenase Mitocondrial/efeitos dos fármacos , Animais , Cisplatino/toxicidade , Biologia Computacional , Bases de Dados Genéticas , Fibrose , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Nefropatias/induzido quimicamente , Nefropatias/genética , Camundongos , Camundongos Endogâmicos BALB C , Mapas de Interação de Proteínas , Obstrução Ureteral/complicações , Obstrução Ureteral/genética , Obstrução Ureteral/patologia
3.
Int J Mol Sci ; 20(14)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295865

RESUMO

G-protein-coupled receptor 40 (GPR40) has an anti-apoptotic effect in pancreatic ß-cells. However, its role in renal tubular cell apoptosis remains unclear. To explore the role of GPR40 in renal tubular apoptosis, a two-week unilateral ureteral obstruction (UUO) mouse model was used. The protein expression of GPR40 was decreased, while the Bax/Bcl-2 protein expression ratio, the expression of tumor necrosis factor (TNF)-α mRNA, and angiotensin II type 1 receptor (AT1R) protein were increased in mice with UUO. In vitro, pretreatment of rat proximal tubular (NRK52E) cells with GW9508, a GPR40 agonist, attenuated the decreased cell viability, increased the Bax/Bcl-2 protein expression ratio, increased protein expression of cleaved caspase-3 and activated the nuclear translocation of nuclear factor-κB (NF-κB) p65 subunit induced by TNF-α treatment. TNF-α treatment significantly increased the expression of AT1R protein and the generation of reactive oxygen species (ROS), whereas GW9508 treatment markedly reversed these effects. Pretreatment with GW1100, a GPR40 antagonist, or silencing of GPR40 in NRK52E cells promoted the increased expression of the cleaved caspase-3 protein by TNF-α treatment. Our results demonstrate that decreased expression of GPR40 is associated with apoptosis via TNF-α and AT1R in the ureteral obstructed kidney. The activation of GPR40 attenuates TNF-α-induced apoptosis by inhibiting AT1R expression and ROS generation through regulation of the NF-κB signaling pathway.


Assuntos
Lesão Renal Aguda/metabolismo , Apoptose/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Receptores Acoplados a Proteínas-G/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lesão Renal Aguda/tratamento farmacológico , Lesão Renal Aguda/etiologia , Lesão Renal Aguda/patologia , Animais , Apoptose/genética , Biomarcadores , Modelos Animais de Doenças , Imunofluorescência , Expressão Gênica , Imuno-Histoquímica , Túbulos Renais Proximais/patologia , Masculino , Ratos , Receptores Acoplados a Proteínas-G/agonistas , Receptores Acoplados a Proteínas-G/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Obstrução Ureteral/complicações , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo
4.
Biomed Pharmacother ; 117: 109172, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31261028

RESUMO

Macrophages in the kidney play different roles in renal interstitial fibrosis (RIF) depending on their phenotypes. M2 phenotype macrophages are believed to protect the kidney against RIF. Free fatty acid receptor GPR120 is expressed in macrophages, and its activation induces macrophage transition to M2 phenotype. In this study, the effects of GPR120 agonist-programmed macrophages on RIF were investigated. The peritoneal macrophages collected from rats were incubated with GPR120 agonist TUG891 in vitro for 24 h, and then they were transplanted autologously to the kidney with ureteral obstruction by intrarenal injection for 7 days on the same day following unilateral ureteral obstruction (UUO) operation. RIF was identified by Masson trichrome histological staining, and the expression of RIF-related proteins was analyzed by immunohistochemistry and western blot. It was observed that TUG891-programmed macrophages up-regulated the expression of CD206 and arginase-1 while the expression of interleukin-6 and tumor necrosis factor-α were down-regulated. RIF in rats was significantly increased following UUO, which was markedly alleviated by TUG891-programmed macrophages but not untreated macrophages. TUG891-programmed macrophages inhibited the abnormal expression of TGF-ß1 and SMAD2. The abnormal expression of epithelial-mesenchymal transition (EMT)-related proteins including vimentin, α-SMA and ß-catenin was also significantly decreased in rats with transplantation of TUG891-programmed macrophages as compared to UUO rats. This study suggests that autologous administration of peritoneal macrophages programmed in vitro by GPR120 agonist to kidney has a protective effect against RIF following UUO.


Assuntos
Nefropatias/patologia , Macrófagos Peritoneais/metabolismo , Substâncias Protetoras/farmacologia , Receptores Acoplados a Proteínas-G/agonistas , Obstrução Ureteral/complicações , Animais , Compostos de Bifenilo/farmacologia , Citocinas/metabolismo , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Nefropatias/genética , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/transplante , Masculino , Modelos Biológicos , Fenótipo , Fenilpropionatos/farmacologia , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas-G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/genética , Vimentina/metabolismo , beta Catenina/metabolismo
5.
Nephrology (Carlton) ; 24(9): 983-991, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31314137

RESUMO

AIM: Protease-activated receptor 2 (PAR2) has been implicated in the development of renal inflammation and fibrosis. In particular, activation of PAR2 in cultured tubular epithelial cells induces extracellular signal-regulated kinase signalling and secretion of fibronectin, C-C Motif Chemokine Ligand 2 (CCL2) and transforming growth factor-ß1 (TGF-ß1), suggesting a role in tubulointerstitial inflammation and fibrosis. We tested this hypothesis in unilateral ureteric obstruction (UUO) in which ongoing tubular epithelial cell damage drives tubulointerstitial inflammation and fibrosis. METHODS: Unilateral ureteric obstruction surgery was performed in groups (n = 9/10) of Par2-/- and wild type (WT) littermate mice which were killed 7 days later. Non-experimental mice were controls. RESULTS: Wild type mice exhibited a 5-fold increase in Par2 messenger RNA (mRNA) levels in the UUO kidney. In situ hybridization localized Par2 mRNA expression to tubular epithelial cells in normal kidney, with a marked increase in Par2 mRNA expression by tubular cells, including damaged tubular cells, in WT UUO kidney. Tubular damage (tubular dilation, increased KIM-1 and decreased α-Klotho expression) and tubular signalling (extracellular signal-regulated kinase phosphorylation) seen in WT UUO were not altered in Par2-/- UUO. In addition, macrophage infiltration, up-regulation of M1 (NOS2) and M2 (CD206) macrophage markers, and up-regulation of pro-inflammatory molecules (tumour necrosis factor, CCL2, interleukin-36α) in WT UUO kidney were unchanged in Par2-/- UUO. Finally, the accumulation of α-SMA+ myofibroblasts, deposition of collagen IV and expression of pro-fibrotic factors (CTGF, TGF-ß1) were not different between WT and Par2-/- UUO mice. CONCLUSION: Protease-activated receptor 2 expression is substantially up-regulated in tubular epithelial cells in the obstructed kidney, but this does not contribute to the development of tubular damage, renal inflammation or fibrosis.


Assuntos
Túbulos Renais/metabolismo , Nefrite Intersticial/etiologia , Receptor PAR-2/metabolismo , Obstrução Ureteral/complicações , Animais , Modelos Animais de Doenças , Fibrose , Regulação da Expressão Gênica , Túbulos Renais/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nefrite Intersticial/genética , Nefrite Intersticial/metabolismo , Nefrite Intersticial/patologia , Receptor PAR-2/deficiência , Receptor PAR-2/genética , Transdução de Sinais , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
6.
Redox Biol ; 26: 101234, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31247506

RESUMO

BACKGROUND: NADPH oxidase 4 (NOX4) catalyzes the formation of hydrogen peroxide (H2O2). NOX4 is highly expressed in the kidney, but its role in renal injury is unclear and may depend on its specific tissue localization. METHODS: We performed immunostaining with a specific anti-NOX4 antibody and measured NOX4 mRNA expression in human renal biopsies encompassing diverse renal diseases. We generated transgenic mice specifically overexpressing mouse Nox4 in renal tubular cells and subjected the animals to the unilateral ureteral obstruction (UUO) model of fibrosis. RESULTS: In normal human kidney, NOX4 protein expression was at its highest on the basolateral side of proximal tubular cells. NOX4 expression increased in mesangial cells and podocytes in proliferative diabetic nephropathy. In tubular cells, NOX4 protein expression decreased in all types of chronic renal disease studied. This finding was substantiated by decreased NOX4 mRNA expression in the tubulo-interstitial compartment in a repository of 175 human renal biopsies. Overexpression of tubular NOX4 in mice resulted in enhanced renal production of H2O2, increased NRF2 protein expression and decreased glomerular filtration, likely via stimulation of the tubulo-glomerular feedback. Tubular NOX4 overexpression had no obvious impact on kidney morphology, apoptosis, or fibrosis at baseline. Under acute and chronic tubular injury induced by UUO, overexpression of NOX4 in tubular cells did not modify the course of the disease. CONCLUSIONS: NOX4 expression was decreased in tubular cells in all types of CKD tested. Tubular NOX4 overexpression did not induce injury in the kidney, and neither modified microvascularization, nor kidney structural lesions in fibrosis.


Assuntos
Nefropatias Diabéticas/genética , NADPH Oxidase 4/genética , RNA Mensageiro/genética , Insuficiência Renal Crônica/genética , Obstrução Ureteral/genética , Animais , Biópsia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Fibrose , Regulação da Expressão Gênica , Taxa de Filtração Glomerular , Humanos , Peróxido de Hidrogênio/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Masculino , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Camundongos , Camundongos Transgênicos , NADPH Oxidase 4/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Podócitos/metabolismo , Podócitos/patologia , RNA Mensageiro/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Transdução de Sinais , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
7.
Biofactors ; 45(5): 750-762, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31188510

RESUMO

Chronic kidney disease (CKD) is one of the major global health concerns and is responsible for end-stage renal disease (ESRD) complications. Inflammation plays a pivotal role in the progression of CKD. In the present study, we evaluated the renoprotective effects of a potent immunomodulator steroidal lactone, Withaferin A (WfA), in an animal model of renal injury (unilateral ureteral obstruction, UUO) and further investigated if the inhibition of inflammatory signaling can be a useful approach to reduce renal injury. Animals were randomly divided into five groups: Sham control, UUO control, WfA control, WfA low dose (1 mg/kg), and WfA high dose (3 mg/kg). Oxidative stress was measured by the estimation of reduced glutathione and lipid peroxidation levels. H&E and Picrosirius Red staining were performed to assess the extent of histological damage and collagen deposition. Furthermore, the molecular mechanism of the WfA effects was explored by immunohistochemistry, enzyme-linked immunosorbent assay, multiplex analysis of transforming growth factor ß (TGF-ß) pathway, and an array of inflammatory cytokines/chemokines. Interestingly, our pharmacological intervention significantly attenuated tissue collagen, inflammatory signaling, and macrophage signaling. WfA intervention abrogated the inflammatory signaling as evident from the modulated levels of chemokines and cytokines. The levels of TGF-ß along with downstream signaling molecules were also attenuated by WfA treatment as revealed by inhibition in the expression of TGF-ß1, TGF-ß2, p-Smad2, p-Smad3, total Smad4, p-Akt, and p-ERK. We, to the best of our knowledge, prove for the first time that WfA has potential renoprotective activity against UUO-induced nephropathy due to its outstanding anti-inflammatory properties.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Obstrução Ureteral/tratamento farmacológico , Vitanolídeos/farmacologia , Animais , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glutationa/agonistas , Glutationa/metabolismo , Inflamação , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Resultado do Tratamento , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
8.
Hum Cell ; 32(3): 297-305, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31054069

RESUMO

Renal fibrosis is the major feature of end-stage renal disease with high mortality. Chloride (Cl-) moving along Cl- channels has been suggested to play to an important role in renal function. This study aims to investigate the role of ClC-5 in renal fibrosis in unilateral ureteral occlusion (UUO) mice. C57BL/6 mice received UUO surgery followed by delivery of adeno-associated virus encoding ClC-5 cDNA (AAVClC-5). Western blotting, real-time PCR and histological analysis were used to investigate the effects of ClC-5 on renal fibrosis and underlying mechanisms. The expression of ClC-5 was significantly decreased in renal cortex of UUO mice and transforming growth factor-ß1 (TGF-ß1)-stimulated HK2 cells. Overexpression of ClC-5 in vivo markedly ameliorated UUO-induced renal injury and fibrosis. The increased expressions of plasminogen activator inhibitor type 1, connective tissue growth factor, collagen III and collagen IV were also inhibited by ClC-5 upregulation. Moreover, UUO-induced immune cell infiltration and inflammatory cytokines release were attenuated in mice infected with AAVClC-5. In addition, the in vivo and in vitro results showed that ClC-5 overexpression prevented epithelial-to-mesenchymal transition (EMT), concomitantly with a restoration of E-cadherin expression and a decrease of vimentin, α-SMA and S100A4 expressions. Furthermore, ClC-5 overexpression inhibited UUO- or TGF-ß1-induced increase in nuclear factor kappa B (NF-κB) acetylation and matrix metalloproteinases-9 (MMP-9) expression. However, downregulation of ClC-5 in HK2 cells further potentiated TGF-ß1-induced EMT and increase in NF-κB acetylation and MMP-9 expression. ClC-5 upregulation ameliorates renal fibrosis via inhibiting NF-κB/MMP-9 pathway signaling activation, suggesting that ClC-5 may be a novel therapeutic target for treating renal fibrosis and chronic kidney disease.


Assuntos
Canais de Cloreto/genética , Canais de Cloreto/fisiologia , Expressão Gênica , Rim/metabolismo , Rim/patologia , Regulação para Cima , Obstrução Ureteral/genética , Obstrução Ureteral/patologia , Animais , Caderinas/metabolismo , Células Cultivadas , Canais de Cloreto/metabolismo , Canais de Cloreto/uso terapêutico , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Fibrose , Mediadores da Inflamação/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , NF-kappa B/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Transdução de Sinais/genética , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/tratamento farmacológico
9.
Cell Physiol Biochem ; 52(6): 1484-1502, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31099508

RESUMO

BACKGROUND/AIMS: The transient receptor potential cation channel subfamily C member 6 (TRPC6) is a Ca2+-permeable nonselective cation channel and has received recent attention because of its capability to promote chronic kidney disease (CKD). The aims of this study were (i) to examine whether deletion of TRPC6 impacts on renal fibrosis and inflammatory cell infiltration in an early CKD model of unilateral ureter obstruction (UUO) in mice; and (ii) whether TRPC6-deficiency as well as UUO affect the regulation of TRPC expression in murine kidneys. METHODS: Wild-type (WT), Trpc6-knockout (Trpc6-/-) and New Zealand obese (NZO) mice underwent sham operation or unilateral ureteral obstruction (UUO). The kidneys were harvested 7 days after surgery. We examined renal fibrosis and inflammatory cell infiltration by histological and immunohistochemical staining. The mRNA expression of TRPC members and markers of fibrosis and inflammation in kidney were assessed by using real-time quantitative reverse transcription PCR. RESULTS: Histological and immunohistochemical analyses revealed less inflammatory cell infiltration (F4/80 and CD3) in UUO kidneys of Trpc6-/- mice compared to UUO kidneys of WT mice as well as less fibrosis. Genomic deletion of TRPC6 also affected the expression of pro-fibrotic genes in UUO Trpc6-/- kidneys compared to UUO WT kidneys while the expression of pro-inflammatory genes did not differ. UUO caused marked up-regulation of Trpc6 and down-regulation of Trpc1 mRNA in kidneys of WT and NZO mice. Trpc3 mRNA expression was significantly elevated in kidneys of Trpc6-/- mice underwent UUO while the levels did not change in kidneys of neither WT nor in NZO mice underwent UUO. CONCLUSION: TRPC6 contributes to renal fibrosis and immune cell infiltration in the UUO mouse model. Therefore, inhibition of TRPC6 emerges as a promising novel therapeutic strategy for treatment of chronic kidney failure in chronic obstructive nephropathy. However, confounding genomic and non-genomic effects of other TRPC channels should be taken into consideration to fully comprehend the renoprotective potential of targeting TRPC6 therapeutically under chronic kidney damaging conditions.


