Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.935
Filtrar
1.
Nat Commun ; 11(1): 3845, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737295

RESUMO

Many experimental studies suggest that animals can rapidly learn to identify odors and predict the rewards associated with them. However, the underlying plasticity mechanism remains elusive. In particular, it is not clear how olfactory circuits achieve rapid, data efficient learning with local synaptic plasticity. Here, we formulate olfactory learning as a Bayesian optimization process, then map the learning rules into a computational model of the mammalian olfactory circuit. The model is capable of odor identification from a small number of observations, while reproducing cellular plasticity commonly observed during development. We extend the framework to reward-based learning, and show that the circuit is able to rapidly learn odor-reward association with a plausible neural architecture. These results deepen our theoretical understanding of unsupervised learning in the mammalian brain.


Assuntos
Condicionamento Clássico/fisiologia , Rede Nervosa , Plasticidade Neuronal/fisiologia , Condutos Olfatórios/fisiologia , Percepção Olfatória/fisiologia , Olfato/fisiologia , Animais , Teorema de Bayes , Simulação por Computador , Mamíferos , Neurônios/citologia , Neurônios/fisiologia , Odorantes/análise , Bulbo Olfatório/fisiologia , Recompensa
2.
PLoS One ; 15(8): e0236660, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32785239

RESUMO

Squamate reptiles (snakes and lizards) rely on chemical cues from conspecifics to search the environment for potential mates. How such cues are used by invasive species to facilitate reproduction, especially seasonally, is a key question that can inform management practices. The Argentine black and white tegu (Salvator merianae) is an invasive reptile species in south Florida threatening native fauna in biodiverse regions such as Everglades National Park. While some information exists on the reproductive ecology of this species in its native range in South America, the chemical ecology of S. merianae is unclear especially in its invasive range. By testing both male (n = 7) and female (n = 7) tegus in a Y-maze apparatus, we assessed if either sex follows chemical trails left by conspecifics and if behaviors were sex- or season-specific. We conducted three types of trials where conspecifics created odor trails: Male-only (male scent only in base and one arm of Y), Female-only, and Male vs. female. Males did not preferentially follow scent trails from either sex, but they did differentially investigate conspecific scent from both sexes. Seasonally, males showed increased rates of chemosensory sampling (rates of tongue-flicking) during the spring (breeding season; March-May) compared to fall (non-breeding season; September-November). Males also had reduced turning and pausing behavior while trailing in the spring. Female tegus exhibited stronger conspecific trailing abilities than males, following both male and female scent trails, and they explored the maze less before making an arm choice. Females also investigated the scent trails intensely compared to males (more passes in scented arms, more time with scent trails). Our results demonstrate for the first time that females of an invasive reptile species can follow conspecific scent trails. Given the strong female responses to odor, sex-specific targeting of tegus via application of a conspecific chemical cue in traps could enhance removal rates of females during the breeding season.


Assuntos
Lagartos/fisiologia , Casamento , Comportamento Sexual Animal/fisiologia , Serpentes/fisiologia , Animais , Ecologia , Feminino , Florida , Humanos , Espécies Introduzidas , Masculino , Odorantes/análise , Reprodução/fisiologia , América do Sul
3.
PLoS One ; 15(8): e0237565, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32791517

RESUMO

OBJECTIVES: The aim of the study was to compare olfactory functions between unipolar and bipolar patients according to the thymic states (depressed, euthymic) and determine specific olfactory variations between these different states. METHODS: We recruited 176 participants in 5 groups: depressed bipolar (DB), euthymic bipolar (EB), depressed unipolar (DU), euthymic unipolar (EU), and controls (HC). They were assessed using the Sniffin' sticks threshold and identification tests. Odors' pleasantness, intensity, familiarity and emotion were assessed. Clinical evaluation explored dimensions of depression, mania, anxiety, and anhedonia. RESULTS: Smell identification was lower in DU compared to EU patients and controls. Pleasant odors received lower hedonic rating in DU and DB patients compared to EU and EB patients respectively. Negative correlation was found in EB patients between hedonic rating and social anhedonia. In EU patients hedonic rating was negatively correlated with anxiety-state, and anhedonia. CONCLUSIONS: Odor identification of pleasant odors is altered in both depressive states. Only unipolar patients would recover a regular identification level in symptomatic remission, while bipolar subjects would keep their deficits. Hedonic rating is lower in bipolar depressed patients compared to unipolar ones, and these deficits improve after remission. Hedonic rating of pleasant odors may distinguish bipolar depression from unipolar depression during periods of decompensation and phases of remission. Olfactory assessment may be useful to screen unipolar and bipolar depression, leading to possible future sensory markers in mood disorders.


Assuntos
Biomarcadores/análise , Transtorno Bipolar/classificação , Transtorno Bipolar/complicações , Depressão/diagnóstico , Emoções/fisiologia , Odorantes/análise , Olfato/fisiologia , Adulto , Depressão/etiologia , Feminino , Humanos , Masculino
4.
PLoS One ; 15(8): e0237881, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32817641

RESUMO

At present, the identification of honeysuckle aroma depends on experienced tasters, which results in inconsistencies due to human error. The key odorants have the potential to distinguish the different species and evaluate the quality of honeysuckle. Hence, in this study, a more scientific approach was applied to distinguish various honeysuckles. The volatile compounds of different species and parts of honeysuckle were separately extracted by headspace-solid phase microextraction (HS-SPME) and solvent assisted flavor evaporation (SAFE). Compounds with greater volatility such as aldehydes, limonene, γ-terpinene, and terpinolene were preferentially extracted by HS-SPME. As a complementary extraction method to HS-SPME, SAFE was found to recover comparatively more polar compounds such as eugenol, decanoic acid, and vanillin. Subsequently, key odorants with the highest flavour dilution (FD) factors were detected by aroma extract dilution analysis (AEDA). These were benzaldehyde, 4-ethylphenol, decanoic acid, vanillin, 3-methyl-2-butenal, and ß-ionone in honeysuckle flowers and γ-octalactone, 4-ethyl phenol, and vanillin in honeysuckle stem. Finally, principal component analysis (PCA) was conducted to analyze not only the key odorants of species and parts of honeysuckle but also their different origins. The results of PCA suggested that the species of honeysuckle contributed much more to variations in aroma rather than their origins. In conclusion, the application of the key odorants combined with PCA was demonstrated as a valid approach to differentiate species, origins, and parts of honeysuckle.


Assuntos
Lonicera/química , Odorantes/análise , Olfatometria/métodos , Microextração em Fase Sólida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Lonicera/classificação , Lonicera/metabolismo , Solventes/química
5.
PLoS One ; 15(8): e0237756, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32797072

RESUMO

Mammalian olfactory receptor neurons in the nasal cavity are stimulated by odorants carried by the inhaled air and their activation is therefore tied to and driven by the breathing or sniffing frequency. Sniffing frequency can be deliberately modulated to alter how odorants stimulate olfactory receptor neurons, giving the animal control over the frequency of odorant exposure to potentially aid odorant detection and discrimination. We monitored sniffing behaviors and odorant discrimination ability of freely-moving mice while they sampled either decreasing concentrations of target odorants or sampled a fixed target odorant concentration in the presence of a background of increasing odorant concentrations, using a Go-NoGo behavioral paradigm. This allowed us to ask how mice alter their odorant sampling duration and sampling (sniffing) frequency depending on the demands of the task and its difficulty. Mice showed an anticipatory increase in sniffing rate prior to odorant exposure and chose to sample for longer durations when exposed to odorants as compared to the solvent control odorant. Similarly, mice also took more odorant sampling sniffs when exposed to target odorants compared to the solvent control odorant. In general, odorant sampling strategies became more similar the more difficult the task was, e.g. the lower the target odorant concentration or the lower the target odorant contrast relative to the background odorant, suggesting that sniffing patterns are not preset, but are dynamically modulated by the particular task and its difficulty.


Assuntos
Camundongos/fisiologia , Odorantes , Percepção Olfatória , Olfato , Animais , Comportamento Animal , Masculino , Odorantes/análise , Bulbo Olfatório/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Respiração
6.
J Chromatogr A ; 1625: 461267, 2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32709320

RESUMO

We describe the design and performance evaluation of a portable gas chromatograph suitable for the analysis of volatile organic and odorous compounds at trace levels. The system comprises a carbon nanotube sponge preconcentrator, an electronic pressure control (EPC) unit, a temperature-programmable column module, and a fast-response photoionization detector. A built-in tablet computer controls instrumental parameters and chromatogram display functions. The compact GC with dimensions of 35 cm (l) × 26 cm (w) × 15 cm (h) is self-contained, weighing less than 5 kg without a battery pack, and uses no auxiliary compressed gases. Our design has three main advantages over conventional portable GCs: recharging configuration of ambient air as the carrier gas using a miniature diaphragm pump, precise control of column flow by the built-in canister and EPC system, and rapid thermal desorption of the preconcentrator facilitated by intrinsic resistivity of the carbon nanotube sponge. A 30 m, 0.28 mm I.D. capillary column operated at a head pressure of 14 psi provided a peak capacity of 55 for a 10 min isothermal analysis. The temperature-programmability feature could decrease the analysis time of less than 5 min for vapor mixture of benzene, toluene, ethylbenzene, and o-xylene. More than a 100-fold increase in sensitivity by preconcentrating a sample adsorption volume of 90 mL resulted in improved detection limits of 0.13 (benzene), 0.20 (toluene), 0.23 (ethylbenzene), and 0.28 (o-xylene) ppb (v/v). Our instrument displayed good stability and reproducibility of retention times (< 0.14% RSD) and intensities (< 4.5% RSD) for continuous measurements using the preconcentrator over 10 h. Thus, continuous and on-site determinations of trace volatile organic compounds in air samples with this instrument appear feasible.


Assuntos
Poluentes Atmosféricos/análise , Cromatografia Gasosa/métodos , Sistemas Computacionais , Hidrocarbonetos Aromáticos/análise , Compostos Orgânicos Voláteis/análise , Calibragem , Gases/análise , Limite de Detecção , Nanotubos de Carbono/química , Odorantes/análise , Pressão , Reprodutibilidade dos Testes , Temperatura , Fatores de Tempo
7.
Water Sci Technol ; 81(7): 1445-1451, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32616696

RESUMO

Odorous emissions from area sources at wastewater treatment plants have become an environmental issue due to negative impacts on neighboring communities causing annoyance. Enclosure devices (such as dynamic flux chambers) have been used as direct methods to estimate area source emission rates from liquid-gas surfaces. Previously, model compounds have provided information about the internal mass transfer behavior of these sampling devices and the parameters estimated for certain model compounds that can be adapted for other compounds with similar liquid-gas partitioning properties. Acetic acid and butyric acid (both gas-phase-controlled compounds) were compared in order to assess the validity of adapting results from one compound to another. Mass transfer parameters for acetic acid and butyric acid were determined for a USEPA flux hood using a sweep air flow rate of 5 L/min. Mass transfer rates estimated for butyric acid, using the mass transfer parameters of acetic acid, were of the same order of magnitude as the experimental butyric acid mass transfer rates.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Odorantes/análise , Estados Unidos , United States Environmental Protection Agency , Águas Residuárias
8.
Waste Manag ; 115: 36-46, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32717550

RESUMO

Despite the growing interest of the automotive industry in using recycled polymers, their undesired odor is limiting their application in vehicles' interior components. To get deeper insights into its causes, this study aimed at characterizing the odor of post-consumer and recycled automotive polypropylene with different contents of talc and an anti-fogging additive. Samples were evaluated by different sensory methods currently applied by the automotive industry (GMW 3205 and VDA 270), which confirmed, that they are not feasible for reuse in interior automotive applications. As these odor evaluations are usually performed by non-trained panelists and do not allow a detailed description of the samples' single odor qualities, sensory evaluation according to ISO 13299 was performed by trained panelists. Samples showed medium-high odor intensities rated from 5.1 to 5.6, and a general dislike of the odor with hedonic ratings from 1.8 to 2.6 (scale 0-10). Their odor profiles correlated well with the odorants identified by chemo-analytical characterization using gas chromatography-olfactometry (GC-O) and two-dimensional GC-O coupled with mass spectrometry (2D-GC-MS/O). An array of odorants with benzene and phenolic structures were identified as potential contributors to the samples' overall smell and are likely to originate from degradation of additives commonly used in automotive components. While the addition of talc or anti-fogging additive did not significantly improve the odor of the samples, the description of the samples' smell and the identification of odor-active compounds related to it allow the development of avoidance strategies for the manufacturing of neutral smelling products intended for vehicles' interior applications.


Assuntos
Odorantes/análise , Polipropilenos , Cromatografia Gasosa-Espectrometria de Massas , Olfatometria , Olfato
9.
Food Chem ; 332: 127426, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32619948

RESUMO

A selected Pichia fermentans strain was simultaneously and sequentially inoculated in synthetic and real juice with S. cerevisiae strains of different antagonistic activities in a ratio 1:1 to observe the correlation between varietal odorants and glycosidase activities. Fermentations using pure S. cerevisiae strains were used for comparison. Yeast biomass and glycosidase activities were monitored, varietal odorants were detected using HS-SPME-GC/MS during fermentation. The final wine aroma attributes were analyzed by trained panelists. Results showed that co-inoculation with high antagonistic S. cerevisiae resulted in higher glycosidase activities than others. Pearson correlation analysis indicated that yeast biomass was positively related to glycosidase activities during fermentation. The increase in glycosidase activities was the main reason for the higher production of terpenes and C13-norisoprenoids, and for the lower C6 compound content, which lead to superior fruity and floral aromas in the final wine samples of the high antagonistic S. cerevisiae group.


Assuntos
Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Pichia/metabolismo , Saccharomyces cerevisiae/metabolismo , Vinho/análise , Fermentação , Frutas/química , Sucos de Frutas e Vegetais/análise , Sucos de Frutas e Vegetais/microbiologia , Cromatografia Gasosa-Espectrometria de Massas , Norisoprenoides/análise , Norisoprenoides/metabolismo , Odorantes/análise , Pichia/enzimologia , Pichia/crescimento & desenvolvimento , Terpenos/análise , Terpenos/metabolismo
10.
BMC Infect Dis ; 20(1): 536, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703188

RESUMO

BACKGROUND: As the COVID-19 pandemic continues to spread, early, ideally real-time, identification of SARS-CoV-2 infected individuals is pivotal in interrupting infection chains. Volatile organic compounds produced during respiratory infections can cause specific scent imprints, which can be detected by trained dogs with a high rate of precision. METHODS: Eight detection dogs were trained for 1 week to detect saliva or tracheobronchial secretions of SARS-CoV-2 infected patients in a randomised, double-blinded and controlled study. RESULTS: The dogs were able to discriminate between samples of infected (positive) and non-infected (negative) individuals with average diagnostic sensitivity of 82.63% (95% confidence interval [CI]: 82.02-83.24%) and specificity of 96.35% (95% CI: 96.31-96.39%). During the presentation of 1012 randomised samples, the dogs achieved an overall average detection rate of 94% (±3.4%) with 157 correct indications of positive, 792 correct rejections of negative, 33 incorrect indications of negative or incorrect rejections of 30 positive sample presentations. CONCLUSIONS: These preliminary findings indicate that trained detection dogs can identify respiratory secretion samples from hospitalised and clinically diseased SARS-CoV-2 infected individuals by discriminating between samples from SARS-CoV-2 infected patients and negative controls. This data may form the basis for the reliable screening method of SARS-CoV-2 infected people.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Programas de Rastreamento/métodos , Odorantes/análise , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia , Animais , Brônquios/química , Brônquios/virologia , Estudos de Casos e Controles , Cães , Método Duplo-Cego , Humanos , Pandemias/prevenção & controle , Projetos Piloto , Saliva/química , Saliva/virologia , Sensibilidade e Especificidade
11.
PLoS One ; 15(7): e0233250, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32730274

RESUMO

Intelligent systems in nature like the mammalian nervous system benefit from adaptable inputs that can tailor response profiles to their environment that varies in time and space. Study of such plasticity, in all its manifestations, forms a pillar of classical and modern neuroscience. This study is concerned with a novel form of plasticity in the olfactory system referred to as induction. In this process, subjects unable to smell a particular odor, or unable to differentiate similar odors, gain these abilities through mere exposure to the odor(s) over time without the need for attention or feedback (reward or punishment). However, few studies of induction have rigorously documented changes in olfactory threshold for the odor(s) used for "enrichment." We trained 36 CD-1 mice in an operant-olfactometer (go/no go task) to discriminate a mixture of stereoisomers from a lone stereoisomer using two enantiomeric pairs: limonene and carvone. We also measured each subject's ability to detect one of the stereoisomers of each odor. In order to assess the effect of odor enrichment on enantiomer discrimination and detection, mice were exposed to both stereoisomers of limonene or carvone for 2 to 12 weeks. Enrichment was effected by adulterating a subject's food (passive enrichment) with one pair of enantiomers or by exposing a subject to the enantiomers in daily operant discrimination testing (active enrichment). We found that neither form of enrichment altered discrimination nor detection. And this result pertained using either within-subject or between-subject experimental designs. Unexpectedly, our threshold measurements were among the lowest ever recorded for any species, which we attributed to the relatively greater amount of practice (task replication) we allowed our mice compared to other reports. Interestingly, discrimination thresholds were no greater (limonene) or only modestly greater (carvone) from detection thresholds suggesting chiral-specific olfactory receptors determine thresholds for these compounds. The super-sensitivity of mice, shown in this study, to the limonene and carvone enantiomers, compared to the much lesser acuity of humans for these compounds, reported elsewhere, may resolve the mystery of why the former group with four-fold more olfactory receptors have tended, in previous studies, to have similar thresholds to the latter group. Finally, our results are consistent with the conclusion that supervised-perceptual learning i.e. that involving repeated feedback for correct and incorrect decisions, rather than induction, is the form of plasticity that allows animals to fully realize the capabilities of their olfactory system.


Assuntos
Odorantes/análise , Olfatometria , Percepção Olfatória/efeitos dos fármacos , Animais , Limoneno/química , Limoneno/farmacologia , Camundongos , Volatilização
12.
PLoS One ; 15(7): e0236468, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32730278

RESUMO

The affective appraisal of odors is known to depend on their intensity (I), familiarity (F), detection threshold (T), and on the baseline affective state of the observer. However, the exact nature of these relations is still largely unknown. We therefore performed an observer experiment in which participants (N = 52) smelled 40 different odors (varying widely in hedonic valence) and reported the intensity, familiarity and their affective appraisal (valence and arousal: V and A) for each odor. Also, we measured the baseline affective state (valence and arousal: BV and BA) and odor detection threshold of the participants. Analyzing the results for pleasant and unpleasant odors separately, we obtained two models through network analysis. Several relations that have previously been reported in the literature also emerge in both models (the relations between F and I, F and V, I and A; I and V, BV and T). However, there are also relations that do not emerge (between BA and V, BV and I, and T and I) or that appear with a different polarity (the relation between F and A for pleasant odors). Intensity (I) has the largest impact on the affective appraisal of unpleasant odors, while F significantly contributes to the appraisal of pleasant odors. T is only affected by BV and has no effect on other variables. This study is a first step towards an integral study of the affective appraisal of odors through network analysis. Future studies should also include other factors that are known to influence odor appraisal, such as age, gender, personality, and culture.


Assuntos
Modelos Biológicos , Redes Neurais de Computação , Odorantes/análise , Percepção Olfatória/fisiologia , Nível de Alerta , Intervalos de Confiança , Feminino , Humanos , Masculino , Estimulação Física , Adulto Jovem
13.
Proc Natl Acad Sci U S A ; 117(28): 16606-16615, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601210

RESUMO

Neural network function requires an appropriate balance of excitation and inhibition to be maintained by homeostatic plasticity. However, little is known about homeostatic mechanisms in the intact central brain in vivo. Here, we study homeostatic plasticity in the Drosophila mushroom body, where Kenyon cells receive feedforward excitation from olfactory projection neurons and feedback inhibition from the anterior paired lateral neuron (APL). We show that prolonged (4-d) artificial activation of the inhibitory APL causes increased Kenyon cell odor responses after the artificial inhibition is removed, suggesting that the mushroom body compensates for excess inhibition. In contrast, there is little compensation for lack of inhibition (blockade of APL). The compensation occurs through a combination of increased excitation of Kenyon cells and decreased activation of APL, with differing relative contributions for different Kenyon cell subtypes. Our findings establish the fly mushroom body as a model for homeostatic plasticity in vivo.


Assuntos
Drosophila/fisiologia , Corpos Pedunculados/fisiologia , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Homeostase , Neurônios/fisiologia , Odorantes/análise , Olfato
14.
Food Chem ; 333: 127450, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32663749

RESUMO

The aged wine spirit is a beverage with great aromatic complexity. Their volatile compounds with odorant power coming from the distillate and from the wood used in its ageing, and the interactions that take place in the process, enhanced by oxygen, all contribute to this complexity. Due to time and cost inherent of ageing wine spirits in wooden barrels, research has sought to develop more sustainable alternatives to do it. In this context, the present study compares, the effect of traditional (wooden barrel) and alternative system (stainless steel tank with dipped staves and micro-oxygenation), on the odorant and sensory profile of a wine spirit, using Limousin oak and chestnut wood, after 12 months of ageing. The results suggest that the ageing process is accelerated by the alternative ageing technology and the chestnut wood, and the corresponding wine spirits presented characteristics of greater sensory evolution and strong wood compounds extraction.


Assuntos
Indústria de Processamento de Alimentos/métodos , Odorantes , Vinho , Madeira , Adulto , Aesculus , Idoso , Feminino , Indústria de Processamento de Alimentos/instrumentação , Humanos , Masculino , Pessoa de Meia-Idade , Odorantes/análise , Oxigênio/química , Quercus , Aço Inoxidável , Fatores de Tempo , Compostos Orgânicos Voláteis/análise , Vinho/análise
15.
Food Chem ; 332: 127467, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32663755

RESUMO

The mood pyramid of cocoa, which was previously proposed as a new concept, consists of four levels (flavan-3-ols, methylxanthines, minor compounds and orosensory properties). Roasting is a crucial process for flavor development in cocoa but is likely to have a negative impact on the phytochemicals. We investigated the effect of roasting time (10-50 min) and temperature (110-160 °C) on the potential mood-enhancing compounds corresponding to the distinct mood pyramid levels. Phytochemicals were analyzed using UPLC-HRMS, while the flavor was mapped via aroma (HS-SPME-GC-MS) and generic descriptive analysis (trained panel). Results revealed that roasting at 130 °C for 30 min did not significantly affect the levels of epicatechin, procyanidin B2 and theobromine, while salsolinol significantly increased. Moreover, bitterness and astringency were reduced and the desired cocoa flavor was developed. Thus, through selection of appropriate roasting time and temperature conditions phytochemicals of interest could be retained without comprising the flavor.


Assuntos
Cacau/química , Culinária/métodos , Sementes/química , Biflavonoides/química , Catequina/química , Aromatizantes/química , Cromatografia Gasosa-Espectrometria de Massas , Temperatura Alta , Humanos , Odorantes/análise , Polifenóis/química , Proantocianidinas/química , Paladar
16.
Nature ; 583(7815): 253-258, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32612230

RESUMO

The cortex organizes sensory information to enable discrimination and generalization1-4. As systematic representations of chemical odour space have not yet been described in the olfactory cortex, it remains unclear how odour relationships are encoded to place chemically distinct but similar odours, such as lemon and orange, into perceptual categories, such as citrus5-7. Here, by combining chemoinformatics and multiphoton imaging in the mouse, we show that both the piriform cortex and its sensory inputs from the olfactory bulb represent chemical odour relationships through correlated patterns of activity. However, cortical odour codes differ from those in the bulb: cortex more strongly clusters together representations for related odours, selectively rewrites pairwise odour relationships, and better matches odour perception. The bulb-to-cortex transformation depends on the associative network originating within the piriform cortex, and can be reshaped by passive odour experience. Thus, cortex actively builds a structured representation of chemical odour space that highlights odour relationships; this representation is similar across individuals but remains plastic, suggesting a means through which the olfactory system can assign related odour cues to common and yet personalized percepts.


Assuntos
Odorantes/análise , Córtex Olfatório/anatomia & histologia , Córtex Olfatório/fisiologia , Condutos Olfatórios , Compostos Orgânicos/análise , Compostos Orgânicos/química , Animais , Masculino , Camundongos , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Córtex Olfatório/citologia , Percepção Olfatória/fisiologia , Olfato
17.
Chemosphere ; 257: 127174, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32497839

RESUMO

Off-flavor events in tap water have been reported from various regions of Japan. Fishy smell is the second most common off-flavor in Japan and Uroglena americana (U. americana) is known to be a major contributor to the smell. However, the causative compound of the smell it produces still remains unrevealed to the best of our knowledge. In this study, an exploration of odorous aldehydes and ketones originating from U. americana was performed with a view to discovering a possible candidate substance of causative compounds. Environmental samples containing U. americana colony and cultured media with U. americana were analyzed with two high resolution mass spectrometers, one of them is coupled with liquid chromatography (LC-HRMS), and the other is with gas chromatography and a sniffing port (GC-O-HRMS). Multivariate analyses (MVA) were utilized to explore a compound that is likely to be odorous aldehydes or ketones with a reduced time of exploration. A combination of LC-HRMS and MVA resulted in the selection of one candidate substance and its formula was determined to be C13H20O3 on the basis of its accurate mass and natural isotopic pattern. The candidate substance underwent GC-O-HRMS analyses and milk-like smell was detected at around its retention time. Although the detected smell was different from fishy smell, it is expected that the fishy smell is caused by multiple compounds to which the candidate substance belongs. First generation product ion spectra of the candidate substance suggested that it contains a hydroxyl group, a cyclohexene ring, and a ketone moiety.


Assuntos
Aldeídos/análise , Chrysophyta/fisiologia , Cetonas/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Japão , Espectrometria de Massas , Análise Multivariada , Odorantes/análise , Olfatometria/métodos , Olfato , Paladar
18.
PLoS One ; 15(6): e0234688, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32559255

RESUMO

There have been recent advances in predicting odor characteristics using molecular structure parameters of chemicals. Although the molecular structure parameters are available for each chemical, they cannot be used for chemical mixtures. This study will elucidate a computational method of predicting human odor perception from the mass spectra of chemical mixtures such as essential oils. Furthermore, a method for obtaining similarity among odor descriptors has been proposed although the dataset contains binary values only. When the database indicates a set of odor descriptors for one sample, only binary data are available and the correlation between the similar descriptors disappears. Thus, the prediction performance degrades for not considering the similarity among the odor descriptors. Since mass spectra dataset is highly dimensional, we use auto-encoder to learn the compressed representation from the mass spectra of essential oils in its bottleneck hidden layer and then accomplishes the hierarchical clustering to create odor descriptor groups with similar odor impressions using a matrix of continuous value-based correlation coefficient as well as natural language processing. This work will help to expatiate the process of overcoming binary value problem and find out the similarity among odor descriptors using machine learning with natural language semantic representation of words. To overcome the problem of disproportionate ratio of positive and negative class for both the continuous value-based correlation coefficient and word similarity based models, we use Synthetic Minority Oversampling Technique (SMOTE). This model allows us to predict human odor perception through computer simulations by forming odor descriptors group. Accordingly, this study demonstrates the feasibility of ensembling machine learning with natural language processing and SMOTE approach for predicting odor descriptor group from mass spectra of essential oils.


Assuntos
Espectrometria de Massas , Odorantes/análise , Óleos Voláteis/análise , Olfato/fisiologia , Análise por Conglomerados , Humanos , Modelos Teóricos , Estatística como Assunto
19.
Gene ; 756: 144921, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32593719

RESUMO

Lilium 'Siberia' is a perennial herbaceous plant that is commercially significant because of its snowy white floral color and appealing scent which is mainly due to the presence of monoterpenes and benzoids compounds in floral volatile profile. In the current study, LoTPS5 was cloned and functionally characterized. Results revealed that LoTPS5 specifically generates squalene from FPP, whereas no product was produced when it was incubated with GPP or GGPP. The subcellular localization experiment showed that LoTPS5 was located in plastids. Furthermore, LoTPS5 showed its high expression in the leaf followed by petals and sepals of the flower. Moreover, the expression of LoTPS5 gradually increased from the bud stage and peak at the full-bloom stage. Besides, LoTPS5 showed a diurnal circadian rhythmic pattern with a peak in the afternoon (16:00) followed by deep night (24:00) and morning (8:00), respectively. LoTPS5 is highly responsive to mechanical wounding by rapidly elevating its mRNA transcript level. The current study will provide significant information for future studies of terpenoid and squalene biosynthesis in Lilium 'Siberia'.


Assuntos
Farnesil-Difosfato Farnesiltransferase/genética , Lilium/enzimologia , Lilium/genética , Sequência de Aminoácidos , Vias Biossintéticas , Clonagem Molecular , Farnesil-Difosfato Farnesiltransferase/análise , Farnesil-Difosfato Farnesiltransferase/química , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lilium/química , Lilium/metabolismo , Odorantes/análise , Filogenia , Alinhamento de Sequência , Esqualeno/metabolismo
20.
Food Chem ; 329: 127118, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32512391

RESUMO

Sonication was applied to accelerate aroma formation and shorten fermentation time of soy sauce. Effects of sonication at 68 kHz on the aroma and aroma-producing Zygosaccharomyces rouxii and Tetragenococcus halophilus in moromis were investigated using sensory evaluation, SPME-GC-olfactometry/MS, viable cell counting and scanning electron microscopy. The sensory scores of caramel-like, fruity, alcoholic, floral, malty, smoky, sour and overall aroma in sonicated moromis were enhanced by 23.4%, 23.2%, 13.6%, 12.8%, 7.6%, 6.3%, 5.6% and 14.4%, respectively. Sensory scores of samples fermented for 90-180 days were higher than those of controls fermented for 180 days, suggesting that sonication could reduce fermentation time by 90 days. Thirty-four aroma-active compounds were detected from 85 volatile compounds in soy sauces. Sonication accelerated and elevated the formation of aroma compounds by chemical reactions. It also markedly increased the reproduction and cell permeability of both microorganisms in moromis, which favored the formation of aroma compounds by both strains.


Assuntos
Odorantes/análise , Alimentos de Soja/análise , Enterococcaceae , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Sonicação , Alimentos de Soja/microbiologia , Paladar , Zygosaccharomyces
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA