Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.861
Filtrar
1.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445331

RESUMO

Plant WRKY transcription factors play crucial roles in plant growth and development, as well as plant responses to biotic and abiotic stresses. In this study, we identified and characterized a WRKY transcription factor in rice, OsWRKY50. OsWRKY50 functions as a transcriptional repressor in the nucleus. The transcription of OsWRKY50 was repressed under salt stress conditions, but activated after abscisic acid (ABA) treatment. OsWRKY50-overexpression (OsWRKY50-OX) plants displayed increased tolerance to salt stress compared to wild type and control plants. The expression of OsLEA3, OsRAB21, OsHKT1;5, and OsP5CS1 in OsWRKY50-OX were much higher than wild type and control plants under salt stress. Furthermore, OsWRKY50-OX displayed hyposensitivity to ABA-regulated seed germination and seedling establishment. The protoplast-based transient expression system and yeast hybrid assay demonstrated that OsWRKY50 directly binds to the promoter of OsNCED5, and thus further inhibits its transcription. Taken together, our results demonstrate that rice transcription repressor OsWRKY50 mediates ABA-dependent seed germination and seedling growth and enhances salt stress tolerance via an ABA-independent pathway.


Assuntos
Ácido Abscísico/farmacologia , Oryza , Tolerância ao Sal , Fatores de Transcrição/fisiologia , Proteínas de Arabidopsis/genética , Clonagem Molecular , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Germinação/genética , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/crescimento & desenvolvimento , Filogenia , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Estresse Salino/efeitos dos fármacos , Estresse Salino/genética , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Análise de Sequência de DNA , Homologia de Sequência , Fatores de Transcrição/genética
2.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445790

RESUMO

The normal developmental sequence in a grass grain entails the death of several maternal and filial tissues in a genetically regulated process termed programmed cell death (PCD). The progression and molecular aspects of PCD in developing grains have been reported for domesticated species such as barley, rice, maize and wheat. Here, we report a detailed investigation of PCD in the developing grain of the wild model species Brachypodium distachyon. We detected PCD in developing Brachypodium grains using molecular and histological approaches. We also identified in Brachypodium the orthologs of protease genes known to contribute to grain PCD and surveyed their expression. We found that, similar to cereals, PCD in the Brachypodium nucellus occurs in a centrifugal pattern following anthesis. However, compared to cereals, the rate of post-mortem clearance in the Brachypodium nucellus is slower. However, compared to wheat and barley, mesocarp PCD in Brachypodium proceeds more rapidly in lateral cells. Remarkably, Brachypodium mesocarp PCD is not coordinated with endosperm development. Phylogenetic analysis suggests that barley and wheat possess more vacuolar processing enzymes that drive nucellar PCD compared to Brachypodium and rice. Our expression analysis highlighted putative grain-specific PCD proteases in Brachypodium. Combined with existing knowledge on grain PCD, our study suggests that the rate of nucellar PCD moderates grain size and that the pattern of mesocarp PCD influences grain shape.


Assuntos
Apoptose/genética , Brachypodium/genética , Grão Comestível/genética , Cisteína Endopeptidases/genética , Endosperma/genética , Hordeum/genética , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Sementes/genética , Triticum/genética
3.
Commun Biol ; 4(1): 952, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376793

RESUMO

Agricultural weeds are the most important biotic constraints to global crop production, and chief among these is weedy rice. Despite increasing yield losses from weedy rice in recent years worldwide, the genetic basis of weediness evolution remains unclear. Using whole-genome sequence analyses, we examined the origins and adaptation of Japanese weedy rice. We find evidence for a weed origin from tropical japonica crop ancestry, which has not previously been documented in surveys of weedy rice worldwide. We further show that adaptation occurs largely through different genetic mechanisms between independently-evolved temperate japonica- and tropical japonica-derived strains; most genomic signatures of positive selection are unique within weed types. In addition, some weedy rice strains have evolved through hybridization between weedy and cultivated rice with adaptive introgression from the crop. Surprisingly, introgression from cultivated rice confers not only crop-like adaptive traits (such as shorter plant height, facilitating crop mimicry) but also weedy-like traits (such as seed dormancy). These findings reveal how hybridization with cultivated rice can promote persistence and proliferation of weedy rice.


Assuntos
Evolução Biológica , Domesticação , Evolução Molecular , Genoma de Planta , Oryza/genética , Plantas Daninhas/genética , Hibridização Genética
4.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360953

RESUMO

Cadmium (Cd), a heavy metal toxic to humans, easily accumulates in rice grains. Rice with unacceptable Cd content has become a serious food safety problem in many rice production regions due to contaminations by industrialization and inappropriate waste management. The development of rice varieties with low grain Cd content is seen as an economic and long-term solution of this problem. The cation/H+ exchanger (CAX) family has been shown to play important roles in Cd uptake, transport and accumulation in plants. Here, we report the characterization of the rice CAX family. The six rice CAX genes all have homologous genes in Arabidopsis thaliana. Phylogenetic analysis identified two subfamilies with three rice and three Arabidopsis thaliana genes in both of them. All rice CAX genes have trans-member structures. OsCAX1a and OsCAX1c were localized in the vacuolar while OsCAX4 were localized in the plasma membrane in rice cell. The consequences of qRT-PCR analysis showed that all the six genes strongly expressed in the leaves under the different Cd treatments. Their expression in roots increased in a Cd dose-dependent manner. GUS staining assay showed that all the six rice CAX genes strongly expressed in roots, whereas OsCAX1c and OsCAX4 also strongly expressed in rice leaves. The yeast (Saccharomyces cerevisiae) cells expressing OsCAX1a, OsCAX1c and OsCAX4 grew better than those expressing the vector control on SD-Gal medium containing CdCl2. OsCAX1a and OsCAX1c enhanced while OsCAX4 reduced Cd accumulation in yeast. No auto-inhibition was found for all the rice CAX genes. Therefore, OsCAX1a, OsCAX1c and OsCAX4 are likely to involve in Cd uptake and translocation in rice, which need to be further validated.


Assuntos
Antiporters/metabolismo , Cádmio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Resistência a Medicamentos , Oryza/genética , Proteínas de Plantas/metabolismo , Antiporters/genética , Cádmio/toxicidade , Proteínas de Transporte de Cátions/genética , Transporte de Íons , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
5.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360958

RESUMO

Semi-dwarfism is a main agronomic trait in crop breeding. In this study, we performed genome-wide association study (GWAS) and identified a new quantitative trait nucleotide (QTN) for rice shoot length. The peak QTN (C/T) was located in the first coding region of a group III WRKY transcription factor OsWRKY21 (LOC_Os01g60640). Interestingly, further haplotype analysis showed that C/T difference only existed in the indica group but not in the japonica group, resulting in significant differences in plant height among the different indica rice varieties. OsWRKY21 was expressed in embryo, radicle, shoots, leaves, and stems. Most notably, overexpressing OsWRKY21 resulted in the semi-dwarf phenotype, early heading date and short internodes compared to the wild type, while the knockout mutant plants by CRISPR/Cas9 technology yielded the opposite. The overexpressing lines exhibited the decreased length of the cells near sclerenchyma epidermis, accompanied with the lower levels of indole-3-acetic acid (IAA) and gibberellin 3 (GA3), but increased levels of the abscisic acid (ABA) and salicylic acid (SA) in the internodes at heading stage. Moreover, the semi-dwarf phenotype could be fully rescued by exogenous GA3 application at seedling stage. The RNA-seq and qRT-PCR analysis confirmed the differential expression levels of genes in development and the stress responses in rice, including GA metabolism (GA20ox2, GA2ox6, and YABY1) and cell wall biosynthesis (CesA4, 7, and 9) and regulation (MYB103L). These data suggest the essential role of OsWRKY21 in regulation of internode elongation and plant height in rice.


Assuntos
Oryza/genética , Proteínas de Plantas/genética , Caules de Planta/crescimento & desenvolvimento , Locos de Características Quantitativas , Fatores de Transcrição/genética , Estudo de Associação Genômica Ampla , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Melhoramento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Caules de Planta/genética , Característica Quantitativa Herdável
6.
Int J Mol Sci ; 22(15)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34360691

RESUMO

Two-line hybrid rice systems represent a new technical approach to utilizing the advantages of rice hybrids. However, the mechanism underlying the male sterile-line fertility transition in rice remains unclear. Peiai 64S (PA64S) is a photoperiod- and thermo-sensitive genic male sterile (PTGMS) line in which male sterility manifests at an average temperature above 23.5 °C under long-day (LD) conditions. Nongken 58S (NK58S) is a LD-sensitive genic male sterile (PGMS) rice that is sterile under LD conditions (above 13.75 h-day). In contrast, D52S is a short-day (SD)-PGMS line that manifests male sterility under SD conditions (below 13.5 h-day). In this study, we obtained fertile and sterile plants from all three lines and performed transcriptome analyses on the anthers of the plants. Gene ontology (GO) analysis suggested that the differentially expressed genes identified were significantly enriched in common terms involved in the response to jasmonic acid (JA) and in JA biosynthesis. On the basis of the biochemical and molecular validation of dynamic, tissue-specific changes in JA, indole-3-acetic acid (IAA) levels, gibberellin (GA) levels, and JA biosynthetic enzyme activities and expression, we proposed that JA could play a pivotal role in viable pollen production through its initial upregulation, constant fluctuation and leaf-spikelet signaling under certain fertility-inducing conditions. Furthermore, we also sprayed methyl jasmonate (MEJA) and salicylhydroxamic acid (SHAM) on the plants, thereby achieving fertility reversal in the PGMS lines NK58S and D52S, with 12.91-63.53% pollen fertility changes. Through qPCR and enzyme activity analyses, we identified two key enzymes-allene oxide synthase (AOS) and allene oxide cyclase (AOC)-that were produced and upregulated by 20-500-fold in PGMS in response to spraying; the activities of these enzymes reversed pollen fertility by influencing the JA biosynthetic pathway. These results provide a new understanding of hormone interactions and networks in male-sterile rice based on the role of JA that will help us to better understand the potential regulatory mechanisms of fertility development in rice in the future.


Assuntos
Ciclopentanos/metabolismo , Oxirredutases Intramoleculares/genética , Oryza/metabolismo , Oxilipinas/metabolismo , Pólen/crescimento & desenvolvimento , Transdução de Sinais , Acetatos/farmacologia , Ciclopentanos/farmacologia , Fertilidade , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/fisiologia , Oxilipinas/farmacologia , Proteínas de Plantas/genética , Pólen/metabolismo , Salicilamidas/farmacologia
7.
BMC Plant Biol ; 21(1): 364, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376143

RESUMO

BACKGROUND: Improving the overall production of rice with high quality is a major target of breeders. Mining potential yield-related loci have been geared towards developing efficient rice breeding strategies. In this study, one single-locus genome-wide association studies (SL-GWAS) method (MLM) in conjunction with five multi-locus genome-wide association studies (ML-GWAS) approaches (mrMLM, FASTmrMLM, pLARmEB, pKWmEB, and ISIS EM-BLASSO) were conducted in a panel consisting of 529 rice core varieties with 607,201 SNPs. RESULTS: A total of 152, 106, 12, 111, and 64 SNPs were detected by the MLM model associated with the five yield-related traits, namely grain length (GL), grain width (GW), grain thickness (GT), thousand-grain weight (TGW), and yield per plant (YPP), respectively. Furthermore, 74 significant quantitative trait nucleotides (QTNs) were presented across at least two ML-GWAS methods to be associated with the above five traits successively. Finally, 20 common QTNs were simultaneously discovered by both SL-GWAS and ML-GWAS methods. Based on genome annotation, gene expression analysis, and previous studies, two candidate key genes (LOC_Os09g02830 and LOC_Os07g31450) were characterized to affect GW and TGW, separately. CONCLUSIONS: These outcomes will provide an indication for breeding high-yielding rice varieties in the immediate future.


Assuntos
Estudo de Associação Genômica Ampla , Oryza/crescimento & desenvolvimento , Oryza/genética , Desequilíbrio de Ligação , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
8.
BMC Plant Biol ; 21(1): 374, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34388987

RESUMO

BACKGROUND: Cadmium (Cd) is a toxic heavy metal that is harmful to the environment and human health. Cd pollution threatens the cultivation of rice (Oryza sativa L.) in many countries. Improving rice performance under Cd stress could potentially improve rice productivity. RESULTS: In this study, 9 growth traits of 188 different cultivated rice accessions under normal and Cd stress conditions were found to be highly variable during the seedling stage. Based on ~3.3 million single nucleotide polymorphisms (SNPs), 119 Cd-mediated growth response (CGR) quantitative trait loci (QTL) were identified by a genome-wide association study (GWAS), 55 of which have been validated by previously reported QTL and 64 were new CGR loci. Combined with the data from the GWAS, transcriptome analysis, gene annotations from the gene ontology (GO) Slim database, and annotations and functions of homologous genes, 148 CGR candidate genes were obtained. Additionally, several reported genes have been found to play certain roles in CGRs. Seven Cd-related cloned genes were found among the CGR genes. Natural elite haplotypes/alleles in these genes that increased Cd tolerance were identified by a haplotype analysis of a diverse mini core collection. More importantly, this study was the first to uncover the natural variations of 5 GST genes that play important roles in CGRs. CONCLUSION: The exploration of Cd-resistant rice germplasm resources and the identification of elite natural variations related to Cd-resistance will help improve the tolerance of current major rice varieties to Cd, as well as provide raw materials and new genes for breeding Cd-resistant varieties.


Assuntos
Cádmio/farmacologia , Genes de Plantas , Oryza/crescimento & desenvolvimento , Oryza/genética , Poluentes do Solo/farmacologia , Alelos , Perfilação da Expressão Gênica , Genoma de Planta , Estudo de Associação Genômica Ampla , Oryza/efeitos dos fármacos , Desenvolvimento Vegetal/genética , Polimorfismo de Nucleotídeo Único
9.
BMC Genomics ; 22(1): 596, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34353280

RESUMO

BACKGROUND: The eating and cooking qualities (ECQs) of rice (Oryza sativa L.) are key characteristics affecting variety adoption and market value. Starch viscosity profiles tested by a rapid visco analyzer (RVA) offer a direct measure of ECQs and represent the changes in viscosity associated with starch gelatinization. RVA profiles of rice are controlled by a complex genetic system and are also affected by the environment. Although Waxy (Wx) is the major gene controlling amylose content (AC) and ECQs, there are still other unknown genetic factors that affect ECQs. RESULTS: Quantitative trait loci (QTLs) for starch paste viscosity in rice were analyzed using chromosome segment substitution lines (CSSLs) developed from the two cultivars 9311 and Nipponbare, which have same Wx-b allele. Thus, the effect of the major locus Wx was eliminated and the other locus associated with the RVA profile could be identified. QTLs for seven parameters of the starch RVA profile were tested over four years in Nanjing, China. A total of 310 QTLs were identified (from 1 to 55 QTLs per trait) and 136 QTLs were identified in more than one year. Among them, 6 QTLs were stalely detected in four years and 26 QTLs were detected in at least three years including 13 pleiotropic loci, controlling 2 to 6 RVA properties simultaneously. These stable QTL hotspots were co-located with several known starch synthesis-related genes (SSRGs). Sequence alignments showed that nucleotide and amino acid sequences of most SSRGs were different between the two parents. Finally, we detected stable QTLs associated with multiple starch viscosity traits near Wx itself, supporting the notion that additional QTLs near Wx control multiple characteristic values of starch viscosity. CONCLUSIONS: By eliminating the contribution from the major locus Wx, multiple QTLs associated with the RVA profile of rice were identified, several of which were stably detected over four years. The complexity of the genetic basis of rice starch viscosity traits might be due to their pleiotropic effects and the multiple QTL hot spots. Minor QTLs controlling starch viscosity traits were identified by using the chromosome segment substitution strategy. Allele polymorphism might be the reason that QTLs controlling RVA profile characteristics were detected in some known SSRG regions.


Assuntos
Oryza , Amido/química , Alelos , Cromossomos , Oryza/genética , Locos de Características Quantitativas , Viscosidade
10.
BMC Genomics ; 22(1): 602, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362301

RESUMO

BACKGROUND: Grain weight and grain shape are important agronomic traits that affect the grain yield potential and grain quality of rice. Both grain weight and grain shape are controlled by multiple genes. The 3,000 Rice Genomes Project (3 K RGP) greatly facilitates the discovery of agriculturally important genetic variants and germplasm resources for grain weight and grain shape. RESULTS: Abundant natural variations and distinct phenotic differentiation among the subgroups in grain weight and grain shape were observed in a large population of 2,453 accessions from the 3 K RGP. A total of 21 stable quantitative trait nucleotides (QTNs) for the four traits were consistently identified in at least two of 3-year trials by genome-wide association study (GWAS), including six new QTNs (qTGW3.1, qTGW9, qTGW11, qGL4/qRLW4, qGL10, and qRLW1) for grain weight and grain shape. We further predicted seven candidate genes (Os03g0186600, Os09g0544400, Os11g0163600, Os04g0580700, Os10g0399700, Os10g0400100 and Os01g0171000) for the six new QTNs by high-density association and gene-based haplotype analyses. The favorable haplotypes of the seven candidate genes and five previously cloned genes in elite accessions with high TGW and RLW are also provided. CONCLUSIONS: Our results deepen the understanding of the genetic basis of grain weight and grain shape in rice and provide valuable information for improving rice grain yield and grain quality through molecular breeding.


Assuntos
Estudo de Associação Genômica Ampla , Oryza , Alelos , Grão Comestível/genética , Oryza/genética , Locos de Características Quantitativas
11.
BMC Genomics ; 22(1): 612, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384368

RESUMO

BACKGROUND: Soil salinization represents a serious threat to global rice production. Although significant research has been conducted to understand salt stress at the genomic, transcriptomic and proteomic levels, few studies have focused on the translatomic responses to this stress. Recent studies have suggested that transcriptional and translational responses to salt stress can often operate independently. RESULTS: We sequenced RNA and ribosome-protected fragments (RPFs) from the salt-sensitive rice (O. sativa L.) cultivar 'Nipponbare' (NB) and the salt-tolerant cultivar 'Sea Rice 86' (SR86) under normal and salt stress conditions. A large discordance between salt-induced transcriptomic and translatomic alterations was found in both cultivars, with more translationally regulated genes being observed in SR86 in comparison to NB. A biased ribosome occupancy, wherein RPF depth gradually increased from the 5' ends to the 3' ends of coding regions, was revealed in NB and SR86. This pattern was strengthened by salt stress, particularly in SR86. On the contrary, the strength of ribosome stalling was accelerated in salt-stressed NB but decreased in SR86. CONCLUSIONS: This study revealed that translational reprogramming represents an important layer of salt stress responses in rice, and the salt-tolerant cultivar SR86 adopts a more flexible translationally adaptive strategy to cope with salt stress compared to the salt susceptible cultivar NB. The differences in translational dynamics between NB and SR86 may derive from their differing levels of ribosome stalling under salt stress.


Assuntos
Oryza , Oryza/genética , Proteômica , Ribossomos/genética , Transcriptoma
12.
J Agric Food Chem ; 69(31): 8634-8648, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34339211

RESUMO

The monocot lineage-specific miR528 was previously established as a multistress regulator. However, it remains largely unclear how miR528 participates in response to salinity stress in rice. Here, we show that miR528 positively regulates rice salt tolerance by down-regulating a gene encoding l-ascorbate oxidase (AO), thereby bolstering up the AO-mediated abscisic acid (ABA) synthesis and ROS scavenging. Overexpression of miR528 caused a substantial increase in ascorbic acid (AsA) and ABA contents but a significant reduction in ROS accumulation, resulting in the enhanced salt tolerance of rice plants. Conversely, knockdown of miR528 or overexpression of AO stimulated the expression of the AO gene, hence lowering the level of AsA, a critical antioxidant that promotes the ABA content but reduces the ROS level, and then compromising rice tolerance to salinity. Together, the findings reveal a novel mechanism of the miR528-AO module-mediated salt tolerance by modulating the processes of AsA and ABA metabolism as well as ROS detoxification, which adds a new regulatory role to the miR528-AO stress defense pathway in rice.


Assuntos
Ácido Abscísico/metabolismo , Ácido Ascórbico/metabolismo , MicroRNAs/genética , Oryza , Tolerância ao Sal , Ascorbato Oxidase , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética , Estresse Fisiológico
13.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34360554

RESUMO

Leaf angle and grain size are important agronomic traits affecting rice productivity directly and/or indirectly through modulating crop architecture. OsBC1, as a typical bHLH transcription factor, is one of the components comprising a complex formed with LO9-177 and OsBUL1 contributing to modulation of rice leaf inclination and grain size. In the current study, two homologues of OsBC1, OsBCL1 and OsBCL2 were functionally characterized by expressing them under the control of OsBUL1 promoter, which is preferentially expressed in the lamina joint and the spikelet of rice. Increased leaf angle and grain length with elongated cells in the lamina joint and the grain hull were observed in transgenic rice containing much greater gibberellin A3 (GA3) levels than WT, demonstrating that both OsBCL1 and OsBCL2 are positive regulators of cell elongation at least partially through increased GA biosynthesis. Moreover, the cell elongation was likely due to cell expansion rather than cell division based on the related gene expression and, the cell elongation-promoting activities of OsBCL1 and OsBCL2 were functional in a dicot species, Arabidopsis.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/anatomia & histologia , Fenótipo , Folhas de Planta/anatomia & histologia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Oryza/genética , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais
14.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360743

RESUMO

Under natural environments, light quality and quantity are extremely varied. To respond and acclimate to such changes, plants have developed a multiplicity of molecular regulatory mechanisms. Non-photochemical quenching of chlorophyll fluorescence (NPQ) and thylakoid protein phosphorylation are two mechanisms that protect vascular plants. To clarify the role of thylakoid protein phosphorylation in energy-dependent quenching of chlorophyll fluorescence (qE) in rice plants, we used a direct Western blot assay after BN-PAGE to detect all phosphoproteins by P-Thr antibody as well as by P-Lhcb1 and P-Lhcb2 antibodies. Isolated thylakoids in either the dark- or the light-adapted state from wild type (WT) and PsbS-KO rice plants were used for this approach to detect light-dependent interactions between PsbS, PSII, and LHCII proteins. We observed that the bands corresponding to the phosphorylated Lhcb1 and Lhcb2 as well as the other phosphorylated proteins were enhanced in the PsbS-KO mutant after illumination. The qE relaxation became slower in WT plants after 10 min HL treatment, which correlated with Lhcb1 and Lhcb2 protein phosphorylation in the LHCII trimers under the same experimental conditions. Thus, we concluded that light-induced phosphorylation of PSII core and Lhcb1/Lhcb2 proteins is enhanced in rice PsbS-KO plants which might be due to more reactive-oxygen-species production in this mutant.


Assuntos
Clorofila/metabolismo , Fluorescência , Complexos de Proteínas Captadores de Luz/metabolismo , Luz , Oryza/metabolismo , Tilacoides/metabolismo , Clorofila/genética , Complexos de Proteínas Captadores de Luz/genética , Oryza/genética , Fosforilação , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/genética
15.
Ecotoxicol Environ Saf ; 223: 112569, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352582

RESUMO

Transgenic-Bacillus thuringiensis (Bt) crops express insecticidal proteins, which can accumulate in plants and soil where they may influence microbial populations. The impact of Bt crops on bacterial communities has only been assessed under short-term, and results have been contradictory. Here, we analyzed the bacterial communities in three niches, rhizosphere soil (RS), root endosphere (RE) and leaf endosphere (LE), of three Bt rice and their non-Bt parental lines for three consecutive years by high-throughput sequencing. In principal coordinate analysis (PCoA) and PERMANOVA (Adonis) analysis, operational taxonomic units (OTUs) were clustered primarily by niche type and differed significantly in the RE and LE but not in the RS between each of three Bt lines compared with the non-Bt rice line, and not in each respective niche among the three Bt rice lines. The bacterial communities in the RS of different rice lines over the 3 years were clustered mainly by year rather than by lines. The differential bacterial taxa among the lines did not overlap between years, presumably because Cry proteins are rapidly degraded in the soil. A network analysis of RS bacterial communities showed that the network complexity and density for the three Bt rice lines did not decrease compared with those for the non-Bt line. In conclusion, our results demonstrated that bacterial communities differed significantly in RE and LE between Bt and non-Bt rice lines, but the differences were mild and transient, and had no adverse impact on RS over the 3 years. This study provides favorable evidence in support of the commercialization of Bt rice.


Assuntos
Bacillus thuringiensis , Oryza , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Oryza/genética , Plantas Geneticamente Modificadas , Rizosfera
16.
Int J Mol Sci ; 22(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34360677

RESUMO

Inflorescence architecture in rice (Oryza sativa) is mainly determined by spikelets and the branch arrangement. Primary branches initiate from inflorescence meristem in a spiral phyllotaxic manner, and further develop into the panicle branches. The branching patterns contribute largely to rice production. In this study, we characterized a rice verticillate primary branch 1(vpb1) mutant, which exhibited a clustered primary branches phenotype. Gene isolation revealed that VPB1 was a allele of RI, that it encoded a BELL-like homeodomain (BLH) protein. VPB1 gene preferentially expressed in the inflorescence and branch meristems. The arrangement of primary branch meristems was disturbed in the vpb1 mutant. Transcriptome analysis further revealed that VPB1 affected the expression of some genes involved in inflorescence meristem identity and hormone signaling pathways. In addition, the differentially expressed gene (DEG) promoter analysis showed that OsBOPs involved in boundary organ initiation were potential target genes of VPB1 protein. Electrophoretic mobility shift assay (EMSA) and dual-luciferase reporter system further verified that VPB1 protein bound to the promoter of OsBOP1 gene. Overall, our findings demonstrate that VPB1 controls inflorescence architecture by regulating the expression of genes involved in meristem maintenance and hormone pathways and by interacting with OsBOP genes.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo , Inflorescência/metabolismo , Oryza/metabolismo , Transdução de Sinais , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/genética , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Mutação , Oryza/genética , Oryza/crescimento & desenvolvimento
17.
BMC Plant Biol ; 21(1): 390, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418975

RESUMO

BACKGROUND: Panicle is a harvesting organ of rice, and its morphology and development are closely associated with grain yield. The current study was carried on a mutant screened through an EMS (ethyl-methane sulphonate) mutagenized population of a Japonica cultivar Kitaake (WT). RESULTS: A mutant, named as asp-lsl (aberrant spikelet-long sterile lemma), showed a significant decrease in plant height, number of tillers, thousand-grains weight, seed setting rate, spikelet length, kernel length and effective number of grains per panicle as compared to WT. Asp-lsl showed a pleiotropic phenotype coupled with the obvious presence of a long sterile lemma. Cross-sections of lemma showed an increase in the cell volume rather than the number of cells. Genetic segregation analysis revealed its phenotypic trait is controlled by a single recessive nuclear gene. Primary and fine mapping indicated that candidate gene controlling the phenotype of asp-lsl was located in an interval of 212 kb on the short arm of chromosome 8 between RM22445 and RM22453. Further sequencing and indels markers analysis revealed LOC_Os08g06480 harbors a single base substitution (G→A), resulting in a change of 521st amino acid(Gly→Glu. The homology comparison and phylogenetic tree analysis revealed mutation was occurred in a highly conserved domain and had a high degree of similarity in Arabidopsis, corn, and sorghum. The CRISPR/Cas9 mutant line of ASP-LSL produced a similar phenotype as that of asp-lsl. Subcellular localization of ASP-LSL revealed that its protein is localized in the nucleus. Relative expression analysis revealed ASP-LSL was preferentially expressed in panicle, stem, and leaves. The endogenous contents of GA, CTK, and IAA were found significantly decreased in asp-lsl as compared to WT. CONCLUSIONS: Current study presents the novel phenotype of asp-lsl and also validate the previously reported function of OsREL2 (ROMOSA ENHANCER LOCI2), / ASP1(ABERRANT SPIKELET AND PANICLE 1).


Assuntos
Flores/anatomia & histologia , Flores/crescimento & desenvolvimento , Oryza/anatomia & histologia , Oryza/crescimento & desenvolvimento , Oryza/genética , Caules de Planta/anatomia & histologia , Caules de Planta/crescimento & desenvolvimento , China , Grão Comestível/anatomia & histologia , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação , Fenótipo
18.
Environ Pollut ; 287: 117586, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426386

RESUMO

Arsenite [As(III)] toxicity causes impeded growth, inadequate productivity of plants and toxicity through the food chain. Using various chemical residues for priming is one of the approaches in conferring arsenic tolerance in crops. We investigated the mechanism of abscisic acid (ABA)-induced As(III) tolerance in rice genotypes (cv. Swarna and Swarna Sub1) pretreated with 10 µM of ABA for 24 h and transferred into 0, 25 and 50 µM arsenic for 10 days. Plants showed a dose-dependent bioaccumulation of As(III), oxidative stress indicators like superoxide, hydrogen peroxide, thiobarbituric acid reactive substances and the activity of lipoxygenase. As(III) had disrupted cellular redox that reflecting growth indices like net assimilation rate, relative growth rate, specific leaf weight, leaf mass ratio, relative water content, proline, delta-1-pyrroline-5-carboxylate synthetase and electrolyte leakage. ABA priming was more protective in cv. Swarna Sub1 than Swarna for retrieval of total glutathione pool, non-protein thiols, cysteine, phytochelatin and glutathione reductase. Phosphate metabolisms were significantly curtailed irrespective of genotypes where ABA had moderated phosphate uptake and its metabolizing enzymes like acid phosphatase, alkaline phosphatase and H+/ATPase. Rice seedlings had regulated antioxidative potential with the varied polymorphic expression of those enzymes markedly with antioxidative enzymes. The results have given the possible cellular and physiological traits those may interact with ABA priming in the establishment of plant tolerance with As(III) over accumulation and, thereby, its amelioration for oxidative damages. Finally, cv. Swarna Sub1 was identified as a rice genotype as a candidate for breeding program for sustainability against As(III) stress with cellular and physiological traits serving better for selection pressure.


Assuntos
Arsenitos , Oryza , Ácido Abscísico , Arsenitos/toxicidade , Genótipo , Oryza/genética , Locos de Características Quantitativas , Plântula
19.
BMC Plant Biol ; 21(1): 313, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215178

RESUMO

BACKGROUND: Harnessing heterosis is one of the major approaches to increase rice yield and has made a great contribution to food security. The identification and selection of outstanding parental genotypes especially among male sterile lines is a key step for exploiting heterosis. Two-line hybrid system is based on the discovery and application of photoperiod- and thermo-sensitive genic sensitive male sterile (PTGMS) materials. The development of wide-range of male sterile lines from a common gene pool leads to a narrower genetic diversity, which is vulnerable to biotic and abiotic stress. Hence, it is valuable to ascertain the genetic background of PTGMS lines and to understand their relationships in order to select and design a future breeding strategy. RESULTS: A collection of 118 male sterile rice lines and 13 conventional breeding lines from the major rice growing regions of China was evaluated and screened against the photosensitive (pms3) and temperature sensitive male sterility (tms5) genes. The total gene pool was divided into four major populations as P1 possessing the pms3, P2 possessing tms5, P3 possessing both pms3 and tms5 genes, and P4 containing conventional breeding lines without any male sterility allele. The high genetic purity was revealed by homozygous alleles in all populations. The population admixture, principle components and the phylogenetic analysis revealed the close relations of P2 and P3 with P4. The population differentiation analysis showed that P1 has the highest differentiation coefficient. The lines from P1 were observed as the ancestors of other three populations in a phylogenetic tree, while the lines in P2 and P3 showed a close genetic relation with conventional lines. A core collection of top 10% lines with maximum within and among populations genetic diversity was constructed for future research and breeding efforts. CONCLUSION: The low genetic diversity and close genetic relationship among PTGMS lines in P2, P3 and P4 populations suggest a selection sweep and they might result from a backcrossing with common ancestors including the pure lines of P1. The core collection from PTGMS panel updated with new diverse germplasm will serve best for further two-line hybrid breeding.


Assuntos
Oryza/genética , Fotoperíodo , Infertilidade das Plantas/genética , Sementes/genética , Temperatura , Núcleo Celular/genética , Núcleo Celular/efeitos da radiação , Análise por Conglomerados , Ontologia Genética , Estudos de Associação Genética , Marcadores Genéticos , Luz , Nucleotídeos/genética , Oryza/efeitos da radiação , Filogenia , Infertilidade das Plantas/efeitos da radiação , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Reprodutibilidade dos Testes , Sementes/efeitos da radiação
20.
Plant Sci ; 310: 110985, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34315600

RESUMO

Weedy rice (Oryza spp.) is a major nuisance to rice farmers from all over the world. Although the emergence of weedy rice in East Malaysia on the island of Borneo is very recent, the threat to rice yield has reached an alarming stage. Using 47,027 genotyping-by-sequencing (GBS)-derived SNPs and candidate gene analysis of the plant architecture domestication gene TAC1, we assessed the genetic variations and evolutionary origin of weedy rice in East Malaysia. Our findings revealed two major evolutionary paths for genetically distinct weedy rice types. Whilst the cultivar-like weedy rice are very likely to be the weedy descendant of local coexisting cultivars, the wild-like weedy rice appeared to have arisen through two possible routes: (i) accidental introduction from Peninsular Malaysia weedy rice populations, and (ii) weedy descendants of coexisting cultivars. The outcome of our genetic analyses supports the notion that Sabah cultivars and Peninsular Malaysia weedy rice are the potential progenitors of Sabah weedy rice. Similar TAC1 haplotypes were shared between Malaysian cultivated and weedy rice populations, which further supported the findings of our GBS-SNP analyses. These different strains of weedy rice have convergently evolved shared traits, such as seeds shattering and open tillers. A comparison with our previous simple-sequence repeat-based population genetic analyses highlights the strength of genome-wide SNPs, including detection of admixtures and low-level introgression events. These findings could inform better strategic management for controlling the spread of weedy rice in the region.


Assuntos
Fluxo Gênico/genética , Oryza/genética , Polimorfismo de Nucleotídeo Único/genética , Evolução Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...