Assuntos
Regulação da Expressão Gênica , Rim/patologia , Canais de Cátion TRPC/genética , Obstrução Ureteral/genética , Animais , Modelos Animais de Doenças , Fibrose , Deleção de Genes , Inflamação/complicações , Inflamação/genética , Inflamação/patologia , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , RNA Mensageiro/análise , RNA Mensageiro/genética , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Regulação para Cima , Obstrução Ureteral/complicações , Obstrução Ureteral/patologia
10.
PLoS One ; 14(2): e0202842, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30818366

RESUMO

Leukotriene B4 (LTB4) is a lipid mediator that acts as a potent chemoattractant for inflammatory leukocytes. Kidney fibrosis is caused by migrating inflammatory cells and kidney-resident cells. Here, we examined the role of the high-affinity LTB4 receptor BLT1 during development of kidney fibrosis induced by unilateral ureteral obstruction (UUO) in wild-type (WT) mice and BLT1 knockout (BLT1-/-) mice. We found elevated expression of 5-lipoxygenase (5-LOX), which generates LTB4, in the renal tubules of UUO kidneys from WT mice and BLT1-/- mice. Accumulation of immunoreactive type I collagen in WT UUO kidneys increased over time; however, the increase was less prominent in BLT1-/- UUO kidneys. Accumulation of S100A4-positive fibroblasts increased temporally in WT UUO kidneys, but was again less pronounced in-BLT1-/- UUO kidneys. The same was true of mRNA encoding transforming growth factor-ß (TGF)-ß and fibroblast growth factor (FGF)-2. Finally, accumulation of F4/80-positive macrophages, which secrete TGF-ß, increased temporally in WT UUO and BLT1-/- UUO kidneys, but to a lesser extent in the latter. Following LTB4 stimulation in vitro, macrophages showed increased expression of mRNA encoding TGF-ß/FGF-2 and Col1a1, whereas L929 fibroblasts showed increased expression of mRNA encoding α smooth muscle actin (SMA). Bone marrow (BM) transplantation studies revealed that the area positive for type I collagen was significantly smaller in BLT1-/-BM→WT than in WT-BM→WT. Thus, LTB4-BLT1 signaling plays a critical role in fibrosis in UUO kidneys by increasing accumulation of macrophages and fibroblasts. Therefore, blocking BLT1 may prevent renal fibrosis.


Assuntos
Receptores do Leucotrieno B4/metabolismo , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Animais , Apoptose/fisiologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/metabolismo , Rim/metabolismo , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores do Leucotrieno B4/genética , Transdução de Sinais , Obstrução Ureteral/patologia
11.
Clin Sci (Lond) ; 133(2): 239-252, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30617188

RESUMO

Kidney fibrosis is the common pathophysiological mechanism in end-stage renal disease characterized by excessive accumulation of myofibroblast-derived extracellular matrix. Natriuretic peptides have been demonstrated to have cyclic guanosine monophosphate (cGMP)-dependent anti-fibrotic properties likely due to interference with pro-fibrotic tissue growth factor ß (TGF-ß) signaling. However, in vivo, natriuretic peptides are rapidly degraded by neutral endopeptidases (NEP). In a unilateral ureteral obstruction (UUO) mouse model for kidney fibrosis we assessed the anti-fibrotic effects of SOL1, an orally active compound that inhibits NEP and endothelin-converting enzyme (ECE). Mice (n=10 per group) subjected to UUO were treated for 1 week with either solvent, NEP-/ECE-inhibitor SOL1 (two doses), reference NEP-inhibitor candoxatril or the angiotensin II receptor type 1 (AT1)-antagonist losartan. While NEP-inhibitors had no significant effect on blood pressure, they did increase urinary cGMP levels as well as endothelin-1 (ET-1) levels. Immunohistochemical staining revealed a marked decrease in renal collagen (∼55% reduction, P<0.05) and α-smooth muscle actin (α-SMA; ∼40% reduction, P<0.05). Moreover, the number of α-SMA positive cells in the kidneys of SOL1-treated groups inversely correlated with cGMP levels consistent with a NEP-dependent anti-fibrotic effect. To dissect the molecular mechanisms associated with the anti-fibrotic effects of NEP inhibition, we performed a 'deep serial analysis of gene expression (Deep SAGE)' transcriptome and targeted metabolomics analysis of total kidneys of all treatment groups. Pathway analyses linked increased cGMP and ET-1 levels with decreased nuclear receptor signaling (peroxisome proliferator-activated receptor [PPAR] and liver X receptor/retinoid X receptor [LXR/RXR] signaling) and actin cytoskeleton organization. Taken together, although our transcriptome and metabolome data indicate metabolic dysregulation, our data support the therapeutic potential of NEP inhibition in the treatment of kidney fibrosis via cGMP elevation and reduced myofibroblast formation.


Assuntos
Benzazepinas/farmacologia , Nefropatias/prevenção & controle , Rim/efeitos dos fármacos , Miofibroblastos/efeitos dos fármacos , Neprilisina/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Obstrução Ureteral/tratamento farmacológico , Animais , GMP Cíclico/metabolismo , Modelos Animais de Doenças , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Rim/enzimologia , Rim/patologia , Nefropatias/enzimologia , Nefropatias/genética , Nefropatias/patologia , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/enzimologia , Miofibroblastos/patologia , Células NIH 3T3 , Neprilisina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Obstrução Ureteral/enzimologia , Obstrução Ureteral/genética , Obstrução Ureteral/patologia
12.
Nephrology (Carlton) ; 24(4): 472-480, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29717517

RESUMO

AIM: To understand the mechanism of long non-coding RNA (LncRNA) HOTAIR on renal interstitial fibrosis (RIF) by regulating Notch1 pathway via the modulation of miR-124. METHODS: Unilateral ureteral occlusion (UUO) was used to construct the RIF rat model. HK-2 cells induced by TGF-ß1 were used for the in vitro experiment, which were divided into five groups: Vehicle, TGF-ß1, si-HOTAIR+TGF-ß1, miR-124 inhibitor+TGF-ß1, and si-HOTAIR+miR-124 inhibitor+TGF-ß1 groups. Quantitative real-time PCR (qRT-PCR) and Western blot were performed to detect the expression of HOTAIR, miR-124, Notch1- and epithelial-to-mesenchymal transition (EMT)-related proteins. RESULTS: Significant elevated HOTAIR and reduced miR-124 were presented in UUO rats and TGF-ß1-induced HK-2 cells in a time-dependent manner, with the increased Jagged1 (JAG1), Notch1, NICD, α-SMA and FN, as well as the decreased E-cadherin (all P < 0.05). Compared with the TGF-ß1 group, cells in the si-HOTAIR+TGF-ß1 group were remarkably declined in cell proliferation and the protein expressions of JAG1, Notch1, NICD, α-SMA, and FN, but dramatically higher in E-cadherin expression (all P < 0.05). However, in comparison with the si-HOTAIR+TGF-ß1 group, cells in the si-HOTAIR+miR-124 inhibitor+TGF-ß1 group were apparently improved in proliferation and the protein expression of JAG1, Notch1, NICD, α-SMA, and FN, but substantially reduced in the level of E-cadherin protein (all P < 0.05). CONCLUSION: Silencing lncRNA HOTAIR can up-regulate miR-124 to block Notch1 pathway, and thereby alleviating EMT and RIF, indicating HOTAIR as a potential target for RIF treatment.


Assuntos
Nefropatias/metabolismo , Túbulos Renais Proximais/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Receptor Notch1/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Fibrose , Regulação da Expressão Gênica , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Nefropatias/genética , Nefropatias/patologia , Nefropatias/prevenção & controle , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/patologia , Masculino , MicroRNAs/genética , RNA Longo não Codificante/genética , Ratos Sprague-Dawley , Receptor Notch1/genética , Transdução de Sinais , Fator de Crescimento Transformador beta1/farmacologia , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
13.
Rejuvenation Res ; 22(3): 218-229, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30215298

RESUMO

Fibrosis is the major pathological feature of chronic kidney disease (CKD). Aloe-emodin (AE), one of the main active compounds in Rhubarb, is widely used for renal protection. However, mechanisms implied in the modulation of kidney fibrosis after AE treatment for CKD remain elusive. Here, we explored the protective effects of AE for renal fibrosis and the involved mechanisms in vivo and in vitro. The renal fibrosis mice model was established by unilateral ureteral obstruction (UUO). We found that AE administration significantly ameliorated UUO-induced impairment of kidney, evidenced by improved histopathological abnormalities, body weight, and abnormal renal function in mice model. Immunohistochemical staining showed that TGF-ß1 and Fibronectin expressions were significantly decreased in UUO mice compared with sham group. Meanwhile, we found that AE suppressed the activation of the PI3K/Akt/mTOR pathway induced by TGF-ß1 in vivo. AE improved cell survival and decreased the level of fibrosis-related proteins under TGF-ß1-induced fibrosis in HK-2 cells as well as in vitro. Furthermore, both wortmannin, an inhibitor of PI3K, and short-hairpin RNAs of PI3K knockdown abrogated TGF-ß1-induced phosphorylation of Akt and mTOR, and decreased the suppression of fibrosis. These findings indicated that AE alleviated fibrosis by inhibiting PI3K/Akt/mTOR pathway in vivo and in vitro, which may provide a potential therapeutic option for CKD.


Assuntos
Antraquinonas/farmacologia , Rim/metabolismo , Rim/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1 , Obstrução Ureteral/genética , Obstrução Ureteral/patologia
14.
Sci Rep ; 8(1): 16087, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382174

RESUMO

Cardiovascular disease constitutes the leading cause of mortality in patients with chronic kidney disease (CKD) and end-stage renal disease. Despite increasing recognition of a close interplay between kidney dysfunction and cardiovascular disease, termed cardiorenal syndrome (CRS), the underlying mechanisms of CRS remain poorly understood. Here we report the development of pathological cardiac hypertrophy and fibrosis in early stage non-uremic CKD. Moderate kidney failure was induced three weeks after unilateral urinary obstruction (UUO) in mice. We observed pathological cardiac hypertrophy and increased fibrosis in UUO-induced CKD (UUO/CKD) animals. Further analysis indicated that this cardiac fibrosis was associated with increased expression of transforming growth factor ß (TGF-ß) along with significant upregulation of Smad 2/3 signaling in the heart. Moreover early treatment of UUO/CKD animals with an angiotensin-converting-enzyme inhibitor (ACE I), Enalapril, significantly attenuated cardiac fibrosis. Enalapril antagonized activation of the TGF-ß signaling pathway in the UUO/CKD heart. In summary our study demonstrates the presence of pathological cardiac hypertrophy and fibrosis in mice early in UUO-induced CKD, in association with early activation of the TGF-ß/Smad signaling pathway. We also demonstrate the beneficial effect of ACE I in alleviating this early fibrogenic process in the heart in UUO/CKD animals.


Assuntos
Enalapril/uso terapêutico , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/fisiopatologia , Obstrução Ureteral/complicações , Remodelação Ventricular , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Pressão Sanguínea/efeitos dos fármacos , Cardiomegalia/etiologia , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Enalapril/farmacologia , Fibrose , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Hipertensão/etiologia , Hipertensão/genética , Hipertensão/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima/efeitos dos fármacos , Obstrução Ureteral/genética , Obstrução Ureteral/fisiopatologia , Remodelação Ventricular/efeitos dos fármacos
15.
Clin Sci (Lond) ; 132(23): 2519-2545, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30442812

RESUMO

Congenital obstructive nephropathy is a major cause of chronic kidney disease (CKD) in children. The contribution of changes in the identity of renal cells to the pathology of obstructive nephropathy is poorly understood. Using a partial unilateral ureteral obstruction (pUUO) model in genetically modified neonatal mice, we traced the fate of cells derived from the renal stroma, cap mesenchyme, ureteric bud (UB) epithelium, and podocytes using Foxd1Cre, Six2Cre, HoxB7Cre, and Podocyte.Cre mice respectively, crossed with double fluorescent reporter (membrane-targetted tandem dimer Tomato (mT)/membrane-targetted GFP (mG)) mice. Persistent obstruction leads to a significant loss of tubular epithelium, rarefaction of the renal vasculature, and decreased renal blood flow (RBF). In addition, Forkhead Box D1 (Foxd1)-derived pericytes significantly expanded in the interstitial space, acquiring a myofibroblast phenotype. Degeneration of Sine Oculis Homeobox Homolog 2 (Six2) and HoxB7-derived cells resulted in significant loss of glomeruli, nephron tubules, and collecting ducts. Surgical release of obstruction resulted in striking regeneration of tubules, arterioles, interstitium accompanied by an increase in blood flow to the level of sham animals. Contralateral kidneys with remarkable compensatory response to kidney injury showed an increase in density of arteriolar branches. Deciphering the mechanisms involved in kidney repair and regeneration post relief of obstruction has potential therapeutic implications for infants and children and the growing number of adults suffering from CKD.


Assuntos
Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Hidronefrose/prevenção & controle , Rim/cirurgia , Regeneração , Obstrução Ureteral/cirurgia , Animais , Animais Recém-Nascidos , Rastreamento de Células/métodos , Modelos Animais de Doenças , Fibrose , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hidronefrose/genética , Hidronefrose/metabolismo , Hidronefrose/patologia , Rim/metabolismo , Rim/patologia , Rim/fisiopatologia , Camundongos Transgênicos , Neovascularização Fisiológica , Estresse Oxidativo , Fenótipo , Circulação Renal , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
16.
Am J Physiol Renal Physiol ; 315(6): F1822-F1832, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30280598

RESUMO

Renal fibrosis is a common pathological feature in chronic kidney disease (CKD), including diabetic kidney disease (DKD) and obstructive nephropathy. Multiple microRNAs have been implicated in the pathogenesis of both DKD and obstructive nephropathy, although the overall role of microRNAs in tubular injury and renal fibrosis in CKD is unclear. Dicer (a key RNase III enzyme for microRNA biogenesis) was specifically ablated from kidney proximal tubules in mice via the Cre-lox system to deplete micoRNAs. Proximal tubular Dicer knockout (PT- Dicer KO) mice and wild-type (WT) littermates were subjected to streptozotocin (STZ) treatment to induce DKD or unilateral ureteral obstruction (UUO) to induce obstructive nephropathy. Renal hypertrophy, renal tubular apoptosis, kidney inflammation, and tubulointerstitial fibrosis were examined. Compared with WT mice, PT- Dicer KO mice showed more severe tubular injury and renal inflammation following STZ treatment. These mice also developed higher levels of tubolointerstitial fibrosis. Meanwhile, PT- Dicer KO mice had a significantly higher Smad2/3 expression in kidneys than WT mice (at 6 mo of age) in both control and STZ-treated mice. Similarly, UUO induced more severe renal injury, inflammation, and interstitial fibrosis in PT- Dicer KO mice than WT. Although we did not detect obvious Smad2/3 expression in sham-operated mice (2-3 mo old), significantly more Smad2/3 was induced in obstructed PT- Dicer KO kidneys. These results supported a protective role of Dicer-dependent microRNA synthesis in renal injury and fibrosis development in CKD, specifically in DKD and obstructive nephropathy. Depletion of Dicer and microRNAs may upregulate Smad2/3-related signaling pathway to enhance the progression of CKD.


Assuntos
RNA Helicases DEAD-box/deficiência , Nefropatias Diabéticas/enzimologia , Túbulos Renais Proximais/enzimologia , Nefrite/enzimologia , Insuficiência Renal Crônica/enzimologia , Ribonuclease III/deficiência , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Obstrução Ureteral/enzimologia , Animais , RNA Helicases DEAD-box/genética , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Progressão da Doença , Fibrose , Túbulos Renais Proximais/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Nefrite/etiologia , Nefrite/genética , Nefrite/patologia , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Ribonuclease III/genética , Transdução de Sinais , Regulação para Cima , Obstrução Ureteral/complicações , Obstrução Ureteral/genética , Obstrução Ureteral/patologia
17.
Cell Biol Int ; 42(11): 1523-1532, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30080287

RESUMO

Although microRNA-155 (miR-155) is implicated in the pathogenesis of several fibrotic diseases, information regarding its functional role in renal fibrosis is limited. The current study aims to investigate the effects of miR-155 on renal fibrosis in unilateral ureteral occlusion (UUO) mice. MiR-155 level was significantly increased in renal tissues of UUO mice and TGF-ß1-treated HK2 cells. Masson's trichrome staining showed that delivery of adeno-associated virus encoding miR-155 inhibitor led to a decrease in renal fibrosis induced by UUO. The increased expression of plasminogen activator inhibitor type 1, collagen III and collagen IV was also inhibited after miR-155 inhibition. In addition, miR-155 knockdown also prevented TGF-ß1-induced epithelial-mesenchymal transition, concomitantly with a restoration of E-cadherin expression and a decrease of vimentin expression. Computational analysis revealed that miR-155 directly targets at 3'UTR of PDE3A. Overexpression of miR-155 suppressed the luciferase activity and protein expression of PDE3A, whereas inhibition of miR-155 increased PDE3A luciferase activity and expression. Furthermore, miR-155 inhibited TGF-ß1-induced the increase of TGF-ß1 expression and Smad-2/3 phosphorylation in HK2 cells. In contrast, knockdown of PDE3A reversed the effect of miR-155 inhibition on TGF-ß1 expression. This study demonstrates that knockdown of miR-155 attenuates renal fibrosis via inhibiting TGF-ß1/Smad signaling activation by targeting the upstream molecule PDE3A. This study suggests that miR-155 inhibition may be a novel therapeutic approach for preventing fibrotic kidney diseases.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Nefropatias/genética , Nefropatias/patologia , Rim/patologia , MicroRNAs/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Sequência de Bases , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Fibrose , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Reprodutibilidade dos Testes , Obstrução Ureteral/genética , Obstrução Ureteral/patologia
18.
PLoS One ; 13(8): e0202409, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30114247

RESUMO

Deubiquitinating enzymes (DUBs) remove ubiquitin from their substrates and, together with ubiquitin ligases, play an important role in the regulation of protein expression. Although transforming growth factor (TGF)-ß1-Smad signaling is a central pathway of renal fibrosis, the role of DUBs in the expression of TGF-ß receptors and Smads during the development of renal fibrosis remains unknown. In this study, we investigated whether PR-619, a pan-DUB inhibitor, suppresses fibrosis in mice with unilateral ureteral obstruction (UUO) and TGF-ß1-stimulated normal rat kidney (NRK)-49F cells, a rat renal fibroblast cell line. Either the vehicle (dimethyl sulfoxide) or PR-619 (100 µg) was intraperitoneally administered to mice after UUO induction once a day for 7 days. Administration of PR-619 attenuated renal fibrosis with downregulation of mesenchymal markers, extracellular matrix proteins, matrix metalloproteinases, apoptosis, macrophage infiltration, and the TGF-ß1 mRNA level in UUO mice. Although type I TGF-ß receptor (TGF-ßRI), Smad2, Smad3, and Smad4 protein expression levels were markedly increased in mice with UUO, administration of PR-619 suppressed only Smad4 expression but not TGF-ßRI, Smad2, or Smad3 expression. PR-619 also had an inhibitory effect on TGF-ß1-induced α-smooth muscle actin expression and reduced Smad4 levels in NRK-49F cells. Our results indicate that PR-619 ameliorates renal fibrosis, which is accompanied by the reduction of Smad4 expression.


Assuntos
Aminopiridinas/uso terapêutico , Enzimas Desubiquitinantes/antagonistas & inibidores , Regulação para Baixo/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Rim/efeitos dos fármacos , Proteína Smad2/genética , Tiocianatos/uso terapêutico , Obstrução Ureteral/tratamento farmacológico , Animais , Linhagem Celular , Fibrose , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Obstrução Ureteral/genética , Obstrução Ureteral/patologia
19.
Clin Sci (Lond) ; 132(18): 2071-2085, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29959186

RESUMO

Congenital urinary tract obstruction is one of the most frequent malformations in fetuses or neonates, which usually causes profound impairment of renal function including reductions in both glomerular filtration rate (GFR) and tubular handling of water and solutes. Although obstruction can be released by surgical operation, the child will suffer from diuresis for sometime. It has been reported that erythropoietin (EPO) could prevent the down-regulation of aquaporin-2 (AQP2) and urinary-concentrating defects induced by renal ischemia/reperfusion (I/R) injury. However, whether EPO could promote the recovery of renal function and AQP2 expression after releasing of ureteral obstruction has not been reported yet. The purposes of the present study were to investigate the effects of EPO on renal function and AQP2 expression after release of bilateral ureteral obstruction (BUO-R) in rats. The results showed that EPO could promote interleukin (IL) 10 (IL-10) expression; inhibit tumor necrosis factor-α (TNF-α), IL-6, and inducible nitric oxide synthase (iNOS) expressions; reduce the fractional excretion of sodium (FENa) and plasma creatinine (CREA) and urea; and promote the recovery of water and salt handling and AQP2 expression in BUO-R rats, especially in the high dose of EPO-treated group rats. In conclusion, EPO could promote the recovery of renal function and AQP2 expression in BUO-R rats, which may partially associate with its anti-inflammation effect.


Assuntos
Modelos Animais de Doenças , Eritropoetina/farmacologia , Rim/efeitos dos fármacos , Obstrução Ureteral/fisiopatologia , Animais , Aquaporina 2/genética , Aquaporina 2/metabolismo , Taxa de Filtração Glomerular/efeitos dos fármacos , Humanos , Rim/metabolismo , Rim/fisiopatologia , Masculino , Substâncias Protetoras/farmacologia , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/fisiopatologia , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo
20.
Magnes Res ; 31(1): 11-23, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29991461

RESUMO

Tubulo-interstitial nephropathy (TIN) is a critical pathological setting for the renal prognosis, and an increase in the urine magnesium excretion is a well-known characteristic feature as one of clinical parametets for the assessment of TIN. We examined the correlation between the development of TIN and the changes in the mRNA expression of renal magnesium-transporting molecules in rats with unilateral ureter obstruction (UUO). Ureter-ligated kidney was sampled at day-0 (control), day-1 (early phase) and day-7 (late phase). The development of TIN was assessed by immunohistochemistry and the real-time PCR of fibrosis-related genes (MCP-1: 105.1 ± 14.8% on day-0, 132.9 ± 25.7% on day-1, 302.7 ± 32.7% on day-7, TGF-ß: 101.1 ± 7.6% on day-0, 93.6 ± 4.1% on day-1, 338.9 ± 20.7% on day-7) . The respective expressions of claudin-10, 14, 16, 19, and transient receptor potential (TRP) M6 as magnesium-transporting molecules were also studied. The expression of calcium sensing receptor (CaSR) as an inhibitory regulator of claudin-14 was additionally studied. The gene expression of claudin-16 was decreased in the late phase of UUO (100.2 ± 2.9% at day-0, 90.3 ± 6.3% at day-1, 36.4 ± 1.6% at day-7) which was consistent with the increased urine magnesium excretion. Immunohistochemistry showed an apparent reduction of the immunoreactivity of claudin-16 in the late phase. The expression of TRPM6 was reduced even in the early phase. The immunohistochemistry and gene expression of MCP-1 and TGF-ß showed that TIN was not apparent in the early phase but was significant in the late phase of UUO. The density of peritubular capillaries was diminished in the late phase but not in the early phase. Expression of claudin-14 and CaSR was up- and down-regulated, respectively. Our findings may indicate that the characteristic hypermagnesiuria in TIN is principally caused by the dysfunction of magnesium reabsorption in the thick ascending limb of Henle resulting from a significant decrease in the claudin-16 expression. The down-regulation might be closely related to the development of TIN.


Assuntos
Claudinas/genética , Regulação para Baixo , Nefropatias/genética , Nefropatias/urina , Túbulos Renais/patologia , Magnésio/urina , Animais , Transporte Biológico/genética , Capilares/metabolismo , Capilares/patologia , Claudinas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/genética , Nefropatias/patologia , Masculino , Ratos Sprague-Dawley , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Cloreto de Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Obstrução Ureteral/genética , Obstrução Ureteral/urina , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA