Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.093
Filtrar
1.
Molecules ; 26(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562298

RESUMO

Osteoarthritis (OA) is considered one of the most common arthritic diseases characterized by progressive degradation and abnormal remodeling of articular cartilage. Potential therapeutics for OA aim at restoring proper chondrocyte functioning and inhibiting apoptosis. Previous studies have demonstrated that tauroursodeoxycholic acid (TUDCA) showed anti-inflammatory and anti-apoptotic activity in many models of various diseases, acting mainly via alleviation of endoplasmic reticulum (ER) stress. However, little is known about cytoprotective effects of TUDCA on chondrocyte cells. The present study was designed to evaluate potential effects of TUDCA on interleukin-1ß (IL-1ß) and tunicamycin (TNC)-stimulated NHAC-kn chondrocytes cultured in normoxic and hypoxic conditions. Our results showed that TUDCA alleviated ER stress in TNC-treated chondrocytes, as demonstrated by reduced CHOP expression; however, it was not effective enough to prevent apoptosis of NHAC-kn cells in either normoxia nor hypoxia. However, co-treatment with TUDCA alleviated inflammatory response induced by IL-1ß, as shown by down regulation of Il-1ß, Il-6, Il-8 and Cox2, and increased the expression of antioxidant enzyme Sod2. Additionally, TUDCA enhanced Col IIα expression in IL-1ß- and TNC-stimulated cells, but only in normoxic conditions. Altogether, these results suggest that although TUDCA may display chondoprotective potential in ER-stressed cells, further analyses are still necessary to fully confirm its possible recommendation as potential candidate in OA therapy.


Assuntos
Inflamação/tratamento farmacológico , Interleucina-1beta/genética , Osteoartrite/tratamento farmacológico , Ácido Tauroquenodesoxicólico/farmacologia , Fator de Transcrição CHOP/genética , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/crescimento & desenvolvimento , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , Células Cultivadas , Condrócitos/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Inflamação/genética , Inflamação/patologia , Osteoartrite/genética , Osteoartrite/patologia , Ácido Tauroquenodesoxicólico/química , Tunicamicina/farmacologia
2.
Life Sci ; 270: 119143, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33539913

RESUMO

Osteoarthritis (OA) is the joint pain and dysfunction syndrome caused by severe joint degeneration. The overproduced inflammatory mediators contribute greatly to OA development. It is reported that long non-coding RNA (lncRNA) takes part in many inflammatory diseases. Here, we mainly explored the function of lncRNA SNHG14 in OA process and its specific mechanisms. An OA rat model was induced by destabilizing the medial meniscus (DMM) and IL-1ß (5 ng/mL) was used to mediate an OA cell model in particular chondrocytes (AC). Gain- or loss-of functional assays of SNHG14 and miR-124-3p were carried out to explore their roles in OA development. The experimental statistics illustrated that lncRNA SNHG14 and IL-1ß mRNA expression were both increased in OA tissues, while miR-124-3p was lowly-expressed. Linear regression analysis showed that SNHG14 and miR-124-3p had negative relationship in the OA tissues. In the in vitro experiments, downregulation of lncRNA SNHG14 promoted the proliferation of IL-1ß-treated AC and inhibited cell apoptosis and COX-2, iNOS, TNF-α, IL-6 expression. Moreover, lncRNA SNHG14 inhibited miR-124-3p expression as a miRNA sponge. MiR-124-3p targeted the 3'non-translated region (3'UTR) of FSTL-1 and TLR4 and inhibited their expressions. Also, the in vivo experiments confirmed that knocking down SNHG14 relieved the progression of OA in rats via inhibiting inflammatory responses. In conclusion, this study confirmed that downregulation of lncRNA SNHG14 inhibits FSTL-1-mediated activation of NLRP3 and TLR4/NF-κB signalling pathway activation by targeting miR-124-3p, thus attenuating inflammatory reactions in OA.


Assuntos
MicroRNAs/genética , Osteoartrite/genética , RNA Longo não Codificante/genética , Adulto , Animais , Apoptose , China , Condrócitos/metabolismo , Feminino , Proteínas Relacionadas à Folistatina/genética , Proteínas Relacionadas à Folistatina/metabolismo , Humanos , Inflamação/metabolismo , Interleucina-1beta , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteoartrite/metabolismo , RNA Longo não Codificante/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
3.
Nat Commun ; 12(1): 1309, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637762

RESUMO

Osteoarthritis causes pain and functional disability for over 500 million people worldwide. To develop disease-stratifying tools and modifying therapies, we need a better understanding of the molecular basis of the disease in relevant tissue and cell types. Here, we study primary cartilage and synovium from 115 patients with osteoarthritis to construct a deep molecular signature map of the disease. By integrating genetics with transcriptomics and proteomics, we discover molecular trait loci in each tissue type and omics level, identify likely effector genes for osteoarthritis-associated genetic signals and highlight high-value targets for drug development and repurposing. These findings provide insights into disease aetiopathology, and offer translational opportunities in response to the global clinical challenge of osteoarthritis.


Assuntos
Predisposição Genética para Doença/genética , Osteoartrite/genética , Locos de Características Quantitativas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Fenótipo , Fatores de Transcrição/genética , Transcriptoma
4.
Nat Commun ; 12(1): 467, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33473114

RESUMO

Osteoarthritis causes debilitating pain and disability, resulting in a considerable socioeconomic burden, yet no drugs are available that prevent disease onset or progression. Here, we develop, validate and use rapid-throughput imaging techniques to identify abnormal joint phenotypes in randomly selected mutant mice generated by the International Knockout Mouse Consortium. We identify 14 genes with functional involvement in osteoarthritis pathogenesis, including the homeobox gene Pitx1, and functionally characterize 6 candidate human osteoarthritis genes in mouse models. We demonstrate sensitivity of the methods by identifying age-related degenerative joint damage in wild-type mice. Finally, we phenotype previously generated mutant mice with an osteoarthritis-associated polymorphism in the Dio2 gene by CRISPR/Cas9 genome editing and demonstrate a protective role in disease onset with public health implications. We hope this expanding resource of mutant mice will accelerate functional gene discovery in osteoarthritis and offer drug discovery opportunities for this common, incapacitating chronic disease.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença/genética , Osteoartrite/genética , Animais , Osso e Ossos/patologia , Sistemas CRISPR-Cas , Cartilagem/patologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Modelos Animais de Doenças , Descoberta de Drogas , Edição de Genes , Hormônio Liberador de Gonadotropina/genética , Iodeto Peroxidase , Camundongos , Camundongos Knockout , Osteoartrite/patologia , Osteoartrite/cirurgia , Fatores de Transcrição Box Pareados/genética , Fenótipo
5.
Pharmacology ; 106(1-2): 20-28, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33395681

RESUMO

BACKGROUND: Osteoarthritis (OA) is the most common joint disorder characterized by degeneration of the articular cartilage and joint destruction with an associated risk of mobility disability in elderly people. Although a lot of achievements have been made, OA is still regarded as an incurable disease. Therefore, the pathological mechanisms and novel therapeutic strategies of OA need more investigation. METHODS: MTT assay was conducted to measure the viability of chondrocytes after LPS treatment. Cell apoptosis was analyzed by annexin V/propidium iodide labeling. ELISA was used to determine the concentrations of interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α in the culture supernatant of chondrocytes. The expression level of miR-155, IL-1ß, FOXO3, TNF-α, IL-6, caspase-3, and caspase-9 in chondrocytes was analyzed by RT-qPCR or Western blot. RESULTS: We found that LPS led to inflammatory responses, cell apoptosis, and increased miR-155 expression in human articular chondrocytes. Tanshinone IIA could inhibit LPS-induced inflammation and cell apoptosis of chondrocytes via regulating the expression of miR-155 and FOXO3. miR-155 directly targeted the 3'-UTR of FOXO3 to regulate its expression. CONCLUSIONS: Taken together, our data suggest tanshinone IIA ameliorates inflammation response in OA via inhibition of the miR-155/FOXO3 axis, and provide some evidences that tanshinone IIA could be designed and developed as a new promising clinical therapeutic drug for OA patients.


Assuntos
Abietanos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Proteína Forkhead Box O3/antagonistas & inibidores , Inflamação/metabolismo , MicroRNAs/antagonistas & inibidores , Osteoartrite/tratamento farmacológico , Regiões 3' não Traduzidas , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Proteína Forkhead Box O3/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , MicroRNAs/metabolismo , Osteoartrite/genética , Cultura Primária de Células , Fator de Necrose Tumoral alfa/metabolismo
6.
Methods Mol Biol ; 2245: 121-133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33315199

RESUMO

Isolation of high-quality RNA directly from tissues is desirable to obtain precise information of in vivo gene expression profiles in cells embedded within their extracellular matrix (ECM). It is well known that purification of RNA from cartilage tissues is particularly challenging due to low cell (chondrocyte) content and its dense ECM rich in large negatively charged proteoglycans that can copurify with RNA. Older methodologies to purify RNA from cartilage involved the use of concentrated denaturing solutions containing guanidinium isothiocyanate followed by ultracentrifugation in cesium trifluoroacetate. Such ultracentrifugation approaches are rarely used now since the emergence of more user-friendly mini spin column chromatography kits. For this chapter, we tested and compared three methods to isolate RNA from immature murine articular (femoral head) cartilage and found that the combination of TRIzol® reagent and spin column chromatography (Norgen Total RNA Purification Kit) was the best approach to generate higher quality RNA. Here, the average RNA Integrity Number (RIN), as determined by Bioanalyzer technology, was 7.1. We then applied this method to attempt to isolate RNA directly from human articular cartilage harvested from three osteoarthritic (OA) knee joint specimens. As expected, the concentration and quality of RNA obtained differed between samples. However, from one specimen, we were able to isolate approximately 3 µg of total RNA (including small noncoding RNAs) from 100 mg of human OA cartilage with a RIN = 7.9. Despite the patient-to-patient variabilities that are known to exist between cartilage specimens from OA joints, we have demonstrated that it is possible to obtain reasonably high levels of RNA from human OA articular cartilage at a quality suitable for downstream analyses including microarray and RNA-Seq. A detailed description of our preferred RNA purification methodology, which can be used to isolate RNA from human, bovine, or rodent cartilage tissue, is provided in this chapter.


Assuntos
Cartilagem Articular/metabolismo , Fracionamento Químico , RNA/isolamento & purificação , Animais , Fracionamento Químico/métodos , Condrócitos/metabolismo , Eletroforese , Humanos , Articulação do Joelho , Camundongos , Osteoartrite/genética , Espectrofotometria
7.
Methods Mol Biol ; 2245: 135-149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33315200

RESUMO

Osteoarthritis (OA) presents as a change in the articular chondrocyte phenotype. The origin of the phenotype change is poorly understood. Small nucleolar RNAs (snoRNAs) direct chemical modification of other RNA substrates and are involved in endoribonucleolytic pre-rRNA processing. They have thereby a role by fine-tuning spliceosome and ribosome function and can thus accommodate changing requirements for protein synthesis in OA. Here we describe both targeted and global methods for snoRNA isolation and quantification from whole cartilage.


Assuntos
Cartilagem/metabolismo , Perfilação da Expressão Gênica , RNA Nucleolar Pequeno/genética , Perfilação da Expressão Gênica/métodos , Humanos , Imuno-Histoquímica , Articulação do Joelho , Osteoartrite/genética , RNA Nuclear Pequeno/genética , RNA Nucleolar Pequeno/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real
8.
Methods Mol Biol ; 2245: 179-194, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33315203

RESUMO

Chondrocytes are the main cells responsible for the maintenance of cartilage homeostasis and integrity. During development, extracellular matrix (ECM) macromolecules are produced and deposited by chondrocyte precursors. Autophagy, a highly dynamic process aimed at degradation of dysfunctional or pathogenic proteins, organelles, and intracellular microbes that can damage tissues, is one of the key processes required for sustained cartilage homeostasis. In different cell types it has been shown that, among others, autophagy is regulated by epigenetic mechanisms such as small noncoding RNAs (miRNAs, ~22 base pairs). Increasing evidence suggests that miRNAs are also involved in the regulation of autophagy in chondrocytes. Based on our previous research of gene and miRNA expression in articular cartilage, in this chapter we provide a summary of the tools models to direct in vitro and in vivo studies aimed at gaining a better understanding of the regulatory roles of miRNAs in chondrocyte autophagy.


Assuntos
Autofagia/genética , Condrócitos/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , Cartilagem Articular/citologia , Cartilagem Articular/metabolismo , Condrogênese/genética , Matriz Extracelular/metabolismo , Redes Reguladoras de Genes , Humanos , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Interferência de RNA
9.
Methods Mol Biol ; 2245: 195-213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33315204

RESUMO

Chondrocytes, the only cells in articular cartilage, are metabolically active and responsible for the turnover of extracellular matrix and maintenance of the tissue homeostasis. Changes in chondrocyte function can cause degradation of the matrix and loss of articular cartilage integrity, leading to development and progression of osteoarthritis (OA). These changes are exemplified by accumulated mitochondrial damage and dysfunction. Because mitochondria are the critical organelles to produce energy and play a key role in cellular processes, the approaches to assess mitochondrial function under both physiological and pathological conditions enable us to uncover the mechanisms on how dysfunction of mitochondria in chondrocytes mediates signaling pathways that are involved in disturbance of cartilage homeostasis. In this chapter, we describe the methods to evaluate mitochondrial biogenesis, activity and mitochondrial DNA (mtDNA) integrity in chondrocytes.


Assuntos
Condrócitos/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/isolamento & purificação , Mitocôndrias/genética , Mitocôndrias/metabolismo , Biogênese de Organelas , Trifosfato de Adenosina , Animais , Biomarcadores , Cartilagem Articular/metabolismo , Regulação da Expressão Gênica , Humanos , Articulação do Joelho , Mutação , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Processamento de Proteína Pós-Traducional , Reação em Cadeia da Polimerase em Tempo Real
10.
Methods Mol Biol ; 2245: 215-224, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33315205

RESUMO

Immunofluorescence staining is a widely used and powerful tool for the visualization and colocalization of two or more proteins and/or cellular organelles. For colocalization studies in fixed cells, one target protein/organelle is immunostained and visualized by one fluorophore and the other target protein/organelle is immunostained and visualized by a different fluorophore whose excitation emission spectra does not overlap with the first fluorophore. Parkin (PARK2) is an E3 ubiquitin ligase which performs ubiquitination of surface proteins of dysfunctional mitochondria to mark them for autolysosomal degradation. Here we describe the immunofluorescence staining of parkin protein and immunofluorescence or dye-based methods to visualize mitochondria and study the colocalization of parkin and mitochondria in primary human or mouse chondrocytes or cell lines.


Assuntos
Condrócitos/metabolismo , Imunofluorescência , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Biomarcadores , Células Cultivadas , Imunofluorescência/métodos , Humanos , Microscopia Confocal/métodos , Mitocôndrias/genética , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Permeabilidade , Transporte Proteico , Ubiquitina-Proteína Ligases/genética
11.
Phytomedicine ; 81: 153429, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33310311

RESUMO

BACKGROUND: Phlomis umbrosa Turczaninow root has been traditionally used to treat fractures, rheumatoid arthritis, and arthralgia. However, the effects and mechanisms of P. umbrosa on osteoarthritis (OA) remain poorly understood and a functional genomic approach has not been investigated. AIM: The purpose of this study was to investigate the effects and mechanisms of P. umbrosa extract (PUE) on OA using transcriptomic analysis. METHODS: We performed joint diameter measurements, micro computed tomography, and histopathological analysis of monosodium iodoacetate (MIA)-induced OA rats treated with PUE (200 mg/kg) for 3 weeks. Gene expression profiling in articular cartilage tissue was then performed using RNA sequencing (RNA-seq) followed by signaling pathway analysis of regulatory genes. RESULTS: PUE treatment improved OA based on decreased joint diameter, increased joint morphological parameters, and histopathological features. Many genes involved in multiple signal transduction pathway and collagen activation in OA were differentially regulated by PUE. These included genes related to Wnt/ß-catenin, OA pathway, and sonic hedgehog signaling activity. Furthermore, PUE treatment downregulated cartilage damage factors (MMP-9, MMP-13, ADAMTs4, and ADMATs5) and upregulated chondrogenesis (COL2A1 and SOX-9) by regulating the transcription factors SOX-9, Ctnnb1, and Epas1. CONCLUSION: Based on the results of gene expression profiling, this study highlighted the molecular mechanisms underlying the effects of PUE in MIA-induced OA rats. The findings provide novel insight into the mechanisms by which PUE treatment-induced gene expression changes may influence OA disease progression. Taken together, the results suggest that PUE may be used as a source of therapeutic agents for OA.


Assuntos
Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Phlomis/química , Extratos Vegetais/farmacologia , Animais , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Iodoacetatos/toxicidade , Articulações/efeitos dos fármacos , Articulações/patologia , Masculino , Osteoartrite/induzido quimicamente , Osteoartrite/patologia , Extratos Vegetais/química , Ratos Sprague-Dawley , Microtomografia por Raio-X
12.
Life Sci ; 267: 118926, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33358901

RESUMO

Osteoarthritis (OA) is a degenerative disease, which has a high incidence in middle-aged and elderly people and tends to occur in weight-bearing or active joints. Current treatment can only relieve symptoms and delay the progression of OA in result of its indistinct pathogenesis. In recent years, more and more studies have focused on the pathogenesis of OA. Nucleolar GTP binding protein 3 (GNL3) is associated with chondrogenic differentiation and can participate in genomic regulation as RNA binding protein (RBP). We used RNA sequencing (RNA-seq) to analyze the overall transcription level of the human cervical cancer cell line HeLa after GNL3 deletion. The results showed that downstream genes IL24 and PTN were down-regulated. IL24 takes part in the progression of OA by inducing articular osteocyte apoptosis, while PTN conducts to the progression of OA by promoting angiogenesis. We validated the results in the human chondrosarcoma cell line SW1353 and OA patients. Compared with the control group, GNL3, IL24 and PTN genes were elevated in OA specimens. This study explored the relationship between GNL3 and these two downstream genes, hoping to find biomarkers in the pathogenesis of osteoarthritis that can be used as therapeutic targets in the future.


Assuntos
Proteínas de Transporte/metabolismo , Citocinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Interleucinas/metabolismo , Proteínas Nucleares/metabolismo , Osteoartrite/metabolismo , Adulto , Idoso , Proteínas de Transporte/genética , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Diferenciação Celular/fisiologia , Condrócitos/metabolismo , Condrócitos/patologia , Condrogênese/fisiologia , Citocinas/genética , Feminino , Cabeça do Fêmur/metabolismo , Proteínas de Ligação ao GTP/genética , Células HeLa , Humanos , Interleucinas/genética , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Osteoartrite/genética , Osteoartrite/patologia , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
13.
Biomed Pharmacother ; 133: 111089, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33378983

RESUMO

Osteoarthritis is a chronic, systemic and inflammatory disease. However, the pathogenesis and understanding of RA are still limited. Ubiquitin-specific protease 13 (USP13) belongs to the deubiquitinating enzyme (DUB) superfamily, and has been implicated in various cellular events. Nevertheless, its potential on RA progression has little to be investigated. In the present study, we found that USP13 expression was markedly up-regulated in synovial tissue samples from patients with RA, and was down-regulated in human fibroblast-like synoviocytes (H-FLSs) stimulated by interleukin-1ß (IL-1ß), tumor necrosis factor alpha (TNF-α) or lipopolysaccharide (LPS). We then showed that over-expressing USP13 markedly suppressed inflammatory response, oxidative stress and apoptosis in H-FLSs upon IL-1ß or TNF-α challenge, whereas USP13 knockdown exhibited detrimental effects. In addition, USP13-induced protective effects were associated with the improvement of nuclear factor erythroid 2-related factor 2 (Nrf-2) and the repression of Casapse-3. Furthermore, phosphatase and tensin homolog (PTEN) expression was greatly improved by USP13 in H-FLSs upon IL-1ß or TNF-α treatment, whereas phosphorylated AKT expression was diminished. In response to IL-1ß or TNF-α exposure, nuclear transcription factor κB (NF-κB) signaling pathway was activated, whereas being significantly restrained in H-FLSs over-expressing USP13. Mechanistically, USP13 directly interacted with PTEN. Of note, we found that USP13-regulated cellular processes including inflammation, oxidative stress and apoptotic cell death were partly dependent on AKT activation. Furthermore, USP13 over-expression effectively inhibited osteoclastogenesis and osteoclast-associated gene expression. The in vivo experiments finally confirmed that USP13 dramatically repressed synovial hyperplasia, inflammatory cell infiltration, cartilage damage and bone loss in collagen-induced arthritis (CIA) mice via the same molecular mechanisms detected in vitro. Taken together, these findings suggested that targeting USP13 may provide feasible therapies for RA.


Assuntos
Apoptose , Artrite Experimental/prevenção & controle , Remodelação Óssea , Endopeptidases/metabolismo , Articulações/enzimologia , Osteoartrite/prevenção & controle , Estresse Oxidativo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Idoso , Animais , Artrite Experimental/enzimologia , Artrite Experimental/genética , Artrite Experimental/patologia , Células Cultivadas , Colágeno Tipo II , Endopeptidases/genética , Humanos , Hiperplasia , Articulações/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Pessoa de Meia-Idade , Osteoartrite/enzimologia , Osteoartrite/genética , Osteoartrite/patologia , Osteoclastos/enzimologia , Osteoclastos/patologia , Osteogênese , PTEN Fosfo-Hidrolase/genética , Transdução de Sinais , Sinoviócitos/enzimologia , Sinoviócitos/patologia , Proteases Específicas de Ubiquitina/genética
14.
Eur J Endocrinol ; 184(1): 29-39, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33112260

RESUMO

Introduction: Pathologically high growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels in patients with acromegaly are associated with arthropathy. Several studies highlight the potential role of the GH/IGF-1 axis in primary osteoarthritis (OA). We aimed to disentangle the role of IGF-1 levels in primary OA pathogenesis. Methods: Patients from the Genetics osteoARthritis and Progression (GARP) Study with familial, generalized, symptomatic OA (n = 337, mean age: 59.8 ± 7.4 years, 82% female) were compared to Leiden Longevity Study (LLS) controls (n = 456, mean age: 59.8 ± 6.8 years, 51% female). Subjects were clinically and radiographically assessed, serum IGF-1 levels were measured, and 10 quantitative trait loci (QTL) in the FOXO3, IGFBP3/TNS3, RPA3, SPOCK2 genes, previously related to serum IGF-1 levels, were genotyped. Linear or binary logistic generalized estimating equation models were performed. Results: Serum IGF-1 levels were increased in OA patients, with male patients exhibiting the strongest effect (males OR = 1.10 (1.04-1.17), P=0.002 vs females OR = 1.04 (1.01-1.07), P = 0.02). Independent of the increased IGF-1 levels, male carriers of the minor allele of FOXO3 QTL rs4946936 had a lower risk to develop hip OA (OR = 0.41 (0.18-0.90), P = 0.026). Additionally, independent of IGF-1 levels, female carriers of the minor alleles of RPA3 QTL rs11769597 had a higher risk to develop knee OA (OR = 1.90 (1.20-2.99), P = 0.006). Conclusion: Patients with primary OA had significantly higher IGF-1 levels compared to controls. Moreover, SNPs in the FOXO3 and RPA3 genes were associated with an altered risk of OA. Therefore, altered IGF-1 levels affect the development of OA, and are potentially the result of the pathophysiological OA process.


Assuntos
Proteínas de Ligação a DNA/genética , Proteína Forkhead Box O3/genética , Predisposição Genética para Doença/genética , Fator de Crescimento Insulin-Like I/genética , Osteoartrite/genética , Idoso , Alelos , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Quadril/genética , Osteoartrite do Joelho/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Fatores Sexuais
15.
Biosci Rep ; 40(12)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33325525

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) and osteoarthritis (OA) are two major types of joint diseases. The present study aimed to identify hub genes involved in the pathogenesis and further explore the potential treatment targets of RA and OA. METHODS: The gene expression profile of GSE12021 was downloaded from Gene Expression Omnibus (GEO). Total 31 samples (12 RA, 10 OA and 9 NC samples) were used. The differentially expressed genes (DEGs) in RA versus NC, OA versus NC and RA versus OA groups were screened using limma package. We also verified the DEGs in GSE55235 and GSE100786. Functional annotation and protein-protein interaction (PPI) network construction of OA- and RA-specific DEGs were performed. Finally, the candidate small molecules as potential drugs to treat RA and OA were predicted in CMap database. RESULTS: 165 up-regulated and 163 down-regulated DEGs between RA and NC samples, 73 up-regulated and 293 down-regulated DEGs between OA and NC samples, 92 up-regulated and 98 down-regulated DEGs between RA and OA samples were identified. Immune response and TNF signaling pathway were significantly enriched pathways for RA- and OA-specific DEGs, respectively. The hub genes were mainly associated with 'Primary immunodeficiency' (RA vs. NC group), 'Ribosome' (OA vs. NC group), and 'Chemokine signaling pathway' (RA vs. OA group). Arecoline and Cefamandole were the most promising small molecule to reverse the RA and OA gene expression. CONCLUSION: Our findings suggest new insights into the underlying pathogenesis of RA and OA, which may improve the diagnosis and treatment of these intractable chronic diseases.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Biologia Computacional , Ensaios de Triagem em Larga Escala , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Transcriptoma , Artrite Reumatoide/metabolismo , Estudos de Casos e Controles , Bases de Dados Genéticas , Descoberta de Drogas , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Marcadores Genéticos , Humanos , Osteoartrite/metabolismo , Mapas de Interação de Proteínas , Transdução de Sinais
16.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 34(11): 1486-1491, 2020 Nov 15.
Artigo em Chinês | MEDLINE | ID: mdl-33191711

RESUMO

Objective: To summarize the regulatory effect of long non-coding RNA (lncRNA) on osteoarthritis (OA) cartilage injury. Methods: The molecular functions and mechanisms of lncRNA were introduced and its regulatory effects on the pathological processes of OA were elaborated by referring to the relevant literature at domestic and abroad in recent years. Results: The pathological characteristics of OA are degeneration of articular cartilage and inflammation of synovial tissue, but its etiology and pathological mechanism have not been clarified. lncRNA is a kind of heterogeneous non-coding RNA, which plays a regulatory role in many inflammation-related diseases and exerts a wide range of biological functions. lncRNA is a regulator involved in the pathogenesis of OA, and is abnormally expressed in OA cartilage, leading to the degeneration of the extracellular matrix of cartilage. Conclusion: At present, there have been preliminary studies on the pathological effects of lncRNA in regulating OA and the biological functions of chondrocytes. However, the pathogenesis of lncRNA and its regulatory network in OA and the way in which it regulates inflammatory pathways are still unclear, and further exploration is needed.


Assuntos
Cartilagem Articular , Osteoartrite , RNA Longo não Codificante , Condrócitos , Matriz Extracelular , Humanos , Osteoartrite/genética , RNA Longo não Codificante/genética
17.
Life Sci ; 261: 118429, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32931797

RESUMO

AIMS: Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been reported as the important regulators in osteoarthritis (OA). However, the detailed mechanism is implicated. The aim of this study is to reveal the functional mechanism of lncRNA ARFRP1 and miR-15a-5p in osteoarthritis. MATERIALS AND METHODS: The expression level of genes was detected by quantitative real time polymerase chain reaction (qRT-PCR) or western blot assay. Cell Counting Kit-8 (CCK-8) was used to assess cell viability. Cell apoptosis rate was analyzed by flow cytometry analysis. Furthermore, Enzyme-linked immunosorbent assay (ELISA) was performed to measure tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1ß contents. The interaction between miR-15a-5p and ARFRP1 or Toll-like receptor 4 (TLR4) was predicted by miRcode or PITA, and then confirmed by the dual luciferase reporter assay or pull down assay. Besides, NF-κB-driven luciferase activity was determined using NF-κB luciferase reporter assay. KEY FINDINGS: ARFRP1 and TLR4 levels were increased and miR-15a-5p level was decreased in OA cartilage tissues and lipopolysaccharides (LPS)-induced chondrocytes. ARFRP1 knockdown inhibited LPS-induced the injury of chondrocytes. Interestingly, miR-15a-5p downregulated by ARFRP1 negatively modulated TLR4 expression through interaction. ARFRP1 mediated LPS-induced the injury of chondrocytes via regulating miR-15a-5p/TLR4 axis. Furthermore, ARFRP1 exerted function by modulation of NF-κB pathway. SIGNIFICANCE: Our findings confirmed that ARFRP1 mediated LPS-induced the injury of chondrocytes through regulating NF-κB pathway by modulation of miR-15a-5p/TLR4 axis, providing theoretical basis for the treatment of OA patients.


Assuntos
Condrócitos/patologia , MicroRNAs/genética , NF-kappa B/imunologia , RNA Longo não Codificante/genética , Receptor 4 Toll-Like/genética , Adulto , Idoso , Células Cultivadas , Condrócitos/imunologia , Condrócitos/metabolismo , Regulação para Baixo , Técnicas de Silenciamento de Genes , Humanos , Lipopolissacarídeos/imunologia , MicroRNAs/imunologia , Pessoa de Meia-Idade , Osteoartrite/genética , Osteoartrite/imunologia , Osteoartrite/patologia , RNA Longo não Codificante/imunologia , Receptor 4 Toll-Like/imunologia , Regulação para Cima
19.
Medicine (Baltimore) ; 99(37): e22142, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32925767

RESUMO

Osteoarthritis (OA) is a high prevalent musculoskeletal problem, which can cause severe pain, constitute a huge social and economic burden, and seriously damage the quality of life. This study was intended to identify genetic characteristics of subchondral bone in patients with OA and to elucidate the potential molecular mechanisms involved. Data of gene expression profiles (GSE51588), which contained 40 OA samples and 10 normal samples, was obtained from the Gene Expression Omnibus (GEO). The raw data were integrated to obtain differentially expressed genes (DEGs) and were further analyzed with bioinformatic analysis. The protein-protein interaction (PPI) networks were built and analyzed via Search Tool for the Retrieval of Interacting Genes (STRING). The significant modules and hub genes were identified via Cytoscape. Moreover, Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analysis were performed. Totally 235 DEGs were differentially expressed in the subchondral bone from OA patients compared with those of normal individuals, of which 78 were upregulated and 157 were downregulated. Eight hub genes were identified, including DEFA4, ARG1, LTF, RETN, PGLYRP1, OLFM4, ORM1, and BPI. The enrichment analyses of the DEGs and significant modules indicated that DEGs were mainly involved in inflammatory response, extracellular space, RAGE receptor binding, and amoebiasis pathway. The present study provides a novel and in-depth understanding of pathogenesis of the OA subchondral bone at molecular level. DEFA4, ARG1, LTF, RETN, PGLYRP1, OLFM4, ORM1, and BPI may be the new candidate targets for diagnosis and therapies on patients with OA in the future.


Assuntos
Biologia Computacional , Osteoartrite/genética , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Ontologia Genética , Humanos , Masculino , Pessoa de Meia-Idade , Mapas de Interação de Proteínas , Transcriptoma , beta-Defensinas
20.
Medicine (Baltimore) ; 99(33): e21707, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32872047

RESUMO

Osteoarthritis (OA) is a chronic degenerative joint disease with its onset closely related to the growth of synovial fibroblasts (SFs), yet the genes involved in are few reported. In our study, we aimed to identify the OA-associated key gene and pathways via the single-cell RNA sequencing (scRNA-seq) analysis on SFs.scRNA-seq data of SFs from OA sufferers were accessed from GEO database, then the genes involved in were subjected to principal component analysis (PCA) and T-Stochastic Neighbor Embedding (TSNE) Analysis. GO and KEGG enrichment analyses were performed to find the most enriched functions and pathways associated with marker genes and a PPI network was constructed to identify the key gene associated with OA occurrence.Findings revealed that marker genes in three cell types identified by TSNE were mainly activated in pathways firmly related to fibroblasts growth, such as extracellular matrix, immune and cell adhesion molecule binding-associated functions and pathways. Moreover, fibronectin1 (FN1) was validated as the key gene that was tightly related to the growth of SFs, as well as had the potential to play a key role in OA occurrence.Our study explored the key gene and pathways associated with OA occurrence, which were of great value in further investigation of OA diagnosis as well as pathogenesis.


Assuntos
Fibroblastos/metabolismo , Fibronectinas/genética , Osteoartrite/genética , Humanos , Osteoartrite/metabolismo , Mapas de Interação de Proteínas , Análise de Sequência de RNA , Análise de Célula Única , Membrana Sinovial/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...