Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.698
Filtrar
1.
Food Chem ; 430: 136984, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37557031

RESUMO

Flavonoids are the main metabolites responsible for yellowing of rice. However, the accumulation pattern of flavonoids and the metabolic basis of flavonoid biosynthesis during rice yellowing remain unclear. Thus, flavonoid-targeted metabolomics was used to investigate the composition and concentration of flavonoids in rice during yellowing. The results indicated the differential flavonoids at Month 3 and Month 5 of storage were more in composition and concentration with higher antioxidant capacity. Accumulated flavonoids were mainly flavones, flavonols, isoflavones, and anthocyanidins, of which rutin, farrerol, naringenin, cyanidin 3-rutinoside, and diosmetin were the indicators of rice yellowing. Metabolic association among flavonoids demonstrated the formation of yellow pigments was jointly induced by flavones, flavonols, isoflavones, and anthocyanidins metabolism. Examination of flavonoid metabolism presented in this study enhanced current understanding of the relationship between flavonoid metabolites and development of rice yellowing. It also offers a theoretical basis for targeted prediction of rice yellowing in the future.


Assuntos
Flavonas , Isoflavonas , Oryza , Antocianinas/metabolismo , Oryza/metabolismo , Flavonoides/metabolismo , Flavonóis/metabolismo , Flavonas/metabolismo , Metabolômica/métodos , Isoflavonas/metabolismo
2.
Food Chem ; 431: 137101, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37572487

RESUMO

The effects of Ca2+, Cu2+, and Fe3+ on rice protein (RP) fibril formation were investigated in this study. Low Ca2+ concentration (≤150 mM) moderately unfolded the conformation of RP, promoting the exposure of hydrophobic sites and RP fibril assembly. Fibril formation was especially promoted with earlier addition of Ca2+. Cu2+ and Fe3+ inhibited RP fibril formation in a dose-dependent manner, and the inhibitory effect of Fe3+ was stronger due to higher affinity with RP. Additionally, the addition of Cu2+ and Fe3+ reduced α-helix and ß-sheet contents of RP, respectively, hindering the formation of stacked ß-sheet, the main internal structure of fibrils. These two ions also resulted in the formation of random aggregates within 15-50 nm, which further inhibited the conversion of proteins to fibrils. Moreover, Cu2+ and Fe3+ prevented the recruitment of nucleus into fibril-growth-sites, and formed fibrils were disrupted into fragments when these ions were added.


Assuntos
Oryza , Oryza/metabolismo , Amiloide/metabolismo , Estrutura Secundária de Proteína , Metais , Íons
3.
Pestic Biochem Physiol ; 194: 105530, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532339

RESUMO

Eleusine indica causes problems in direct-seeding rice fields across Jiangsu Province in China. Long-term application of chemical herbicides has led to the widespread evolution of resistance in E. indica. In this study, we surveyed the resistance level of cyhalofop-butyl (CyB) in 19 field-collected E. indica biotypes, and characterized its underlying resistance mechanisms. All 19 biotypes evolved moderate- to high-level resistance to CyB (from 5.8- to 171.1-fold). 18 biotypes had a target-site mechanism with Trp-1999-Ser, Trp-2027-Cys, or Asp-2078-Gly mutations, respectively. One biotype (JSSQ-1) was identified to have metabolic resistance, in which malathion pretreatment significantly reduced the CyB resistance, and cyhalofop acid was degraded 1.7- to 2.5-times faster in this biotype compared with a susceptible control. Furthermore, the JSSQ-1 biotype showed multiple resistance to acetyl-CoA carboxylase (ACCase) inhibitor metamifop (RI = 4.6) and fenoxaprop-p-ethyl (RI = 5.1), acetolactate synthase (ALS) inhibitor imazethapyr (RI = 4.1), and hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor mesotrione (RI = 3.5). In addition, 11 out of 19 E. indica biotypes exhibited multiple resistance to glyphosate. This research has identified the widespread occurrence of CyB resistance in E. indica, attributed to target-site mutations or enhanced metabolism. Moreover, certain biotypes have exhibited resistance to multiple herbicides or even cross-resistance. Consequently, there is an urgent need to implement diverse weed management practices to effectively combat the proliferation of this weed in rice fields.


Assuntos
Eleusine , Herbicidas , Oryza , Eleusine/genética , Acetil-CoA Carboxilase/metabolismo , Resistência a Herbicidas/genética , Oryza/genética , Oryza/metabolismo , Mutação , Herbicidas/farmacologia
4.
Pestic Biochem Physiol ; 194: 105463, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532308

RESUMO

Plant glutathione S-transferase (GST, EC 2.5.1.18) is an enzyme that detoxifies various electrophilic compounds including herbicides and organic pollutants by catalyzing the formation of conjugates with reduced glutathione (GSH). Although the structure and function of the GST subunits in rice, an important food in Asia, are not well understood, they are crucial for herbicide development. To investigate the role of active site residues in rice Phi-class GSTF3 (OsGSTF3), evolutionarily conserved serine residues were replaced with alanine using site-directed mutagenesis to obtain the mutants S13A, S38A, S69A, and S169A. These four mutants were expressed in Escherichia coli and purified to electrophoretic homogeneity using immobilized GSH affinity chromatography. Mutation of Ser13 to Ala resulted in substantial reductions in specific activities and kcat/Km values for the GSH-[1-chloro-2,4-dinitrobenzene (CDNB)] conjugation reaction. In contrast, mutations of Ser38, Ser69, and Ser169 to Ala had little effect on the activities and kinetic parameters. Additionally, the mutation of Ser13 to Ala significantly affected the KmGSH and I50 values of S-hexylglutathione and S-(2,4-dinitrophenyl)glutathione, which compete with GSH and the product of GSH-CDNB conjugation, respectively. A pH-log (kcat/KmCDNB) plot was used to estimate the pKa value of GSH in the enzyme-GSH complex of the wild-type enzyme, which was approximately 6.9. However, the pKa value of GSH in the enzyme-GSH complex of the S13A mutant was approximately 8.7, which was about 1.8 pK units higher than that of the wild-type enzyme. OsGSTF3 was also crystallized for crystallographic study, and the structure analyses revealed that Ser13 is located in the active site and that its side chain is in close proximity to the thiol group of glutathione bound in the enzyme. Based on these substitution effects on kinetic parameters, the dependence of kinetic parameters on the pH and 3-dimensional structure, it was suggested that Ser13 in rice OsGSTF3 is the residue responsible for catalytic activity by lowering the pKa of GSH in the enzyme-GSH complex and enhancing the nucleophilicity of the GSH thiol in the active site.


Assuntos
Oryza , Domínio Catalítico , Oryza/genética , Oryza/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Serina , Compostos de Sulfidrila/metabolismo , Cinética , Glutationa/metabolismo , Sítios de Ligação
5.
Nat Commun ; 14(1): 4674, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542048

RESUMO

Ethylene plays essential roles in rice growth, development and stress adaptation. Translational control of ethylene signaling remains unclear in rice. Here, through analysis of an ethylene-response mutant mhz9, we identified a glycine-tyrosine-phenylalanine (GYF) domain protein MHZ9, which positively regulates ethylene signaling at translational level in rice. MHZ9 is localized in RNA processing bodies. The C-terminal domain of MHZ9 interacts with OsEIN2, a central regulator of rice ethylene signaling, and the N-terminal domain directly binds to the OsEBF1/2 mRNAs for translational inhibition, allowing accumulation of transcription factor OsEIL1 to activate the downstream signaling. RNA-IP seq and CLIP-seq analyses reveal that MHZ9 associates with hundreds of RNAs. Ribo-seq analysis indicates that MHZ9 is required for the regulation of ~ 90% of genes translationally affected by ethylene. Our study identifies a translational regulator MHZ9, which mediates translational regulation of genes in response to ethylene, facilitating stress adaptation and trait improvement in rice.


Assuntos
Oryza , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação , Etilenos/metabolismo , RNA/metabolismo , Regulação da Expressão Gênica de Plantas
6.
J Hazard Mater ; 459: 132177, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37531761

RESUMO

In this study, 14C-tracers were used to investigate the fate of BPA in flooded soil with or without rice plants during a complete growing period. In flooded soil, the dissipation of BPA (half-life 14.8 d) was accompanied by its mineralization (8.4% of the initially applied radioactivity) and the formation of non-extractable residues (NERs) in amounts (79.5%) similar to that formed under oxic conditions. The growth of rice significantly accelerated the dissipation of BPA in flooded soil, resulting in a reduction in both the half-life (5.6 d) and the amount of NERs (35.8%). Two non-polar metabolites were detected both in unplanted and in rice-planted soil. At rice harvest, 57.1% of the radioactivity had accumulated in rice plants, mainly as NERs (54.2%) rather than as extractable radioactivity (2.7%), and mainly in roots (34.5 ± 1.4%), stems (9.4 ± 1.1%), and leaves (8.8 ± 0.6%), with trace amounts in seeds (3.6 ± 0.3%) and seed shells (0.7 ± 0.05%). Our study thus demonstrates that the oxic-anoxic interface stimulates the dissipation of BPA in flooded soil. The link between the releasing of NERs in flooded soil and the uptake of BPA metabolites by rice should be considered in environmental risk assessments of agroecosystems.


Assuntos
Oryza , Poluentes do Solo , Solo/química , Oryza/metabolismo , Poluentes do Solo/metabolismo , Fenóis/química
7.
J Hazard Mater ; 459: 132214, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37544174

RESUMO

Copper (Cu) is vital for plant growth but becomes toxic in excess, posing potential threats to human health. Although receptor-like kinases (RLKs) have been studied in plant response to abiotic stresses, their roles in Cu stress response remain poorly understood. Therefore, we aimed to evaluate Cu toxicity effects on rice and elucidate its potential molecular mechanisms. Specifically, rice lectin-type RLK OsCORK1 (Copper-response receptor-like kinase 1) function in Cu stress response was investigated. RNA sequencing and expression assays revealed that OsCORK1 is mainly expressed in roots and leaves, and its expression was significantly induced by Cu stress time- and dose-dependently. Kinase activity assays demonstrated OsCORK1 as a Mn2+-preferred functional kinase. Genetically, OsCORK1 gene-edited mutants exhibited increased tolerance to Cu stress and reduced Cu accumulation compared to the wild type (WT). Conversely, OsCORK1 overexpression compromised the Cu stress tolerance observed in OsCORK1 gene-edited mutants. OsCORK1 gene-edited mutants slightly damaged the root tips compared to the WT under Cu stress. Furthermore, OsCORK1 was demonstrated to modulate Cu stress tolerance by mainly altering cell wall components, particularly lignin, in rice. Overall, OsCORK1 is an important negative regulator of Cu stress tolerance, providing a potential gene target to reduce Cu pollution in rice production.


Assuntos
Cobre , Oryza , Humanos , Cobre/toxicidade , Cobre/metabolismo , Oryza/metabolismo , Lectinas/genética , Lectinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
8.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37569762

RESUMO

Saline-alkaline stress is one of the major damages that severely affects rice (Oryza sativa L.) growth and grain yield; however, the mechanism of the tolerance remains largely unknown in rice. Herein, we comparatively investigated the transcriptome and metabolome of two contrasting rice subspecies genotypes, Luohui 9 (abbreviation for Chao2R under study, O. sativa ssp. indica, saline-alkaline-sensitive) and RPY geng (O. sativa ssp. japonica, saline-alkaline-tolerant), to identify the main pathways and important factors related to saline-alkaline tolerance. Transcriptome analysis showed that 68 genes involved in fatty acid, amino acid (such as phenylalanine and tryptophan), phenylpropanoid biosynthesis, energy metabolism (such as Glycolysis and TCA cycle), as well as signal transduction (such as hormone and MAPK signaling) were identified to be specifically upregulated in RPY geng under saline-alkaline conditions, implying that a series of cascade changes from these genes promotes saline-alkaline stress tolerance. The transcriptome changes observed in RPY geng were in high accordance with the specifically accumulation of metabolites, consisting mainly of 14 phenolic acids, 8 alkaloids, and 19 lipids based on the combination analysis of transcriptome and metabolome. Moreover, some genes involved in signal transduction as hub genes, such as PR5, FLS2, BRI1, and NAC, may participate in the saline-alkaline stress response of RPY geng by modulating key genes involved in fatty acid, phenylpropanoid biosynthesis, amino acid metabolism, and glycolysis metabolic pathways based on the gene co-expression network analysis. The present research results not only provide important insights for understanding the mechanism underlying of rice saline-alkaline tolerance at the transcriptome and metabolome levels but also provide key candidate target genes for further enhancing rice saline-alkaline stress tolerance.


Assuntos
Oryza , Transcriptoma , Plântula/genética , Oryza/metabolismo , Perfilação da Expressão Gênica/métodos , Metabolômica , Regulação da Expressão Gênica de Plantas
9.
Molecules ; 28(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37570719

RESUMO

Obesity is a major risk factor for a variety of diseases and contributes to chronic inflammation. Resveratrol is a naturally occurring antioxidant that can reduce adipogenesis. In this study, the antiadipogenic and anti-inflammatory activities of resveratrol-enriched rice were investigated in 3T3-L1 adipocyte cells. Cotreatment of dexamethasone and isobutylmethylxanthin upregulated adipogenic transcription factors and signaling pathways. Subsequent treatment of adipocytes with rice seed extracts suppressed the differentiation of 3T3-L1 by downregulating adipogenic transcription factors (peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α) and signaling pathways (extracellular signal-regulated kinase 1/2 and protein kinase B Akt), this was especially observed in cells treated with germinated resveratrol-enriched rice seed extract (DJ526_5). DJ526_5 treatment also markedly reduced lipid accumulation in the cells and expression of adipogenic genes. Lipopolysaccharide (LPS)-induced inflammatory cytokines (prostaglandin-endoperoxide synthase 2 (COX-2), tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6) decreased in cells treated with DJ526_5. Collectively, DJ526_5 exerts antiadipogenic effects by suppressing the expression of adipogenesis transcription factors. Moreover, DJ526_5 ameliorates anti-inflammatory effects in 3T3-L1 adipocytes by inhibiting the activation of phosphorylation NF-κB p65 and ERK ½ (MAPK). These results highlight the potential of resveratrol-enriched rice as an alternative obesity-reducing and anti-inflammatory agent.


Assuntos
Adipogenia , Oryza , Camundongos , Animais , Oryza/metabolismo , Resveratrol/farmacologia , Resveratrol/metabolismo , Células 3T3-L1 , Diferenciação Celular , Obesidade/metabolismo , Fatores de Transcrição/metabolismo , Sementes/metabolismo , Adipócitos , PPAR gama/metabolismo
10.
Chemosphere ; 339: 139683, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37532205

RESUMO

Cyanide (CN-) assimilation in plants takes place by ß-cyanoalanine synthase (ß-CAS) and sulfurtransferase (ST), in which the ST pathway converts CN- into thiocyanate (SCN-). Both chemicals (CN- and SCN-) are frequently detected in the effluent of gold mining operations. In this connection, exogenous SCN- was applied to rice plants with CN- and compared with CN- alone to investigate its effects on CN- assimilation and degradation pathways. Interestingly, the CN- and SCN- content in both roots and shoots were increased with the increase in "CN-" treatments, but surprisingly their content under "SCN-+CN-" treatments did not show the similar trend. The increasing trend remained the same for CN- but the SCN- content was constant with increasing CN- concentrations in comparison with the control (SCN- alone). Additionally, the assimilation rates of CN- in rice plants under "SCN-+CN-" treatments were significantly higher than "CN-" treatments. The application of SCN- with CN- mostly alters the expression of both ß-CAS and ST-associated genes. On one side, the application of SCN- significantly repressed the expression of genes encoded with ST in rice plants, but on the other side, it significantly up-regulated the expression of the ß-CAS gene located in mitochondria. These results reveal that the application of exogenous SCN- increases CN- assimilation rates by inhibiting the ST pathway and stimulating the ß-CAS pathway. This study would provide new insight into the positive effects of exogenous SCN- in increasing CN- assimilation by altering the degradation pathways in rice plants.


Assuntos
Cianetos , Oryza , Cianetos/toxicidade , Oryza/metabolismo , Tiocianatos/farmacologia , Sulfurtransferases/genética , Sulfurtransferases/farmacologia
11.
Methods Mol Biol ; 2686: 59-82, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540354

RESUMO

The initial seminal studies of flower developmental genetics were made from observations in several eudicot model species, particularly Arabidopsis and Antirrhinum. However, an increasing amount of research in monocot model and crop species is finally giving the credit that monocots deserve for their position in the evolutionary history of Angiosperms, their astonishing diversification and adaptation, their diversified floral structures, their pivotal function in most ecosystems on Earth and, finally, their importance in agriculture and farming, economy, landscaping and feeding mankind. Rice is a staple crop and the major monocot model to study the reproductive phase and flower evolution. Inspired by this, this chapter reviews a story of highly conserved functions related to the ABC model of flower development. Nevertheless, this model is complicated in rice by cases of gene neofunctionalization, like the recruitment of MADS-box genes for the development of the unique organs known as lemma and palea, subfunctionalization, and rewiring of conserved molecular pathways.


Assuntos
Magnoliopsida , Oryza , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Ecossistema , Flores , Magnoliopsida/genética , Regulação da Expressão Gênica de Plantas , Filogenia
12.
J Plant Physiol ; 287: 154057, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37531662

RESUMO

Strigolactones (SLs) inhibit shoot branching/tillering and are secreted by plant roots as a signal to attract symbiotic mycorrhizal fungi in the rhizosphere, particularly under phosphate starvation. However, SLs are also hijacked by root parasitic weeds as inducer for the germination of their seeds. There are around 35 natural SLs divided, based on their structures, into canonical and non-canonical SLs. Cytochrome P450 enzymes of the 711 clade, such as MORE AXILLARY GROWTH1 (MAX1) in Arabidopsis, are a major driver of SL structural diversity. Monocots, such as rice, contain several MAX1 homologs that participate in SL biosynthesis. To investigate the function of OsMAX1-1900 in planta, we generated CRISPR/Cas9 mutants disrupted in the corresponding gene. Characterizing of the generated mutants at metabolite and phenotype level suggests that OsMAX1-1900 loss-of-function does neither affect the SL pattern nor rice architecture, indicating functional redundancy among rice MAX1 homologs.


Assuntos
Arabidopsis , Oryza , Oryza/genética , Oryza/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/genética , Lactonas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo
13.
Environ Pollut ; 335: 122353, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37562527

RESUMO

Persistent organic pollutants (POPs) in agricultural soil often triggered metabolic alterations and phytotoxicity in plants, ultimately threatening crop quality. Unraveling the phytotoxic mechanisms of POPs in crops is critical for evaluating their environmental risks. Herein, the molecular mechanism of POP-induced phytotoxicity in rice (Oryza sativa L.) was analyzed using metabolic profile, enzyme activity, and gene expression as linkages, including polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers, polychlorinated biphenyls, and phthalate esters. Despite no observable changes in phenotypic traits (e.g., biomass and length of aboveground), the levels of reactive oxygen species (ROS) were promoted under stresses of the tested POPs, particularly 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), dibutyl phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP). Metabolomics analysis revealed that ROS contents positively correlated with metabolic perturbation levels (r = 0.83), among which the galactose metabolism was significantly inhibited when exposed to DBP, DEHP, or BDE-47. The α-Galactosidase (α-Gal) involved in galactose metabolism was targeted as the key enzyme for the phytotoxicity of DBP, DEHP, and BDE-47, which was revealed by the inhibition of saccharide levels (45.5-82.1%), the catalytic activity of α-Gal (18.5-24.3%), and the gene expression (28.5-34.5%). Molecular docking simulation suggested that the three POPs occupied the active sites of α-Gal and formed a stable protein-ligand complex, thus inhibiting the catalytic activity of α-Gal. Partial least-squares regression analysis indicated that α-Gal activity was negatively associated with hydrogen bond acceptor, rotatable bond, and topological polar surface area of POPs. The results offered novel insights into the molecular mechanisms of phytotoxicity of POPs and provided important information for evaluating the environmental risk of POPs.


Assuntos
Dietilexilftalato , Poluentes Ambientais , Oryza , Bifenilos Policlorados , Oryza/metabolismo , Poluentes Orgânicos Persistentes/metabolismo , alfa-Galactosidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Dietilexilftalato/toxicidade , Dietilexilftalato/metabolismo , Galactose , Simulação de Acoplamento Molecular , Estresse Oxidativo , Éteres Difenil Halogenados/análise , Poluentes Ambientais/análise , Bifenilos Policlorados/análise , Dibutilftalato/metabolismo
14.
Funct Integr Genomics ; 23(3): 271, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37561192

RESUMO

Rice (Oryza sativa L.) is one of the most important dietary carbohydrate sources for half of the world's population. However, it is not well adapted to environmental stress conditions, necessitating to create new and improved varieties to help ensure sufficient rice production in the face of rising populations and shrinking arable land. Recently, the development of the CRISPR/Cas9 gene editing system has allowed researchers to study functional genomics and engineer new rice varieties with great efficiency compared to conventional methods. In this study, we investigate the involvement of OsGER4, a germin-like protein identified by a genome-wide association study that is associated with rice root development under a stress hormone jasmonic acids treatment. Analysis of the OsGER4 promoter region revealed a series of regulatory elements that connect this gene to ABA signaling and water stress response. Under heat stress, osger4 mutant lines produce a significantly lower crown root than wild-type Kitaake rice. The loss of OsGER4 also led to the reduction of lateral root development. Using the GUS promoter line, OsGER4 expression was detected in the epidermis of the crown root primordial, in the stele of the crown root, and subsequently in the primordial of the lateral root. Taken together, these results illustrated the involvement of OsGER4 in root development under heat stress by regulating auxin transport through plasmodesmata, under control by both ABA and auxin signaling.


Assuntos
Oryza , Oryza/metabolismo , Raízes de Plantas/metabolismo , Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resposta ao Choque Térmico/genética , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas
15.
J Agric Food Chem ; 71(32): 12357-12367, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37549031

RESUMO

Improving the proteins and amino acid contents of rice seeds is one of the prime objectives of plant breeders. We recently developed an EMS mutant/high-protein mutant (HPM) of rice that exhibits 14.8% of the total protein content as compared to its parent Dharial (wild-type), which shows only 9.3% protein content in their mature seeds. However, the mechanisms underlying the higher protein accumulation in these HPM seeds remain largely elusive. Here, we utilized high-throughput proteomics to examine the differences in the proteome profiles of the embryo, endosperm, and bran tissues of Dharial and HPM seeds. Utilizing a label-free quantitative proteomic and subsequent functional analyses of the identified proteins revealed that nitrogen compound biosynthesis, intracellular transport, protein/amino acid synthesis, and photosynthesis-related proteins were specifically enriched in the endosperm and bran of the high-protein mutant seed. Our data have uncovered proteome-wide changes highlighting various functions of metabolic pathways associated with protein accumulation in rice seeds.


Assuntos
Oryza , Proteoma , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteômica , Sementes/genética , Sementes/metabolismo
16.
Plant Physiol Biochem ; 202: 107923, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37549571

RESUMO

Seed dormancy is a critical trait that enhances plant survival by preventing seed germination at the wrong time or under unsuitable conditions. Lack of seed dormancy in rice can lead to pre-harvest sprouting on mother plants leading to reduced yield and seed quality. Although some genes have been identified, knowledge of regulation of seed dormancy is limited. Here, we characterized a weak seed dormancy mutant named weak seed dormancy 1 (wsd1) that showed a higher seed germination percentage than the wild-type following the harvest ripeness. We cloned the WSD1 encoding an aminotransferase protein using a MutMap approach. WSD1 was stably expressed after imbibition and its protein was localized in the endoplasm reticulum. A widely targeted metabolomics assay and amino acid analysis showed that WSD1 had a role in regulating homeostasis of amino acids. PAC treatment and RNA-seq analysis showed that WSD1 regulates seed dormancy by involvement in the GA biosynthesis pathway. GA1 content and expression of GA biosynthesis-related genes were increased in the wsd1 mutant compared with the wild-type. The wsd1 mutant had reduced sensitivity to ABA. Our overall results indicated that WSD1 regulates seed dormancy by balancing the ABA and GA pathways.


Assuntos
Oryza , Dormência de Plantas , Dormência de Plantas/genética , Oryza/metabolismo , Giberelinas/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Transaminases/genética , Transaminases/metabolismo , Sementes/metabolismo , Germinação/genética , Regulação da Expressão Gênica de Plantas
18.
Int J Mol Sci ; 24(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37511287

RESUMO

In this study, a transcriptomic analysis of the dehydration rate of mature rice seeds was conducted to explore candidate genes related to the dehydration rate and provide a theoretical basis for breeding and utilization. We selected two rice cultivars for testing (Baghlani Nangarhar, an extremely rapid dehydration genotype, and Saturn, a slow dehydration genotype) based on the results determined by previous studies conducted on the screening of 165 germplasm materials for dehydration rate phenotypes. A rapid dehydration experiment performed on these two types of seeds was conducted. Four comparative groups were set up under control and dehydration conditions. The differentially expressed genes (DEGs) were quantified via transcriptome sequencing and real-time quantitative PCR (RT-qPCR). GO (Gene ontology) and KEGG(Kyoto Encyclopedia of Genes and Genomes) analyses were also conducted. In Baghlani Nangarhar, 53 DEGs were screened, of which 33 were up-regulated and 20 were down-regulated. In Saturn, 25 DEGs were screened, of which 19 were up-regulated and 6 were down-regulated. The results of the GO analysis show that the sites of action of the differentially expressed genes enriched in the rapid dehydration modes are concentrated in the cytoplasm, internal components of the membrane, and nucleosomes. They play regulatory roles in the processes of catalysis, binding, translocation, transcription, protein folding, degradation, and replication. They are also involved in adaptive responses to adverse external environments, such as reactive oxygen species and high temperature. The KEGG analysis showed that protein processing in the endoplasmic reticulum, amino acid biosynthesis, and oxidative phosphorylation were the main metabolic pathways that were enriched. The key differentially expressed genes and the most important metabolic pathways identified in the rapidly and slowly dehydrated genotypes were protein processing in the endoplasmic reticulum and oxidative phosphorylation metabolism. They were presumed to have important regulatory roles in the mechanisms of stress/defense, energy metabolism, protein synthesis/folding, and signal transduction during the dehydration and drying of mature seeds. The results of this study can potentially provide valuable information for further research on the genes and metabolic pathways related to the dehydration rate of mature rice seeds, and provide theoretical guidance for the selection and breeding of new rice germplasm that can be rapidly dehydrated at the mature stage.


Assuntos
Oryza , Transcriptoma , Oryza/genética , Oryza/metabolismo , Desidratação/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sementes/genética
19.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511600

RESUMO

Melanin production is an important process that prevents the host skin from harmful ultraviolet radiation; however, an overproduction of melanin results in skin diseases. In the present study, we determined the antioxidative and anti-melanogenic activities of polyphenol- and flavonoid-enriched rice seed extracts in melan-a cells. The polyphenol and flavonoid content of Hopum (HP) and Sebok (SB) rice seed extracts was measured. The antioxidant capacity was determined using the ABTS radical scavenging method. SB contained high amounts of polyphenols and flavonoids, which significantly increased antioxidative activity compared with HP. Various concentrations of these extracts were evaluated in a cytotoxicity using melan-a cells. At 100 µg/mL, there was no significant difference for all treatments compared with untreated cells. Therefore, 100 µg/mL was selected as a concentration for the further experiments. SB significantly suppressed the phosphorylation/activation of p-38 MAPK, increased the expression of phosphorylated ERK 1/2 and Akt, and downregulated the microphthalmia-associated transcription factor (MITF). This resulted in decreased levels of tyrosinase and tyrosinase-related protein-1 and -2. These results indicate the potential of polyphenol- and flavonoid-enriched rice seed as a treatment for hyperpigmentation.


Assuntos
Melaninas , Oryza , Melaninas/metabolismo , Flavonoides/farmacologia , Polifenóis/farmacologia , Regulação para Baixo , Oryza/metabolismo , Transdução de Sinais , Fator de Transcrição Associado à Microftalmia/metabolismo , Antígeno MART-1/metabolismo , Antígeno MART-1/farmacologia , Raios Ultravioleta , Monofenol Mono-Oxigenase/metabolismo , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral
20.
Mol Biol Rep ; 50(9): 7381-7392, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37450076

RESUMO

BACKGROUND: Alkaline-salt is one of the abiotic stresses that slows plant growth and developmental processes and threatens crop yield. Long non-coding RNAs (lncRNAs) are endogenous RNA found in plants that engage in a variety of cellular functions and stress responses. METHOD: lncRNAs act as competing endogenous RNAs (ceRNA) and constitute a new set of gene control. The precise regulatory mechanism by which lncRNAs function as ceRNAs in response to alkaline-salt stress remains unclear. We identified alkaline-salt responsive lncRNAs using transcriptome-wide analysis of two varieties including alkaline-salt tolerant [WD20342 (WD)] and alkaline-salt sensitive [Caidao (CD)] rice cultivar under control and alkaline-salt stress treated [WD20342 (WDT, and Caidao (CDT)] conditions. RESULTS: Investigating the competitive relationships between mRNAs and lncRNAs, we next built a ceRNA network involving lncRNAs based on the ceRNA hypothesis. Expression profiles revealed that a total of 65, 34, and 1549 differentially expressed (DE) lncRNAs, miRNAs, and mRNAs were identified in alkaline-salt tolerant WD (Control) vs. WDT (Treated). Similarly, 75 DE-lncRNAs, 34 DE-miRNAs, and 1725 DE-mRNAs (including up-regulated and down-regulated) were identified in alkaline-salt sensitive CD (Control) vs. CDT (Treated), respectively. An alkaline-salt stress ceRNA network discovered 321 lncRNA-miRNA-mRNA triplets in CD and CDT, with 32 lncRNAs, 121 miRNAs, and 111 mRNAs. Likewise, 217 lncRNA-miRNA-mRNA triplets in WD and WDT revealed the NONOSAT000455-osa_miR5809b-LOC_Os11g01210 triplet with the highest degree as a hub node with the most significant positive correlation in alkaline-salt stress response. CONCLUSION: The results of our investigation indicate that osa-miR5809b is dysregulated and plays a part in regulating the defense response of rice against alkaline-salt stress. Our study highlights the regulatory functions of lncRNAs acting as ceRNAs in the mechanisms underlying alkaline-salt resistance in rice.


Assuntos
MicroRNAs , Oryza , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Oryza/genética , Oryza/metabolismo , Redes Reguladoras de Genes , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Salino/genética , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...