Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.777
Filtrar
1.
Science ; 385(6714): eaab2661, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39265021

RESUMO

Lipids comprise a significant fraction of sinking organic matter in the ocean and play a crucial role in the carbon cycle. Despite this, our understanding of the processes that control lipid degradation is limited. We combined nanolipidomics and imaging to study the bacterial degradation of diverse algal lipid droplets and found that bacteria isolated from marine particles exhibited distinct dietary preferences, ranging from selective to promiscuous degraders. Dietary preference was associated with a distinct set of lipid degradation genes rather than with taxonomic origin. Using synthetic communities composed of isolates with distinct dietary preferences, we showed that lipid degradation is modulated by microbial interactions. A particle export model incorporating these dynamics indicates that metabolic specialization and community dynamics may influence lipid transport efficiency in the ocean's mesopelagic zone.


Assuntos
Bactérias , Metabolismo dos Lipídeos , Oceanos e Mares , Fitoplâncton , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Gotículas Lipídicas/metabolismo , Interações Microbianas , Microbiota , Água do Mar/microbiologia , Água do Mar/química , Fitoplâncton/metabolismo
2.
Nat Commun ; 15(1): 7708, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256348

RESUMO

The Southern Ocean ecosystem has undergone extensive changes in the past two centuries driven by industrial sealing and whaling, climate change and commercial fishing. However, following the end of commercial whaling, some populations of whales in this region are recovering. Baleen whales are reliant on Antarctic krill, which is also the largest Southern Ocean fishery. Since 1993, krill catch has increased fourfold, buoyed by nutritional supplement and aquaculture industries. In this Perspective, we approximate baleen whale consumption of Antarctic krill before and after whaling to examine if the ecosystem can support both humans and whales as krill predators. Our back-of-the-envelope calculations suggest that current krill biomass cannot support both an expanding krill fishery and the recovery of whale populations to pre-whaling sizes, highlighting an emerging human-wildlife conflict. We then provide recommendations for enhancing sustainability in this region by reducing encounters with whales and bolstering the krill population.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Euphausiacea , Pesqueiros , Baleias , Animais , Regiões Antárticas , Humanos , Baleias/fisiologia , Mudança Climática , Biomassa , Oceanos e Mares
3.
Sci Data ; 11(1): 994, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266528

RESUMO

The Changjiang Estuary and adjacent East China Sea are well-known hypoxic aquatic environments. Eutrophication-driven hypoxia frequently occurs in coastal areas, posing a major threat to the ecological environment, including altering community structure and metabolic processes of marine organisms, and enhancing diversion of energy shunt into microbial communities. However, the responses of microbial communities and their metabolic pathways to coastal hypoxia remain poorly understood. Here, we studied the microbial communities collected from spatiotemporal samplings using metagenomic sequencing in the Changjiang Estuary and adjacent East China Sea. This generated 1.31 Tbp of metagenomics data, distributed across 103 samples corresponding to 8 vertical profiles. We further reported 1,559 metagenome-assembled genomes (MAGs), of which 508 were high-quality MAGs (Completeness > 90% and Contamination < 10%). Phylogenomic analysis classified them into 181 archaeal and 1,378 bacterial MAGs. These results provided a valuable metagenomic dataset available for further investigation of the effects of hypoxia on marine microorganisms.


Assuntos
Archaea , Metagenoma , China , Archaea/genética , Bactérias/genética , Bactérias/classificação , Oxigênio , Água do Mar/microbiologia , Filogenia , Metagenômica , Oceanos e Mares , Microbiota
4.
Sci Rep ; 14(1): 20688, 2024 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237565

RESUMO

Climate change is causing ocean warming (OW) and increasing the frequency, intensity, and duration of extreme weather events, including Marine Heat Waves (MHWs). Both OW and MHWs pose a significant threat to marine ecosystems and marine organisms, including oysters, oyster reefs and farmed oysters. We investigated the survival and growth of juveniles of two commercial species of oyster, the Sydney rock oyster, Saccostrea glomerata, and the Pacific oyster, Crassostrea gigas, to elevated seawater temperatures reflecting a moderate and an extreme MHW in context with recent MHWs and beyond. The survival and size of Pacific oysters to moderate MHWs (22-32 °C; 14 days) was greater than that for Sydney rock oysters (24-32 °C; 15 days). While survival and growth of both species was significantly impacted by extreme MHWs (29-38 °C; 5-6 days), Sydney rock oysters were found to survive greater temperatures compared to the Pacific oyster. Overall, this study found that Pacific oyster juveniles were more tolerant of a moderate MHW, while Sydney rock oyster juveniles were more resilient to extreme MHWs. These differences in thermal tolerance may have consequences for aquaculture and coexistence of both species in their intertidal and latitudinal distributions along the south-eastern Australian coastline.


Assuntos
Mudança Climática , Ostreidae , Animais , Ostreidae/crescimento & desenvolvimento , Ostreidae/fisiologia , Ecossistema , Oceanos e Mares , Temperatura Alta , Espécies Introduzidas , Água do Mar , Crassostrea/crescimento & desenvolvimento , Crassostrea/fisiologia
5.
Nat Commun ; 15(1): 7385, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231958

RESUMO

Photosynthesis is one of the most important biological processes on Earth, providing the main source of bioavailable energy, carbon, and oxygen via the use of sunlight. Despite this importance, the minimum light level sustaining photosynthesis and net growth of primary producers in the global ocean is still unknown. Here, we present measurements from the MOSAiC field campaign in the central Arctic Ocean that reveal the resumption of photosynthetic growth and algal biomass buildup under the ice pack at a daily average irradiance of not more than 0.04 ± 0.02 µmol photons m-2 s-1 in late March. This is at least one order of magnitude lower than previous estimates (0.3-5 µmol photons m-2 s-1) and near the theoretical minimum light requirement of photosynthesis (0.01 µmol photons m-2 s-1). Our findings are based on measurements of the temporal development of the under-ice light field and concurrent measurements of both chlorophyll a concentrations and potential net primary production underneath the sea ice at 86 °N. Such low light requirements suggest that euphotic zones where photosynthesis can occur in the world's oceans may extend further in depth and time, with major implications for global productivity estimates.


Assuntos
Biomassa , Microalgas , Fotossíntese , Luz Solar , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Regiões Árticas , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Camada de Gelo , Clorofila A/metabolismo , Clorofila/metabolismo , Luz , Oceanos e Mares
6.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1716-1724, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39235031

RESUMO

To investigate the differences on morphological growth patterns of statolith of Todarodes pacificus in the East China Sea during La Niña and normal years, we analyzed the samples of T. pacificus collected in the East China Sea by Chinese light purse seine fishery fleets from February to April in 2020 (a normal year) and 2021 (a La Niña year). The results showed that total statolith length (TSL), lateral dome length (LDL), wing length (WL), and maximum width (MW) could be used as characterization parameters to representing the morphological growth of statolith. The characterization parameters of statolith in T. pacificus differed significantly between different climate years and between different genders. The values of those characterization parameters of statolith were greater in normal year than those in La Niña year, which in both years were larger in females, except for TSL in males in La Niña year. The statolith growth of males were faster than that of females in different climate years. TSL, LDL, and WL increased faster in normal year, while MW increased faster in La Niña year. The relative size of statolith gradually slowed down with the growth of individuals.


Assuntos
Oceanos e Mares , China , Animais , Masculino , Feminino , Clima
7.
Nature ; 633(8029): 371-379, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39232160

RESUMO

The past two decades has witnessed a remarkable increase in the number of microbial genomes retrieved from marine systems1,2. However, it has remained challenging to translate this marine genomic diversity into biotechnological and biomedical applications3,4. Here we recovered 43,191 bacterial and archaeal genomes from publicly available marine metagenomes, encompassing a wide range of diversity with 138 distinct phyla, redefining the upper limit of marine bacterial genome size and revealing complex trade-offs between the occurrence of CRISPR-Cas systems and antibiotic resistance genes. In silico bioprospecting of these marine genomes led to the discovery of a novel CRISPR-Cas9 system, ten antimicrobial peptides, and three enzymes that degrade polyethylene terephthalate. In vitro experiments confirmed their effectiveness and efficacy. This work provides evidence that global-scale sequencing initiatives advance our understanding of how microbial diversity has evolved in the oceans and is maintained, and demonstrates how such initiatives can be sustainably exploited to advance biotechnology and biomedicine.


Assuntos
Organismos Aquáticos , Biodiversidade , Bioprospecção , Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Organismos Aquáticos/genética , Bactérias/genética , Bactérias/classificação , Archaea/genética , Archaea/classificação , Genoma Bacteriano/genética , Metagenoma , Genoma Arqueal/genética , Água do Mar/microbiologia , Filogenia , Oceanos e Mares
8.
Sci Total Environ ; 951: 175657, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39173769

RESUMO

The Southern Ocean surrounding Antarctica harbours some of the most pristine marine environments remaining, but is increasingly vulnerable to anthropogenic pressures, climate change, and invasion by non-native species. Monitoring biotic responses to cumulative impacts requires temporal and spatial baselines and ongoing monitoring - traditionally, this has been obtained by continuous plankton recorder (CPR) surveys. Here, we conduct one of the longest environmental DNA (eDNA) transects yet, spanning over 3000 nautical miles from Hobart (Australia) to Davis Station (Antarctica). We evaluate eDNA sampling strategies for long-term open ocean biomonitoring by comparing two water volume and filter pore size combinations: large (12 l with 20 µm) and small (2 l with 0.45 µm). Employing a broad COI metabarcoding assay, we found the large sample/pore combination was better suited to open ocean monitoring, detecting more target DNA and rare or low abundance species. Comparisons with four simultaneously conducted CPR transects revealed that eDNA detections were more diverse than CPR, with 7 (4 unique) and 4 (1 unique) phyla detections respectively. While both methods effectively delineated biodiversity patterns across the Southern Ocean, eDNA enables surveys in the presence of sea-ice where CPR cannot be conducted. Accordingly, 16 species of concern were detected along the transect using eDNA, notably in the Antarctic region (south of 60°S). These were largely attributed to hull biofouling, a recognized pathway for marine introductions into Antarctica. Given the vulnerability of Antarctic environments to potential introductions in a warming Southern Ocean, this work underscores the importance of continued biosecurity vigilance. We advocate integrating eDNA metabarcoding with long-term CPR surveys in the Southern Ocean, emphasising the urgency of its implementation. We anticipate temporal and spatial interweaving of CPR, eDNA, and biophysical data will generate a more nuanced picture of Southern Ocean ecosystems, with significant implications for the conservation and preservation of Antarctic ecosystems.


Assuntos
DNA Ambiental , Monitoramento Ambiental , Espécies Introduzidas , DNA Ambiental/análise , Regiões Antárticas , Monitoramento Ambiental/métodos , Biodiversidade , Oceanos e Mares , Organismos Aquáticos/genética , Biota , Mudança Climática , Austrália
9.
Sci Total Environ ; 951: 175699, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39179039

RESUMO

Whether shellfish mariculture should be included in the blue carbon profile as a strategy to combat climate change has been controversial. It is highly demanding not only to provide calibration quantitation, but also to provide an ecosystem-based mechanism. In this study, we chose mussel farms as a case study to evaluate their contributions to carbon sinks and their responses to sedimentary carbon fixation and sequestration. First, we quantified the air-sea CO2 flux in the mussel aquacultural zone and observed a weak carbon sink (-0.15 ± 0.07 mmol·m-2·d-1) during spring. Next, by analyzing the carbon composition in the sediment, we recorded a noticeable and unexpected increase in the sedimentary recalcitrant carbon (RC) content in the mussel farming case. To address this surprising sedimentary phenomenon, a long-term indoor experimental test was conducted to distinguish the consequences of mussel engagement with sedimentary RC. Our observational data support the idea that mussel engagement promotes accumulation of RC in sediments by 2.5-fold. Furthermore, the relative intensity of carboxylic-rich alicyclic molecule (CRAM)-like compounds (recalcitrant dissolved organic matter (RDOM)) increased by 451.4 % in the mussel-engaged sedimentary dissolved organic matter (DOM) in comparison to the initial state. Mussel engagement had a significantly positive effect on the abundance of sedimentary carbon-fixing genes. Therefore, we definitively conclude that mussel farming is blue carbon positive and propose a new alternative theory that mussel farming areas may have high carbon sequestration potential via an ecologically integrated "3 M" (microalgae-mussel-microbiota) consortium. The "mussel pump" accelerates carbon sequestration and enhances climate-related ecosystem services.


Assuntos
Sequestro de Carbono , Frutos do Mar , Animais , Mudança Climática , Monitoramento Ambiental , Aquicultura , Sedimentos Geológicos/química , Bivalves/metabolismo , Oceanos e Mares , Ecossistema , Carbono/análise
10.
Sci Total Environ ; 951: 175756, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39182788

RESUMO

This study explores the impact of global climate targets on sea surface temperatures and marine heatwaves (MHWs) in the Baltic Sea. We further evaluate potential adverse climate effects on the reproductive success of the western Baltic Sea (WBS) herring stock, which underwent a dramatic decline during the past two decades. For this, we use refined ensemble climate projections from the Coupled Model Intercomparison Project. For the WBS herring spawning ground, the number of MHW days nearly triples from 34 days/year in the historical period, to 102 days/year already under the optimistic 1.5 °C target of global climate warming (Paris, 2015) and further increases at a rate of 36 to 48 [days yr-1]/0.5 °C beyond the 1.5 °C target. The average MHW surface extent more than doubles in the 1.5 °C target from ~8 % to 21 % in this area. This study finds the phenological winter climate considerably altered in response to future global warming and more frequent MHW days in the WBS. The winter duration reduces by ~25 % already in the 2.0 °C target but by ~60 % in the 4.0 °C target compared to the historical climate. Winter inceptions/terminations occur successively later/earlier and the share of missed winters, i.e. winters unsuitable to support herring reproductive success, increases by up to ~70 %. Days with heat stress on the cardiac function of herring larvae will likewise increase and occur earlier in the year. Consequently, the early life cycle of herring will face more often winter conditions that were unprecedented during the historical past, and the risk for future reproductive failure will increase. However, our results reveal that abiotic disturbances for the marine ecosystem can be partly mitigated if global warming remains compliant with the 1.5 °C target.


Assuntos
Mudança Climática , Ecossistema , Reprodução , Animais , Peixes/fisiologia , Aquecimento Global , Calor Extremo , Oceanos e Mares , Estações do Ano
11.
Lab Chip ; 24(17): 4007-4027, 2024 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-39093009

RESUMO

Climate change presents a mounting challenge with profound impacts on ocean and marine ecosystems, leading to significant environmental, health, and economic consequences. Microfluidic technologies, with their unique capabilities, play a crucial role in understanding and addressing the marine aspects of the climate crisis. These technologies leverage quantitative, precise, and miniaturized formats that enhance the capabilities of sensing, imaging, and molecular tools. Such advancements are critical for monitoring marine systems under the stress of climate change and elucidating their response mechanisms. This review explores microfluidic technologies employed both in laboratory settings for testing and in the field for monitoring purposes. We delve into the application of miniaturized tools in evaluating ocean-based solutions to climate change, thus offering fresh perspectives from the solution-oriented end of the spectrum. We further aim to synthesize recent developments in technology around critical questions concerning the ocean environment and marine ecosystems, while discussing the potential for future innovations in microfluidic technology. The purpose of this review is to enhance understanding of current capabilities and assist researchers interested in mitigating the effects of climate change to identify new avenues for tackling the pressing issues posed by climate change in marine ecosystems.


Assuntos
Mudança Climática , Ecossistema , Oceanos e Mares , Técnicas Analíticas Microfluídicas/instrumentação , Dispositivos Lab-On-A-Chip
12.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-39105280

RESUMO

Microbial ecological functions are an emergent property of community composition. For some ecological functions, this link is strong enough that community composition can be used to estimate the quantity of an ecological function. Here, we apply random forest regression models to compare the predictive performance of community composition and environmental data for bacterial production (BP). Using data from two independent long-term ecological research sites-Palmer LTER in Antarctica and Station SPOT in California-we found that community composition was a strong predictor of BP. The top performing model achieved an R2 of 0.84 and RMSE of 20.2 pmol L-1 hr-1 on independent validation data, outperforming a model based solely on environmental data (R2 = 0.32, RMSE = 51.4 pmol L-1 hr-1). We then operationalized our top performing model, estimating BP for 346 Antarctic samples from 2015 to 2020 for which only community composition data were available. Our predictions resolved spatial trends in BP with significance in the Antarctic (P value = 1 × 10-4) and highlighted important taxa for BP across ocean basins. Our results demonstrate a strong link between microbial community composition and microbial ecosystem function and begin to leverage long-term datasets to construct models of BP based on microbial community composition.


Assuntos
Bactérias , Ecossistema , Microbiota , Regiões Antárticas , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , California , Água do Mar/microbiologia , Oceanos e Mares
13.
Environ Res ; 261: 119764, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39122162

RESUMO

Climate change and eutrophication are accelerating ocean deoxygenation, leading to a global decline in oxygen levels. The East China Sea, frequently experiencing deoxygenation events, harbors diverse microbial communities. However, the response of these communities to the changing deoxygenation dynamics remains poorly understood. Here, we explored the composition and function of microbial communities inhabiting seawaters of the Changjiang Estuary and offshore areas. Our findings suggested that neutral processes significantly influenced the assembly of these communities. The overall bacterial composition demonstrated remarkable high stability across the oxygen gradient. Salinity exhibited a significantly stronger correlation with bacterial community structure than dissolved oxygen. Both metagenomics and metaproteomics revealed that all of the samples exhibited similar functional community structures. Heterotrophic metabolism dominated these sites, as evidenced by a diverse array of transporters and metabolic enzymes for organic matter uptake and utilization, which constituted a significant portion of the expressed proteins. O2 was the primary electron acceptor in bacteria even under hypoxic conditions, evidenced by expression of low- and high-affinity cytochrome oxidases. Proteins associated with anaerobic processes, such as dissimilatory sulfite reductases, were virtually undetectable. Untargeted liquid chromatography with tandem mass spectrometry analysis of seawater samples revealed a diverse range of dissolved organic matter (DOM) components in amino acids, lipids, organic acids, peptides, and carbohydrates, potentially fueling dominant taxa growth. Despite fluctuations in the abundance of specific genera, the remarkable similarity in community structure, function, and DOM suggests that this ecosystem possesses robust adaptive mechanisms that buffer against abrupt changes, even below the well-defined hypoxic threshold in marine ecosystem.


Assuntos
Microbiota , Oxigênio , Água do Mar , Oxigênio/metabolismo , Oxigênio/análise , China , Água do Mar/microbiologia , Água do Mar/química , Proteômica , Bactérias/metabolismo , Bactérias/genética , Metagenômica , Oceanos e Mares , Multiômica
14.
Sci Total Environ ; 951: 175455, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39142412

RESUMO

The Baltic Sea is a severely disturbed marine ecosystem previously used as a dumping ground for chemical warfare agents (CWA), which are now known to enter its food web. We have performed a modelling exercise using a calibrated and validated Central Baltic Ecopath with Ecosim (EwE) model to recreate the potential environmental pathways of the infamous Clark I (diphenylchlorarsine). Observations from modelling timestamps covering recent times correspond with in situ detections in sediments and Atlantic cod (Gadus morhua). Under applied modelling conditions and scenarios, there is an active transfer of Clark I from sediments through the Baltic Sea food-web. According to our results, Clark I bioaccumulates within the Baltic Sea food web exclusively throughout the detritus-based food chain. The EwE model for the Central Baltic Sea also allows the simulation of changes in the food web under multiple anthropogenic stressors and management efforts, including recommendations from the Helsinki Commission Baltic Sea Action Plan (HELCOM BSAP). Among all investigated scentarios and factors, the commercial fishing is the most impactful on Clark I accumulation rate and contamination transfer within the Baltic Sea food web. The study indicates the need to extend the existing monitoring approach by adding additional species representing a broader range of ecological niches and tiers within the food chains. From the environmental perspective, the remediation of Chemical Weapons by removal should be considered as part of the integrated management of the Baltic Sea.


Assuntos
Substâncias para a Guerra Química , Monitoramento Ambiental , Cadeia Alimentar , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Substâncias para a Guerra Química/análise , Animais , Clima , Oceanos e Mares , Gadus morhua , Países Bálticos
15.
Sci Rep ; 14(1): 17932, 2024 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095508

RESUMO

The predation-driven Mesozoic marine revolution (MMR) is believed to have induced a dramatic change in the bathymetric distribution of many shallow marine invertebrates since the late Mesozoic. For instance, stalked crinoids - isocrinids (Isocrinida) have undergone a striking decline in shallow-sea environments and today they are restricted to deep-sea settings (below 100 m depth). However, the timing and synchronicity of this shift are a matter of debate. A delayed onset of MMR and/or shifts to a retrograde, low-predation community structure during the Paleogene in the Southern Ocean were invoked. In particular, recent data from the Southern Hemisphere suggest that the environmental restriction of isocrinids to the deep-sea settings may have occurred at the end of the Eocene around Antarctica and Australia, and later in the early Miocene in New Zealand. Here, we report the anomalous occurrence of the isocrinids in shallow nearshore marine facies from the middle Miocene of Poland (Northern Hemisphere, Central Paratethys). Thus, globally, this is the youngest record of shallow-sea stalked crinoids. This finding suggests that some relict stalked crinoids may have been able to live in the shallow-water environments by the middle Miocene, and further confirms that the depth restriction of isocrinids to offshore environments was not synchronous on a global scale.


Assuntos
Organismos Aquáticos , Fósseis , Animais , Oceanos e Mares , Evolução Biológica , Paleontologia
16.
Curr Biol ; 34(15): R734-R736, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39106831

RESUMO

Fluid dynamics modeling of an Ediacaran ecosystem illustrates an important positive feedback loop between early multicellular organisms and environmental water flow. Early communities thus helped to chemically shape new environments where oxygen-dependent organisms could thrive.


Assuntos
Oceanos e Mares , Ecossistema , Fósseis , Animais , Paleontologia , Movimentos da Água
17.
Sensors (Basel) ; 24(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39123874

RESUMO

The broadband scientific echosounder is considered to have great potential for zooplankton monitoring. In this study, two common types of zooplankton in the South China Sea, Rhopilema hispidum and Acetes chinensis, were continuously monitored using a broadband scientific echosounder. The results revealed distinct volume scattering strength (SV) spectral characteristics between the echoes of R. hispidum and A. chinensis. Meanwhile, echoes of R. hispidum and A. chinensis were classified using the k-means clustering algorithm, achieving an 83.4% accuracy rate. The SV value at a nominal frequency of R. hispidum changes more sharply than that of A. chinensis, suggesting that the density of R. hispidum changes more dramatically. This study demonstrates the advantages of monitoring R. hispidum and A. chinensis outbreaks with a broadband scientific echosounder.


Assuntos
Acústica , Zooplâncton , Animais , Zooplâncton/fisiologia , China , Oceanos e Mares , Algoritmos , Monitoramento Ambiental/métodos
18.
Nature ; 632(8024): 320-326, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39112620

RESUMO

Mass coral bleaching on the Great Barrier Reef (GBR) in Australia between 2016 and 2024 was driven by high sea surface temperatures (SST)1. The likelihood of temperature-induced bleaching is a key determinant for the future threat status of the GBR2, but the long-term context of recent temperatures in the region is unclear. Here we show that the January-March Coral Sea heat extremes in 2024, 2017 and 2020 (in order of descending mean SST anomalies) were the warmest in 400 years, exceeding the 95th-percentile uncertainty limit of our reconstructed pre-1900 maximum. The 2016, 2004 and 2022 events were the next warmest, exceeding the 90th-percentile limit. Climate model analysis confirms that human influence on the climate system is responsible for the rapid warming in recent decades. This attribution, together with the recent ocean temperature extremes, post-1900 warming trend and observed mass coral bleaching, shows that the existential threat to the GBR ecosystem from anthropogenic climate change is now realized. Without urgent intervention, the iconic GBR is at risk of experiencing temperatures conducive to near-annual coral bleaching3, with negative consequences for biodiversity and ecosystems services. A continuation on the current trajectory would further threaten the ecological function4 and outstanding universal value5 of one of Earth's greatest natural wonders.


Assuntos
Antozoários , Efeitos Antropogênicos , Recifes de Corais , Aquecimento Global , Temperatura Alta , Oceanos e Mares , Animais , Antozoários/fisiologia , Austrália , Modelos Climáticos , Extinção Biológica , Aquecimento Global/história , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Atividades Humanas/história , Oceano Pacífico , Água do Mar/análise
19.
Euro Surveill ; 29(32)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39119721

RESUMO

BackgroundThe Vibrio genus comprises several bacterial species present in the Baltic Sea region (BSR), which are known to cause human infections.AimTo provide a comprehensive retrospective analysis of Vibrio-induced infections in the BSR from 1994 to 2021, focusing on the 'big four' Vibrio species - V. alginolyticus, V. cholerae non-O1/O139, V. parahaemolyticus and V. vulnificus - in eight European countries (Denmark, Estonia, Finland, Germany, Latvia, Lithuania, Poland and Sweden) bordering the Baltic Sea.MethodsOur analysis includes data on infections, Vibrio species distribution in coastal waters and environmental data received from national health agencies or extracted from scientific literature and online databases. A redundancy analysis was performed to determine the potential impact of several independent variables, such as sea surface temperature, salinity, the number of designated coastal beaches and year, on the Vibrio infection rate.ResultsFor BSR countries conducting surveillance, we observed an exponential increase in total Vibrio infections (n = 1,553) across the region over time. In Sweden and Germany, total numbers of Vibrio spp. and infections caused by V. alginolyticus and V. parahaemolyticus positively correlate with increasing sea surface temperature. Salinity emerged as a critical driver of Vibrio spp. distribution and abundance. Furthermore, our proposed statistical model reveals 12 to 20 unreported cases in Lithuania and Poland, respectively, countries with no surveillance.ConclusionsThere are discrepancies in Vibrio surveillance and monitoring among countries, emphasising the need for comprehensive monitoring programmes of these pathogens to protect human health, particularly in the context of climate change.


Assuntos
Vibrioses , Vibrio , Humanos , Estudos Retrospectivos , Vibrioses/epidemiologia , Vibrioses/microbiologia , Vibrio/isolamento & purificação , Vibrio/classificação , Países Bálticos/epidemiologia , Água do Mar/microbiologia , Europa (Continente)/epidemiologia , Oceanos e Mares
20.
Microbiologyopen ; 13(4): e1428, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39119822

RESUMO

Interactions between phytoplankton and heterotrophic bacteria significantly influence the cycling of organic carbon in the ocean, with many of these interactions occurring at the micrometer scale. We explored potential associations between specific phytoplankton and bacteria in two size fractions, 0.8-3 µm and larger than 3 µm, at three naturally iron-fertilized stations and one high nutrient low chlorophyll station in the Southern Ocean. The composition of phytoplankton and bacterial communities was determined by sequencing the rbcL gene and 16S rRNA gene from DNA and RNA extracts, which represent presence and potential activity, respectively. Diatoms, particularly Thalassiosira, contributed significantly to the DNA sequences in the larger size fractions, while haptophytes were dominant in the smaller size fraction. Correlation analysis between the most abundant phytoplankton and bacterial operational taxonomic units revealed strong correlations between Phaeocystis and picoeukaryotes with SAR11, SAR116, Magnetospira, and Planktomarina. In contrast, most Thalassiosira operational taxonomic units showed the highest correlations with Polaribacter, Sulfitobacteria, Erythrobacter, and Sphingobium, while Fragilariopsis, Haslea, and Thalassionema were correlated with OM60, Fluviicola, and Ulvibacter. Our in-situ observations suggest distinct associations between phytoplankton and bacterial taxa, which could play crucial roles in nutrient cycling in the Southern Ocean.


Assuntos
Bactérias , Diatomáceas , Oceanos e Mares , RNA Ribossômico 16S , Água do Mar , Diatomáceas/classificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Haptófitas/classificação , Haptófitas/crescimento & desenvolvimento , Fitoplâncton/classificação , Fitoplâncton/crescimento & desenvolvimento , Filogenia , DNA Bacteriano/genética , Análise de Sequência de DNA , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA