Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.741
Filtrar
1.
Molecules ; 28(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36677765

RESUMO

Recent advances in biotechnology have ensured that one of the main olive tree by-products is olive leaf extract (OLE), a rich source in bioactive compounds. The aim of this work was to study the phenolic composition in different OLEs of three Tunisian varieties, namely, 'Sayali', 'Tkobri', and 'Neb Jmel'. The in vitro biodigestibility effect after 'Sayali' OLE addition to Californian-style 'Hojiblanca' table olives was also studied. This OLE contained bioactive molecules such as hydroxytyrosol, tyrosol, oleropeine, Procianidine B1 (PB1), and p-cumaric acid. These compounds were also found in fresh olives after OLE was added. Furthermore, from fresh extract to oral digestion, the detected amount of bioavailable phenol was higher; however, its content decreased according to each phase of gastric and intestinal digestion. In the final digestion phase, the number of phenols found was lower than that of fresh olives. In addition, the phenolic content of Californian-style 'Hojiblanca' table olives decreased during the in vitro digestion process. The antioxidant activity of this variety decreased by 64% and 88% after gastrointestinal digestion, being the highest antioxidant capacity found in both simulated gastric and intestinal fluid, respectively. The results show us that the 'Sayali' variety is rich in phenolic compounds that are bioavailable after digestion, which could be used at an industrial level due to the related health benefits.


Assuntos
Olea , Disponibilidade Biológica , Fenóis , Antioxidantes/farmacologia , Extratos Vegetais
2.
Molecules ; 28(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36677889

RESUMO

The effects of mineral fertilizers on the physicochemical properties of olives and oil under rainfed conditions is scarce. In this three-year study, the results of a nitrogen (N), phosphorus (P), potassium (K) and boron (B) fertilization trial carried out in a young rainfed olive grove and arranged as a nutrient omission trial are reported. The control consisted of the application of N, P, K and B (NPKB) and four other treatments corresponded to the removal of one of them (N0, P0, K0 and B0). Olive yield and several variables associated with the physicochemical properties of olives and oil were evaluated. The NPKB treatment increased olive yield compared to the treatment that did not receive N (N0). Although dependent on the climate conditions of the crop season, the NPKB treatment increased fruit weight and the pulp/pit ratio and its fruits tended to accumulate more oil than K0. However, the phenolics concentrations on fruits and oil tended to be lower. All olive oil samples were classified in the "extra virgin" category and all showed a decrease in its stability between 3 and 15 months of storage, regardless of treatment, especially in N0, P0 and B0 treatments. The results of the sensorial analysis indicate that all the oils fell into the medium fruitiness and greenly-fruity category. Only in P0 and B0 were defects detected, namely muddy sediment. Thus, this study seems to indicate the importance of N application, but also a balanced nutrient application and that further studies are needed, given the difficulty in finding clear trends in the response of measured variables to fertilizer treatments.


Assuntos
Olea , Olea/química , Azeite de Oliva/química , Frutas/química , Fenóis/análise , Nutrientes/análise , Óleos Vegetais/química
3.
Nutrients ; 15(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36678196

RESUMO

Table olives and olive oils are the main dietary sources of hydroxytyrosol (HT), a natural antioxidant compound that has emerged as a potential aid in protection against cardiovascular risk. Bioavailability studies with olive oils showed that HT is bioavailable from its free form and from conjugated forms such as oleuropein and its aglycone. Still, its low dietary intake, poor bioavailability, and high inter-individual variability after absorption through the gastrointestinal tract hamper its full benefits. In a randomized, controlled, blinded, cross-over study, we investigated the impact of HT metabolism and bioavailability by comparing two olive-derived watery supplements containing different doses of HT (30.58 and 61.48 mg of HT/dosage). Additionally, HT-fortified olive oil was used in the control group. To this aim, plasma and urine samples were evaluated in 12 healthy volunteers following the intake of a single dose of the supplements or fortified olive oil. Blood and urine samples were collected at baseline and at 0.5, 1, 1.5, 2, 4, and 12 h after intake. HT and its metabolites were analyzed using UHPLC-DAD-MS/MS. Pharmacokinetic results showed that dietary HT administered through the food supplements is bioavailable and bioavailability increases with the administered dose. After intake, homovanillic acid, HT-3-O-sulphate, and 3,4-dihydroxyphenylacetic acid are the main metabolites found both in plasma and urine. The maximum concentrations in plasma peaked 30 min after intake. As bioavailability of a compound is a fundamental prerequisite for its effect, these results promise a good potential of both food supplements for protection against oxidative stress and the consequent cardiovascular risk.


Assuntos
Olea , Álcool Feniletílico , Humanos , Azeite de Oliva , Disponibilidade Biológica , Espectrometria de Massas em Tandem , Estudos Cross-Over , Suplementos Nutricionais , Antioxidantes/metabolismo , Óleos Vegetais
4.
Nutrients ; 15(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36678293

RESUMO

There is current scientific interest in naturally sourced phenolic compounds and their potential benefits to health, as well as the effective role polyphenols may provide in an exercise setting. This study investigated the chronic effects of supplementation with a biodynamic and organic olive fruit water phytocomplex (OliPhenolia® [OliP]), rich in hydroxytyrosol (HT), on submaximal and exhaustive exercise performance and respiratory markers of recovery. Twenty-nine recreationally active participants (42 ± 2 yrs; 71.1 ± 2.1 kg; 1.76 ± 0.02 m) consumed 2 × 28 mL∙d-1 of OliP or a taste- and appearance-matched placebo (PL) over 16 consecutive days. Participants completed a demanding, aerobic exercise protocol at ~75% maximal oxygen uptake (V˙O2max) for 65 min 24 h before sub- and maximal performance exercise tests prior to and following the 16-day consumption period. OliP reduced the time constant (τ) (p = 0.005) at the onset of exercise, running economy (p = 0.015) at lactate threshold 1 (LT1), as well as the rating of perceived exertion (p = 0.003) at lactate turnpoint (LT2). Additionally, OliP led to modest improvements in acute recovery based upon a shorter time to achieve 50% of the end of exercise V˙O2 value (p = 0.02). Whilst OliP increased time to exhaustion (+4.1 ± 1.8%), this was not significantly different to PL (p > 0.05). Phenolic compounds present in OliP, including HT and related metabolites, may provide benefits for aerobic exercise and acute recovery in recreationally active individuals. Further research is needed to determine whether dose-response or adjunct use of OliP alongside longer-term training programs can further modulate exercise-associated adaptations in recreationally active individuals, or indeed support athletic performance.


Assuntos
Olea , Humanos , Exercício Físico/fisiologia , Teste de Esforço , Ácido Láctico , Consumo de Oxigênio/fisiologia
5.
J Oleo Sci ; 72(1): 79-85, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36624059

RESUMO

This study was conducted in crop season of 2018 and the olive fruits from three Turkish varieties Saurani, Karamani and Halhali under the same pedoclimatic conditions (with no irrigation and no fertilization) were assessed. Oil content, fatty acid, and sterol compositions of three monovarietal 'Halhali', 'Karamani', and 'Saurani' virgin olive oils were examined at green, spotted and ripe olives. The oil content of olives ranges between 23.77-34.77% and the highest oil yield was observed in the ripe Karamani variety. In terms of fatty acids, the lowest oleic acid values were found in the ripe period of Karamani variety (59.78%), and the highest oleic acid values in the green period of Halhali variety (69.97%). The oleic and palmitic acid contents decreased, while linoleic and stearic acid contents increased with olive ripening. Total sterol amounts of olive oils varied between 946-1782 mg/kg and showed a significant increase with ripening (p < 0.05). The highest ß-sitosterol amount was detected in the green period of Saurani variety (91.66%), and the lowest ß-sitosterol amount in the spotted period of Halhali variety (86.16%). The highest ∆5-avenasterol amounts were detected in the ripe period of Saurani variety (6.54%), the lowest ∆5-avenasterol amounts were detected in the green period of Halhali variety (2.36%). Total ß-sitosterol, stigmasterol and erythrodiol+uvaol contents of olive oils are changed with ripening. Accordingly, these results showed that fatty acid and sterol compositions can be used as indicators of variety and ripening degree among monovarietal virgin olive oils.


Assuntos
Ácidos Graxos , Olea , Azeite de Oliva , Esteróis , Ácido Oleico , Óleos Vegetais
6.
Molecules ; 28(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36615530

RESUMO

Fourier-Transform mid-infrared (FTIR) spectroscopy offers a strong candidate screening tool for rapid, non-destructive and early detection of unauthorized virgin olive oil blends with other edible oils. Potential applications to the official anti-fraud control are supported by dozens of research articles with a "proof-of-concept" study approach through different chemometric workflows for comprehensive spectral analysis. It may also assist non-targeted authenticity testing, an emerging goal for modern food fraud inspection systems. Hence, FTIR-based methods need to be standardized and validated to be accepted by the olive industry and official regulators. Thus far, several literature reviews evaluated the competence of FTIR standalone or compared with other vibrational techniques only in view of the chemometric methodology, regardless of the inherent characteristics of the product spectra or the application scope. Regarding authenticity testing, every step of the methodology workflow, and not only the post-acquisition steps, need thorough validation. In this context, the present review investigates the progress in the research methodology on FTIR-based detection of virgin olive oil adulteration over a period of more than 25 years with the aim to capture the trends, identify gaps or misuses in the existing literature and highlight intriguing topics for future studies. An extensive search in Scopus, Web of Science and Google Scholar, combined with bibliometric analysis, helped to extract qualitative and quantitative information from publication sources. Our findings verified that intercomparison of literature results is often impossible; sampling design, FTIR spectral acquisition and performance evaluation are critical methodological issues that need more specific guidance and criteria for application to product authenticity testing.


Assuntos
Olea , Projetos de Pesquisa , Azeite de Oliva/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Quimiometria , Óleos Vegetais/química , Contaminação de Alimentos/análise
7.
Molecules ; 28(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36615544

RESUMO

Natural deep eutectic solvents (NADES) composed of choline chloride with maltose (CMA), glycerol (CGL), citric (CCA) and lactic acid (CLA) combined with microwave (MAE), ultrasound (UAE), homogenate (HAE) and high hydrostatic pressure (HHPAE)-assisted extraction methods were applied to recover and compare olive leaf phenolic compounds. The resultant extracts were evaluated for their total phenol content (TPC), phenolic profile and antioxidant activity and compared with those of water and ethanol:water 70% v/v extracts. HAE was proven to be the most efficient method for the recovery of olive leaf phenolic compounds. The highest TPC (55.12 ± 1.08 mg GAE/g d.w.) was found in CCA extracts after HAE at 60 °C and 12,000 rpm, and the maximum antioxidant activity (3.32 ± 0.39 g d.w./g DPPH) was found in CGL extracts after UAE at 60 °C for 30 min. The TPCs of ethanol extracts were found to be higher than those of NADES extracts in most cases. The predominant phenolic compounds in the extracts were oleuropein, hydrohytyrosol and rutin.


Assuntos
Solventes Eutéticos Profundos , Olea , Solventes/química , Olea/química , Antioxidantes/química , Extratos Vegetais/química , Fenóis/química , Água/química , Etanol/química , Fenol/análise , Folhas de Planta/química
8.
Toxins (Basel) ; 15(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36668890

RESUMO

Food and feed contamination by fungi, especially by toxigenic ones, is a global concern because it can pose serious health problems when the production of mycotoxins is involved. Lactic acid bacteria (LAB), well-known for fermenting foods, have been gaining attention for their antifungal and anti-mycotoxin properties. This work tested 14 LAB strains isolated from naturally fermented Brazilian table olives for growth inhibition of Aspergillus flavus, Aspergillus carbonarius, Penicillium nordicum, and Penicillium expansum. The strains Lacticaseibacillus paracasei subsp. paracasei CCMA 1764, Levilactobacillus brevis CCMA 1762, and Lactiplantibacillus pentosus CCMA 1768 showed the strongest antifungal activity, being more active against P. expansum. Aflatoxin B1 (AFB1), ochratoxin A (OTA), and patulin (PAT) production was reduced essentially by mycelia growth inhibition. The main organic acids detected in the cell free supernatant (CFS) were lactic and acetic acids. Tested LAB exhibited adsorption capacity against AFB1 (48-51%), OTA (28-33%), and PAT (23-24%). AFB1 was converted into aflatoxin B2a (AFB2a) by lactic and acetic acids produced by the strain CCMA 1764. A similar conversion was observed in solutions of these organic acids (0.1 M). These findings demonstrate the potential of isolated LAB strains as natural agents to control toxigenic fungi and their mycotoxins in fermented products, such as table olives.


Assuntos
Lactobacillales , Olea , Patulina , Antifúngicos/farmacologia , Olea/microbiologia , Brasil , Fungos , Aflatoxina B1
9.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674474

RESUMO

In the olive (Olea europaea L.), an economically leading oil crop worldwide, fruit size and yield are determined by the early stages of fruit development. However, few detailed analyses of this stage of fruit development are available. This study offers an extensive characterization of the various processes involved in early olive fruit growth (cell division, cell cycle regulation, and cell expansion). For this, cytological, hormonal, and transcriptional changes characterizing the phases of early fruit development were analyzed in olive fruit of the cv. 'Picual'. First, the surface area and mitotic activity (by flow cytometry) of fruit cells were investigated during early olive fruit development, from 0 to 42 days post-anthesis (DPA). The results demonstrate that the cell division phase extends up to 21 DPA, during which the maximal proportion of 4C cells in olive fruits was reached at 14 DPA, indicating that intensive cell division was activated in olive fruits at that time. Subsequently, fruit cell expansion lasted as long as 3 weeks more before endocarp lignification. Finally, the molecular mechanisms controlling the early fruit development were investigated by analyzing the transcriptome of olive flowers at anthesis (fruit set) as well as olive fruits at 14 DPA (cell division phase) and at 28 DPA (cell expansion phase). Sequential induction of the cell cycle regulating genes is associated with the upregulation of genes involved in cell wall remodeling and ion fluxes, and with a shift in plant hormone metabolism and signaling genes during early olive fruit development. This occurs together with transcriptional activity of subtilisin-like protease proteins together with transcription factors potentially involved in early fruit growth signaling. This gene expression profile, together with hormonal regulators, offers new insights for understanding the processes that regulate cell division and expansion, and ultimately fruit yield and olive size.


Assuntos
Olea , Transcriptoma , Olea/metabolismo , Frutas/metabolismo , Fatores de Transcrição/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
10.
Sci Rep ; 13(1): 612, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635360

RESUMO

Olea europaea is an economically significant crop native to Mediterranean countries. Its leaves exhibit several biological properties associated to their chemical composition. The aqueous ethanolic extracts of olive leaves from twelve different cultivars were analyzed by high performance liquid chromatography coupled to photodiode array and electrospray ionization mass spectrometry (HPLC/PDA/ESI-MS/MS). A total of 49 phytochemicals were identified in both positive and negative ionization modes. The identified compounds belonged to four classes of secondary metabolites including secoiridoids, flavonoids, pentacyclic triterpenoids and various phenolic compounds. Seasonal variation in chemical composition among the studied cultivars was apparent in autumn and spring. Secologanoside, oleuropein, hydroxy-oleuropein, demethyl oleuropein, gallocatechin, luteolin-O-hexoside, diosmetin, oleanolic acid and maslinic acid were detected in all cultivars in both seasons. Oleuropein-O-deoxyhexoside was tentatively identified for the first time in olive leaf extracts; detected only in the Spanish cultivar Picual (PIC) collected in spring. Also, dihydroxy-oxooleanenoic acid and hydroxy-oxooleanenoic acid, two bioactive pentacyclic triterpenes, were identified. Principle component analysis (PCA) showed good discrimination among the studied cultivars in terms of their botanical origin. This study is considered the first study for non-targeted metabolic profiling of different olive leaf cultivars cultivated in Egypt.


Assuntos
Olea , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Estações do Ano , Olea/química , Flavonoides/química , Glucosídeos Iridoides , Extratos Vegetais/química , Iridoides/análise , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão/métodos
11.
Oxid Med Cell Longev ; 2023: 6828230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36647430

RESUMO

Olive leaves extracts are known to exert potential pharmacological activities especially, antidiabetic and antiobesity. This study explores the anti-insulin resistant effect of olive leaves extracts and oleuropein in 3 T3-L1 cells and in high-fat diet fed rats. Our results showed that ethanol extract (EE) suppressed significantly (P < 0.01) triacylglycerol accumulation. In preadipocytes cells, EE 1/100 decreased cell viability and induced apoptosis. Real-time PCR analysis showed that EE reduced the mRNA levels of adipogenesis (CEBP-α, PPARγ, SREBP-1c, and FAS) and proinflammatory (TNF-α and IL-6) genes. Moreover, the cotreatment of EE 1/1000 or oleuropein with insulin increased considerably the expression of p-IRS, p85-pI3K, and p-AKT. In vivo model, the oral administration of oleuropein at 50 mg/kg in rats fed with high fat diet for 8 weeks reduced inflammation in liver and adipose tissues (WAT), improved glucose intolerance, and decreased hyperinsulinemia. Furthermore, the immunohistochemistry revealed that the expression level of p-Akt, IRS1, and Glut-4 were significantly enhanced in liver and WAT tissues after oleuropein supplementation comparing with that in HFD group. Additionally, the expression of IRS1 was markedly ameliorated in pancreas. Our obtained results can be adopted as an approach to used olive leaves as complement to prevent insulin-resistance disease.


Assuntos
Resistência à Insulina , Olea , Transdução de Sinais , Animais , Camundongos , Ratos , Células 3T3-L1 , Adipogenia , Dieta Hiperlipídica/efeitos adversos , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Olea/química , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Extratos Vegetais/farmacologia
12.
Molecules ; 28(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36677704

RESUMO

Olive mill wastewater (OMWW) represents a by-product but also a source of biologically active compounds, and their recycling is a relevant strategy to recover income and to reduce environmental impact. The objective of the present study was to obtain a new functional beverage with a health-promoting effect starting from OMWW. Fresh OMWW were pre-treated through filtration and/or microfiltration and subjected to fermentation using strains belonging to Lactiplantibacillus plantarum, Candida boidinii and Wickerhamomyces anomalus. During fermentation, phenolic content and hydroxytyrosol were monitored. Moreover, the biological assay of microfiltered fermented OMWW was detected versus tumor cell lines and as anti-inflammatory activity. The results showed that in microfiltered OMWW, fermentation was successfully conducted, with the lowest pH values reached after 21 days. In addition, in all fermented samples, an increase in phenol and organic acid contents was detected. Particularly, in samples fermented with L. plantarum and C. boidinii in single and combined cultures, the concentration of hydroxytyrosol reached values of 925.6, 902.5 and 903.5 mg/L, respectively. Moreover, biological assays highlighted that fermentation determines an increase in the antioxidant and anti-inflammatory activity of OMWW. Lastly, an increment in the active permeability on Caco-2 cell line was also revealed. In conclusion, results of the present study confirmed that the process applied here represents an effective strategy to achieve a new functional beverage.


Assuntos
Olea , Humanos , Olea/química , Células CACO-2 , Fenóis/análise , Meio Ambiente , Resíduos Industriais/análise , Azeite de Oliva
13.
J Sci Food Agric ; 103(1): 64-72, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35804485

RESUMO

BACKGROUND: Table olives are a food with a high content of bioactive compounds with cardioprotective properties, such as oleic acid, polyphenols, and pentacyclic triterpenes. Here, we investigate the effect of the intake of table olives on blood pressure (BP) and body weight in spontaneously hypertensive rats (SHR) and their normotensive controls, Wistar Kyoto (WKY) rats. 'Arbequina' table olives (3.85 g kg-1 ) were administered by gavage to SHR and WKY rats in short-term (1 day) and long-term (7 weeks) experiments. BP was measured by the tail-cuff method, and polyphenols and triterpenes were determined in olives and plasma by liquid chromatography-mass spectrometry. RESULTS: Administration of 'Arbequina' olives to WKY rats did not exert any change in BP in any of the experiments. However, in SHR, the single dose induced a transient reduction in BP of approximately 15 mmHg, from the second to the tenth hour after the administration. In the long-term assay, a similar decrease was established in the second week and was maintained throughout the experiment. Moreover, the daily administration of olives to rats did not affect their body weight when compared with controls in either the WKY rats or SHR. The determination of polyphenols and triterpenes in plasma indicated that, at the end of the experiment, only maslinic acid, oleanolic acid, hydroxytyrosol, and luteolin were found, all of them being compounds with already described capacity to decrease BP. CONCLUSION: The results suggest that the daily intake of table olives could decrease BP in hypertension without affecting body weight, indicating that table olives could contribute to improving cardiovascular health. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Hipertensão , Olea , Ratos , Animais , Ratos Endogâmicos SHR , Anti-Hipertensivos/farmacologia , Olea/química , Ratos Endogâmicos WKY , Pressão Sanguínea , Hipertensão/tratamento farmacológico , Polifenóis/farmacologia , Polifenóis/análise , Peso Corporal , Triterpenos Pentacíclicos
14.
J Photochem Photobiol B ; 238: 112626, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36512898

RESUMO

Antimicrobial resistance is a problem in contemporary society, with Staphylococcus aureus standing out as a threat due to its ability to colonize, its pathogenicity, and its expression of several virulence factors. In this context, antimicrobial photodynamic inactivation (aPDI) emerges as an alternative to conventional microbicidal or microbiostatic systems, enabling numerous and successive applications without developing side effects and microbial resistance. In this context, an aPDI system against cultures of S. aureus based on a water-in-oil (W/O) emulsion incorporating curcumin as the photosensitizer (PS), with and without olive leaf extract (OLE), was developed and the antibacterial efficacy evaluated under LED activation (ʎ450 ± 10 nm) by depositing an energy density of 14 J/cm2. The produced emulsified systems showed no significant differences in the droplet size and morphology, remaining stable along the tested period of 30 days. The bacterial reduction achieved after the first aPDI application for the emulsions added with curcumin and curcumin combined with the OLE was 5 log10 CFU.mL-1 and 6 log10 CFU.mL-1, respectively, revealing a significant difference between the two groups (p < 0.0001). After the second aPDI application, an increased microbial reduction (7 log10 CFU.mL-1) was observed for both studied groups even with a low significant difference (p < 0.05). The PS loading through an emulsified system for aPDI obtained a bactericidal action against S. aureus, increased by applying two aPDI, showing a significant synergy between photodynamic inactivation, OLE delivery and antibacterial activity. In addition, the developed solutions were produced using natural products by an ecologically correct process.


Assuntos
Anti-Infecciosos , Curcumina , Olea , Fotoquimioterapia , Staphylococcus aureus , Curcumina/farmacologia , Antibacterianos/farmacologia , Fármacos Fotossensibilizantes/farmacologia
15.
J Sci Food Agric ; 103(1): 48-56, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35794785

RESUMO

BACKGROUND: Intensive olive (Olea europaea L.) orchards are fertilized, mostly with the macronutrients nitrogen (N), phosphorus (P) and potassium (K). The effects of different application levels of these nutrients on olive oil composition and quality were studied over 6 years in a commercial intensively cultivated 'Barnea' olive orchard in Israel. RESULTS: Oil quality and composition were affected by N, but not P or K availability. Elevated N levels increased free fatty acid content and reduced polyphenol level in the oil. Peroxide value was not affected by N, P or K levels. The relative concentrations of palmitoleic, linoleic and linolenic fatty acids increased with increasing levels of N application, whereas that of oleic acid, monounsaturated-to-polyunsaturated fatty acid ratio and oleic-to-linoleic ratio decreased. CONCLUSION: These results indicate that intensive olive orchard fertilization should be carried out carefully, especially where N application is concerned, to avoid a decrease in oil quality due to over-fertilization. Informed application of macronutrients requires leaf and fruit analyses to establish good agricultural practices, especially in view of the expansion of olive cultivation to new agricultural regions and soils. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Olea , Azeite de Oliva/química , Olea/química , Frutas/química , Ácidos Graxos Monoinsaturados , Nutrientes , Fertilização , Ácidos Graxos/química , Óleos Vegetais/química
16.
Int J Food Microbiol ; 386: 110041, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36495820

RESUMO

The olive oil microbiota mainly consists of yeasts, which may positively or negatively affect the physicochemical and sensory features of product. In this study, 17 yeast strains belonging to Candida boidinii, Lachancea fermentati, Nakazawaea molendinolei, N. wickerhamii and Schwanniomyces polymorphus species were collected during olive oil production, identified and tested for the ability to ferment sugars, to grow at low temperatures, for the occurrence of different enzymatic activities, for the tolerance and degradation of phenolic compounds, radical scavenging activities, biofilm formation, survival to simulated gastro-intestinal (GIT) tract. Yeasts were also inoculated in extra virgin olive oils (EVOO; from Leccino and Coratina cultivar) to evaluate their survival and their effect on EVOO quality (changes in analytical indices) during 6-months of storage. Most of strains were able to grow at 15°C, while the ability to ferment different sugars was strain-specific. All strains had ß-glucosidase activity, while none exhibited lipolytic activity; peroxidase was widespread among the strains, while protease activity was strain-dependent. Esterase and the ability to hydrolyse oleuropein and form hydroxytyrosol was present only in N. wickerhamii strains. All strains were able to survive in olive mill wastewater, used as a model of phenolic compounds-rich matrix. A potential biofilm formation was observed only in N. wickerhamii, while the ability to scavenge radical and to cope with GIT-associated stresses were strain-dependent. High levels of survival were observed for almost strains (except S. polymorphus), in both Leccino and Coratina samples. Yeasts limited the acidity rise in olive oils, but overtime they contributed to increase the parameters related to oxidative phenomena (i.e. peroxides, K232, K270), resulting in a declassification of EVOOs. The total phenolic content (TPC) was correlated to the presence of yeasts and, at the end of storage period (6 months) inoculated samples had significantly lower concentrations compared to the control oils. This study confirms that yeasts are able to survive in olive oils and, therefore, the control of their occurrence during extraction process and storage conditions is needed to obtain high-quality products and to maintain the standards of EVOO classification.


Assuntos
Olea , Azeite de Oliva , Olea/química , Saccharomyces cerevisiae , Fenóis/análise , Açúcares , Óleos Vegetais/química
17.
Plant Physiol Biochem ; 194: 619-626, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36535101

RESUMO

Olive tree (Olea europaea L.) leaves have recently been recognised as a valuable source in cosmetic and pharmaceutical industry as well as in preparation of health-supporting beverages. Little is known about the element composition of olive leaves and almost nothing about tissue-specific allocation of elements. Element composition and tissue-specific distribution were determined in leaves of two olive cultivars, Leccino and Istarska bjelica using micro-particle induced X-ray emission (micro-PIXE). In leaves of the Istarska bjelica cultivar larger bulk concentrations of potassium, sodium, molybdenum and boron, but smaller concentrations of calcium and magnesium were found than in leaves of the Leccino cultivar. Tissue-specific investigation revealed that larger concentration of calcium in epidermis and in leaf blade tissues (secondary veins, palisade and spongy mesophyll) contributed to the larger leaf bulk calcium concentration in the Leccino cultivar. For magnesium, all leaf tissues, except the bundle sheath cells and consequently the main vascular bundle, contributed to the larger bulk concentration in the Leccino cultivar. Potassium was not predominant in any of the leaf tissues examined, while sodium and molybdenum were below the limit of detection, and boron not detectable by micro-PIXE. The results indicate that sinks for calcium and magnesium are stronger in specific leaf tissues of the Leccino than of the Istarska bjelica cultivar. The new understanding of tissue-specific allocation of elements in leaves of olive will serve as a basis for detailed studies into the effects of foliar and/or soil fertilisers in olive.


Assuntos
Cálcio , Olea , Plântula , Magnésio , Boro , Molibdênio , Sódio , Folhas de Planta
18.
Int J Pharm ; 631: 122498, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36535454

RESUMO

Olive Phenols (OPs) are known to be potent antioxidants and possess various bioactivities and health benefits. Epidemiological studies suggested that consumption of olive oil reduces the risk of different diseases exerting a protective effect against certain malignant tumors (prostate, breast, digestive tract, endothelium, etc.). However, extremely low absorption rate of olive phenolic compounds restricts their bioactivity. In this context, solid lipid nanoparticles (SLNs) are a promising solution because they provide higher drug stability and can incorporate both lipophilic and hydrophilic drugs. Interesting experimental results have been obtained using hydroxytyrosol oleate (HtyOle) as a main component of a nanoparticle delivery system containing oleuropein (OL), oleuropein aglycone (3,4-DHPEA-EA), or hydroxytyrosol itself (Hty). In this work, hydroxytyrosol oleate (HtyOle) and hydroxytyrosol oleate (HtyOle)-based solid lipid nanoparticles were prepared and characterized. In addition, we evaluatedin vitro their antioxidant activity by DPPH assays and by ROS formation using the SH-SY5Y cell line.


Assuntos
Neuroblastoma , Olea , Álcool Feniletílico , Masculino , Humanos , Óleos Vegetais/química , Ácido Oleico , Azeite de Oliva/química , Fenóis/química , Antioxidantes/farmacologia , Antioxidantes/química , Olea/química
19.
Molecules ; 27(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557864

RESUMO

Maslinic acid (MA) is a pentacyclic triterpene acid, which exists in many plants, including olive, and is highly safe for human beings. In recent years, it has been reported that MA has anti-inflammatory, antioxidant, anti-tumor, hypoglycemic, neuroprotective and other biological activities. More and more experimental data has shown that MA has a good therapeutic effect on multiple organ diseases, indicating that it has great clinical application potential. In this paper, the extraction, purification, identification and analysis, biological activity, pharmacokinetics in vivo and molecular mechanism of MA in treating various organ diseases are reviewed. It is hoped to provide a new idea for MA to treat various organ diseases.


Assuntos
Olea , Ácido Oleanólico , Triterpenos , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Triterpenos/uso terapêutico , Triterpenos/farmacocinética
20.
Genes (Basel) ; 13(12)2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36553462

RESUMO

The genus Argopistes (Chrysomelidae: Alticini) is the only group of flea beetles specialized in plant hosts in the family Oleaceae. In southern Africa, Argopistes are often found feeding on African Wild Olive (Olea europaea subsp. cuspidata) and European cultivated olive (O. e. subsp. europaea), and heavy infestations can be devastating to mature trees and compromise the development of young trees. Despite their negative agricultural impact, African Argopistes are an understudied group for which no genetic data were available. We assessed the species diversity of olive flea beetles in the Western Cape province of South Africa, the largest olive-producing region in sub-Saharan Africa, by collecting adult specimens on wild and cultivated olive trees between 2015 and 2017. Argopistes sexvittatus Bryant, 1922 (n = 289) dominated at all sampling sites, and Argopistes capensis Bryant, 1944 (n = 2) was found only once. Argopistes oleae Bryant, 1922, a third species previously reported in the region, was not found. The complete mitogenomes of one A. capensis and two A. sexvittatus (striped and black morphotypes) individuals were sequenced for phylogenetic reconstruction in the context of other 64 species. The two olive flea beetle species form a monophyletic clade with other Argopistes, supporting the hypothesis that the exclusive feeding habit on Oleaceae is an evolutionary adaptation in this genus.


Assuntos
Besouros , Olea , Oleaceae , Sifonápteros , Animais , Filogenia , Olea/genética , Besouros/genética , Evolução Biológica , Oleaceae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...