Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.307
Filtrar
1.
Int J Nanomedicine ; 15: 8465-8478, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33149587

RESUMO

Introduction: Decellularized matrix from porcine small intestinal submucosa (SIS) endows scaffolds with an ECM-like surface, which enhances stem cell self-renewal, proliferation, and differentiation. Mesoporous bioactive glass (MBG) is extensively recognized as an excellent bio-ceramic for fabricating bone grafts. Materials and Methods: In the current study, SIS was doped on an MBG scaffold (MBG/SIS) using polyurethane foam templating and polydopamine chemistry method. To mimic the bony environment of a natural bone matrix, an ECM-inspired delivery system was constructed by coupling the BMP2-related peptide P28 to a heparinized MBG/SIS scaffold (MBG/SIS-H-P28). The release of P28 from MBG/SIS-H-P28 and its effects on the proliferation, viability, and osteogenic differentiation of bone marrow stromal stem cells were investigated in vitro and in vivo. Results: Our research indicated that the novel tissue-derived ECM scaffold MBG/SIS has a hierarchical and interconnected porous architecture, and superior biomechanical properties. MBG/SIS-H-P28 released P28 in a controlled manner, with the long-term release time of 40 d. The results of in vitro experiments showed improvements in cell proliferation, cell viability, alkaline phosphatase activity, and mRNA expression levels of osteogenesis-related genes (Runx-2, OCN, OPN, and ALP) compared to those of MBG/SIS or MBG/SIS-P28 and MBG/SIS-H-P28. The in vivo results demonstrated that MBG/SIS-H-P28 scaffolds evidently increased bone formation in rat calvarial critical-sized defect compared to that in controls. Conclusion: MBG/SIS-H-P28 scaffolds show potential as ideal platforms for delivery of P28 and for providing a bony environment for bone regeneration.


Assuntos
Ácido Aspártico/química , Materiais Biocompatíveis/farmacologia , Proteína Morfogenética Óssea 2/farmacologia , Osso e Ossos/efeitos dos fármacos , Cerâmica/farmacologia , Matriz Extracelular/metabolismo , Osteoblastos/efeitos dos fármacos , Peptídeos/farmacologia , Fator de Crescimento Transformador beta/farmacologia , Animais , Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Cinética , Masculino , Camundongos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Porosidade , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Suínos , Tecidos Suporte/química
2.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 36(3): 255-260, 2020 May.
Artigo em Chinês | MEDLINE | ID: mdl-32981282

RESUMO

Objective: To investigate the effect and mechanism of psoralen on calvarial osteoblasts injuries caused by tricalcium phosphate (TCP) wear particles in vitro.Methods: Primary osteoblasts were obtained from the calvaria of neonatal SD rat by the series of digestion and were identified with ALP staining. Calvarial osteoblasts were treated with TCP wear particles for 48 h to establish the in vitro model of osteoblasts injuries. The rat osteoblasts were randomly divided into control group, TCP wear particles (0.1 mg/ml) group, psoralen treated (at the concentrations of 10-7, 10-6, 10-5 mol/L) groups. WST assay and the flow cytometry were used to detect the cell viability of osteoblasts and apoptosis, respectively. Chemical colorimetry was performed to examine ALP activity of osteobalsts. When the osteoblasts were treated for 14 day, mineral nodules formation was observed with alizarin red S staining. Western blot was applied to examine protein expressions of glucose regulated protein78/94(GRP78/94), inositol dependent enzyme 1 alpha (IREα), spliced X-box binding protein 1 (XBP1s) and phosphorylated c-Jun N-terminal kinase (p-JNK) in calvarial osteoblasts. Results: Compared with control group, the cell viability of osteoblasts, ALP activity and mineral nodules formation in TCP group were decreased significantly (P<0.05), while the percentage of apoptosis and protein expressions of GRP78/94, IRE1α, XBP1 and p-JNK were obviously increased in calvarial osteoblasts (P<0.05). Compared with TCP group, the injuries of calvarial osteoblasts and cell apoptosis in psoralen treated groups were obviously decreased (P<0.05), and the expression levels of GRP78/94, IRE1α, XBP1 and p-JNK were down-regulated remarkably (P<0.05). Conclusion: Psoralen prevents osteoblasts injuries caused by TCP wear particles through IRE1α-XBP1s-JNK signaling pathway activation.


Assuntos
Fosfatos de Cálcio , Ficusina , Osteoblastos , Animais , Apoptose/efeitos dos fármacos , Fosfatos de Cálcio/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Ficusina/farmacologia , Osteoblastos/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
3.
Zhonghua Zhong Liu Za Zhi ; 42(8): 692-696, 2020 Aug 23.
Artigo em Chinês | MEDLINE | ID: mdl-32867464

RESUMO

Objective: To evaluate the efficacy and safety of polyethylene glycol liposome doxorubicin (PLD) in the treatment of osteosarcoma. Methods: This study was a single-center retrospective clinical study. Two hundreds and seventy-six classical osteosarcoma treated in Beijing Jishuitan Hospital from 2015 to 2016 were enrolled. There were 213 patients who received combined chemotherapy of high dose methotrexate, ifosfamide, cisplatin and doxorubicin (ADM) were classified in ADM group. Other 63 patients received the same types, doses and cycles of chemotherapy drugs except ADM replaced by PLD were identified as PLD group. Clinical and imaging evaluation and surgical treatment were performed after neoadjuvant chemotherapy. Tumor necrosis rate was examined according to Huvos method. The efficacy of neoadjuvant chemotherapy was evaluated based on 90% necrosis rate. The recurrence, metastasis and survival were followed up regularly after operation. The adverse reactions of hematology, hepatorenal toxicity, gastrointestinal reaction and cardiotoxicity were evaluated. Results: There were no significant differences between PLD group and ADM group in age, sex, location, stage and surgical margin (all P>0.05). There were no significant differences in clinical symptoms and imaging evaluation between PLD group and ADM group after preoperative chemotherapy (all P>0.05). The tumor necrosis rate was detected in 134 cases. Among 27 cases of PLD group, tumor necrosis rates more than 90% were 11 cases, while among 107 cases of ADM group, tumor necrosis rates more than 90% were 45 cases. No significant difference of tumor necrosis rate between this two group was observed (P=0.901). The recurrence rates of PLD group and ADM group were 7.8% (4/51) and 7.3% (12/164), the metastasis rates were 19.6% (10/51) and 16.5% (27/164), the median progression free survival (PFS) were 42 and 37 months, respectively, without significant differences (all P>0.05). The incidence of granulocytopenia and decrease degree of granulocytes in PLD group were significantly lower than those in ADM group (P<0.001). There were no significant differences in the incidences of thrombocytopenia, anemia, gastrointestinal reaction, liver function damage and stomatitis between two groups (all P>0.05). Conclusions: PLD and ADM have similar chemotherapeutic effects in osteosarcoma. The incidences of adverse reactions of PLD are lower, especially the hematological toxicity represented by granulocytopenia is significantly reduced. PLD has a better application prospect.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/terapia , Lipossomos/uso terapêutico , Osteossarcoma/tratamento farmacológico , Neoplasias Ósseas/patologia , Cisplatino/administração & dosagem , Doxorrubicina/administração & dosagem , Extremidades , Humanos , Ifosfamida/administração & dosagem , Metotrexato/administração & dosagem , Metotrexato/uso terapêutico , Recidiva Local de Neoplasia , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Osteossarcoma/patologia , Polietilenoglicóis , Prognóstico , Estudos Retrospectivos
4.
Acta Odontol Latinoam ; 33(2): 125, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920615

RESUMO

Melatonin (MLT) is a potential signaling molecule in the homeostasis of bone metabolism and may be an important mediator of bone formation and stimulation. The aim of this in vitro study was to evaluate the effect of MLT on the viability, mRNA/protein expression and mineralization of pre-osteoblastic cells. The concentrations 5, 2.5, 1, 0.1 and 0.01 mM MLT were tested on pre-osteoblastic cells (MC3T3) compared to control (no MLT), evaluating proliferation and cell viability (C50), gene expression (RT-PCR) and secretion (ELISA) of COL-I and OPN at 24h, 48h and 72h, and the formation of mineral nodules (alizarin red and fast red) after 10 days of treatment. MLT at 5 and 2.5 mM proved to be cytotoxic (C50), so only 0.01, 0.1 and 1 mM were used for the subsequent analyses. OPN mRNA expression increased with MLT at 0.1 mM - 1 mM, which was followed by increased secretion of OPN both at 24h and 72h compared to the remaining groups (p <0.05). COL-I mRNA and COL-1 secretion followed the same pattern as OPN at 0.1 mM MLT at 72h of treatment (p <0.05). Regarding mineralization, all MLT doses (except 1mM) caused an increase (p <0.05) in the formation of mineral nodules compared to the control. Melatonin at 0.01mM - 1mM had a stimulatory effect on osteoblasts by upregulating COL-I and OPN expression/ secretion and mineralization, thereby fostering osteogenesis.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Metaloproteinase 2 da Matriz/metabolismo , Melatonina/farmacologia , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Osteopontina/metabolismo , Fragmentos de Peptídeos/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Metaloproteinase 2 da Matriz/genética , Osteoblastos/metabolismo , Osteopontina/genética , Fragmentos de Peptídeos/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real
5.
Int J Nanomedicine ; 15: 5855-5871, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848394

RESUMO

Purpose: Osteomyelitis, particularly chronic osteomyelitis, remains a major challenge for orthopedic surgeons. The traditional treatment for osteomyelitis, which involves antibiotics and debridement, does not provide a complete solution for infection and bone repair. Antibiotics such as vancomycin (VCM) are commonly used to treat osteomyelitis in clinical settings. VCM use is limited by a lack of effective delivery methods that provide sustained, high doses to entirely fill irregular bone tissue to treat infections. Methods: We engineered a chitosan (CS)-based thermosensitive hydrogel to produce a VCM-nanoparticle (NPs)/Gel local drug delivery system. The VCM-NPs were formed with quaternary ammonium chitosan and carboxylated chitosan nanoparticles (VCM-NPs) by positive and negative charge adsorption to enhance the encapsulation efficiency and drug loading of VCM, with the aim of simultaneously preventing infection and repairing broken bones. This hydrogel was evaluated in a rabbit osteomyelitis model. Results: The VCM-NPs had high encapsulation efficiency and drug loading, with values of 60.1±2.1% and 24.1±0.84%, respectively. When embedded in CS-Gel, the VCM-NPs maintained their particle size and morphology, and the injectability and thermosensitivity of the hydrogel, which were evaluated by injectability test and rheological measurement, were retained. The VCM-NPs/Gel exhibited sustained release of VCM over 26 days. In vitro tests revealed that the VCM-NPs/Gel promoted osteoblast proliferation and activity against Staphylococcus aureus. In vivo, VCM-NPs/Gel (with 10 mg vancomycin per rabbit) was used to treat rabbits with osteomyelitis. The VCM-NPs/Gel showed excellent anti-infection properties and accelerating bone repair under osteomyelitis conditions. Conclusion: The reported multifunctional NPs hydrogel system for local antibiotic delivery (VCM-NPs/Gel) showed bone regeneration promotion and anti-infection properties, demonstrating significant potential as a scaffold for effective treatment of osteomyelitis.


Assuntos
Antibacterianos/administração & dosagem , Hidrogéis/química , Nanopartículas/administração & dosagem , Osteomielite/tratamento farmacológico , Vancomicina/administração & dosagem , Animais , Antibacterianos/farmacocinética , Proliferação de Células/efeitos dos fármacos , Quitosana/química , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Hidrogéis/administração & dosagem , Hidrogéis/farmacologia , Injeções , Masculino , Nanopartículas/química , Osteoblastos/efeitos dos fármacos , Osteoblastos/microbiologia , Tamanho da Partícula , Coelhos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Vancomicina/farmacocinética
6.
Head Face Med ; 16(1): 18, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819403

RESUMO

BACKGROUND: Frequently statins were administered to reduce the LDL-concentration in circulating blood. Especially simvastatin (SV) is an often prescribed statin. Pleiotropic effects of these drugs were reported. Thus, the aim of this study was to evaluate effects of SV on osteoblastic mineralization. METHODS: After informed consent primary osteoblasts were collected from tissue surplus after treatment of 14 individuals in the Department of Cranio-Maxillofacial Surgery, University Hospital Münster. The cells were passaged according to established protocols. Viability, mineralization capability and osteoblastic marker (alkaline phosphatase) were determined at day 9, 13 and 16 after adding various SV concentrations (0.05 µM, 0.1 µM, 0.5 µM, 1.0 µM). Statistical analysis was performed using the Kruskal-Wallis-test. RESULTS: The cell cultures showed a time and dose-dependent significantly decreased viability (p < 0.01) and a significantly increased mineralization (p < 0.01) in a late mineralization stage after adding SV. The typical alteration of the alkaline phosphatase (ALP) levels during osteogenic differentiation was not recognizable. CONCLUSIONS: The pleiotropic effects found for different SV concentrations were possibly originated from other mineralization pathways beside the ALP induced one. Additionally, possible alterations of protein expression levels during mineralization and investigation of possible deviating application of SV in other treatment fields can be considered after gaining a deeper insight in the affected mechanisms.


Assuntos
Anticolesterolemiantes , Osteoblastos , Osteogênese , Sinvastatina , Adulto , Anticolesterolemiantes/efeitos adversos , Diferenciação Celular , Proliferação de Células , Feminino , Humanos , Masculino , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Sinvastatina/efeitos adversos
7.
Life Sci ; 258: 118195, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32781073

RESUMO

AIMS: The estrogen-ERα axis participates in osteoblast maturation. This study was designed to further evaluated the roles of the estrogen-ERα axis in bone healing and the possible mechanisms. MAIN METHODS: Female ICR mice were created a metaphyseal bone defect in the left femurs and administered with methylpiperidinopyrazole (MPP), an inhibitor of ERα. Bone healing was evaluated using micro-computed tomography. Colocalization of ERα with alkaline phosphatase (ALP) and ERα translocation to mitochondria were determined. Levels of ERα, ERß, PECAM-1, VEGF, and ß-actin were immunodetected. Expression of chromosomal Runx2, ALP, and osteocalcin mRNAs and mitochondrial cytochrome c oxidase (COX) I and COXII mRNAs were quantified. Angiogenesis was measured with immunohistochemistry. KEY FINDINGS: Following surgery, the bone mass was time-dependently augmented in the bone-defect area. Simultaneously, levels of ERα were specifically upregulated and positively correlated with bone healing. Administration of MPP to mice consistently decreased levels of ERα and bone healing. As to the mechanisms, osteogenesis was enhanced in bone healing, but MPP attenuated osteoblast maturation. In parallel, expressions of osteogenesis-related ALP, Runx2, and osteocalcin mRNAs were induced in the injured zone. Treatment with MPP led to significant inhibition of the alp, runx2, and osteocalcin gene expressions. Remarkably, administration of MPP lessened translocation of ERα to mitochondria and expressions of mitochondrial energy production-related coxI and coxII genes. Furthermore, exposure to MPP decreased levels of PECAM-1 and VEGF in the bone-defect area. SIGNIFICANCE: The present study showed the contributions of the estrogen-ERα axis to bone healing through stimulation of energy production, osteoblast maturation, and angiogenesis.


Assuntos
Regeneração Óssea , Diferenciação Celular , Metabolismo Energético , Receptor alfa de Estrogênio/metabolismo , Neovascularização Fisiológica , Osteoblastos/citologia , Transdução de Sinais , Fosfatase Alcalina/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Calo Ósseo/efeitos dos fármacos , Calo Ósseo/patologia , Diferenciação Celular/efeitos dos fármacos , Cromossomos de Mamíferos/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos ICR , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteogênese/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Regulação para Cima/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
8.
J Bone Miner Metab ; 38(6): 806-818, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32656644

RESUMO

INTRODUCTION: Our previous studies demonstrated that a high bone turnover state under osteoporotic changes decreased the threshold of skeletal pain. Recent studies reported that the incidence of joint pain due to osteoarthritis (OA) in postmenopausal women was higher than that in males even with the same radiographic OA grade. The aim of this study was to evaluate whether a high bone turnover state affects the induction of pain-like behaviors in mild OA model mice. MATERIALS AND METHODS: We established mild OA model mice with accompanying osteoporotic changes by monosodium iodoacetate injection after ovariectomy. We assessed pain-like behaviors by von Frey test and paw-flick test; histological changes in OA joints; the expression of Runx2, Osterix, Osteocalcin, and Rankl; bone micro-architecture by µCT and measured serum tartrate-resistant acid-phosphatase 5b levels in the model mice. RESULTS: Pain-like behaviors in mice with OA and osteoporotic changes were significantly increased in comparison with those in OA mice without osteoporotic changes. The severity of histological OA changes did not differ significantly between the OA mice with and without osteoporotic changes. Bisphosphonate significantly improved pain-like behaviors accompanied with improvement in the high bone turnover state in the OA mice with osteoporosis, while it had no significant effect on pain-like behaviors in the OA mice without osteoporosis. In addition, the improvement was maintained for more than 4 weeks even after the discontinuation of bisphosphonate treatment. CONCLUSION: These results indicated that a high bone turnover state under osteoporotic changes could affect the induction of pain-like behaviors in mild OA model mice.


Assuntos
Comportamento Animal , Remodelação Óssea , Osteoartrite/complicações , Osteoporose/complicações , Osteoporose/fisiopatologia , Dor/etiologia , Animais , Remodelação Óssea/efeitos dos fármacos , Cartilagem/patologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Inibidores de Ciclo-Oxigenase/farmacologia , Difosfonatos/farmacologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Iodoacetatos , Masculino , Camundongos Endogâmicos C57BL , Osteoartrite/sangue , Osteoartrite/patologia , Osteoartrite/fisiopatologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteocalcina/genética , Osteocalcina/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteoporose/sangue , Ovariectomia , Dor/sangue , Fosfatase Ácida Resistente a Tartarato/sangue , Microtomografia por Raio-X
9.
Environ Toxicol ; 35(12): 1318-1325, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32656944

RESUMO

In this study, we report the potential of cannabidiol, one of the major cannabis constituents, for enhancing osteoblastic differentiation in U2OS and MG-63 cells. Cannabidiol increased the expression of Angiopoietin1 and the enzyme activity of alkaline phosphatase in U2OS and MG-63. Invasion and migration assay results indicated that the cell mobility was activated by cannabidiol in U2OS and MG-63. Western blotting analysis showed that the expression of tight junction related proteins such as Claudin1, Claudin4, Occuludin1, and ZO1 was increased by cannabidiol in U2OS and MG-63. Alizarin Red S staining analysis showed that calcium deposition and mineralization was enhanced by cannabidiol in U2OS and MG-63. Western blotting analysis indicated that the expression of osteoblast differentiation related proteins such as distal-less homeobox 5, bone sialoprotein, osteocalcin, type I collagen, Runt-related transcription factor 2 (RUNX2), osterix (OSX), and alkaline phosphatase was time dependently upregulated by cannabidiol in U2OS and MG-63. Mechanistically, cannabidiol-regulated osteoblastic differentiation in U2OS and MG-63 by strengthen the protein-protein interaction among RUNX2, OSX, or the phosphorylated p38 mitogen-activated protein kinase (MAPK). In conclusion, cannabidiol increased Angiopoietin1 expression and p38 MAPK activation for osteoblastic differentiation in U2OS and MG-63 suggesting that cannabidiol might provide a novel therapeutic option for the bone regeneration.


Assuntos
Angiopoietina-1/metabolismo , Canabidiol/farmacologia , Diferenciação Celular/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosfatase Alcalina/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Osteoblastos/citologia , Osteoblastos/metabolismo , Fosforilação
10.
Int J Nanomedicine ; 15: 4171-4189, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606671

RESUMO

Background: Angiogenic and osteogenic activities are two major problems with biomedical titanium (Ti) and other orthopedic implants used to repair large bone defects. Purpose: The aim of this study is to prepare hydroxyapatite (HA) coatings on the surface of Ti by using electrochemical deposition (ED), and to evaluate the effects of nanotopography and silicon (Si) doping on the angiogenic and osteogenic activities of the coating in vitro. Materials and Methods: HA coating and Si-doped HA (HS) coatings with varying nanotopographies were fabricated using two ED modes, ie, the pulsive current (PC) and cyclic voltammetry (CV) methods. The coatings were characterized through scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectrometer (XPS), and atomic force microscopy (AFM), and their in vitro bioactivity and protein adsorption were assessed. Using MC3T3-E1 pre-osteoblasts and HUVECs as cell models, the osteogenic and angiogenic capabilities of the coatings were evaluated through in vitro cellular experiments. Results: By controlling Si content in ~0.8 wt.%, the coatings resulting from the PC mode (HA-PC and HS-PC) and CV mode (HA-CV and HS-CV) had nanosheet and nanorod topographies, respectively. At lower crystallinity, higher ionic dissolution, smaller contact angle, higher surface roughness, and more negative zeta potential, the HS and PC samples exhibited quicker apatite deposition and higher BSA adsorption capacity. The in vitro cell study showed that Si doping was more favorable for enhancing the viability of the MC3T3-E1 cells, but nanosheet coating increased the area for cell spreading. Of the four coatings, HS-PC with Si doping and nanosheet topography exhibited the best effect in terms of up-regulating the expressions of the osteogenic genes (ALP, Col-I, OSX, OPN and OCN) in the MC3T3-E1 cells. Moreover, all leach liquors of the surface-coated Ti disks promoted the growth of the HUVECs, and the HS samples played a more significant role in promoting cell migration and tube formation than the HA samples. Of the four leach liquors, only the two HS samples up-regulated NO content and expressions of the angiogenesis-related genes (VEGF, bFGF and eNOS) in the HUVECs, and the HS-PC yielded a better effect. Conclusion: The results show that Si doping while regulating the topography of the coating can help enhance the bone regeneration and vascularization of HA-coated Ti implants.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Durapatita/farmacologia , Nanopartículas/química , Osteogênese , Próteses e Implantes , Silício/química , Titânio/farmacologia , Adsorção , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Camundongos , Nanopartículas/ultraestrutura , Nanotubos/química , Neovascularização Fisiológica/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Soroalbumina Bovina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Difração de Raios X
11.
Int J Nanomedicine ; 15: 4471-4481, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606689

RESUMO

Background: Ineffective integration has been recognized as one of the major causes of early orthopedic failure of titanium-based implants. One strategy to address this problem is to develop modified titanium surfaces that promote osteoblast differentiation. This study explored titanium surfaces modified with TiO2 nanotubes (TiO2 NTs) capable of localized drug delivery into bone and enhanced osteoblast cell differentiation. Materials and Methods: Briefly, TiO2 NTs were subjected to anodic oxidation and loaded with Metformin, a widely used diabetes drug. To create surfaces with sustainable drug-eluting characteristics, TiO2 NTs were spin coated with a thin layer of chitosan. The surfaces were characterized via scanning electron microscopy, atomic force microscopy, and contact angle measurements. The surfaces were then exposed to mesenchymal bone marrow stem cells (MSCs) to evaluate cell adhesion, growth, differentiation, and morphology on the modified surfaces. Results: A noticeable increase in drug release time (3 days vs 20 days) and a decrease in burst release characteristics (85% to 7%) was observed in coated samples as compared to uncoated samples, respectively. Chitosan-coated TiO2 NTs exhibited a considerable enhancement in cell adhesion, proliferation, and genetic expression of type I collagen, and alkaline phosphatase activity as compared to uncoated TiO2 NTs. Conclusion: TiO2 NT surfaces with a chitosan coating are capable of delivering Metformin to a bone site over a sustained period of time with the potential to enhance MSCs cell attachment, proliferation, and differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Quitosana/química , Liberação Controlada de Fármacos , Metformina/farmacologia , Nanotubos/química , Osteoblastos/citologia , Titânio/química , Fosfatase Alcalina/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanotubos/ultraestrutura , Osteoblastos/efeitos dos fármacos , Osteoblastos/ultraestrutura , Osteogênese/efeitos dos fármacos , Ratos Wistar , Molhabilidade
12.
Mol Cell ; 79(3): 425-442.e7, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32615088

RESUMO

Double-strand breaks (DSBs) are the most deleterious DNA lesions, which, if left unrepaired, may lead to genome instability or cell death. Here, we report that, in response to DSBs, the RNA methyltransferase METTL3 is activated by ATM-mediated phosphorylation at S43. Phosphorylated METTL3 is then localized to DNA damage sites, where it methylates the N6 position of adenosine (m6A) in DNA damage-associated RNAs, which recruits the m6A reader protein YTHDC1 for protection. In this way, the METTL3-m6A-YTHDC1 axis modulates accumulation of DNA-RNA hybrids at DSBs sites, which then recruit RAD51 and BRCA1 for homologous recombination (HR)-mediated repair. METTL3-deficient cells display defective HR, accumulation of unrepaired DSBs, and genome instability. Accordingly, depletion of METTL3 significantly enhances the sensitivity of cancer cells and murine xenografts to DNA damage-based therapy. These findings uncover the function of METTL3 and YTHDC1 in HR-mediated DSB repair, which may have implications for cancer therapy.


Assuntos
Adenosina/análogos & derivados , Neoplasias de Cabeça e Pescoço/genética , Metiltransferases/genética , Proteínas do Tecido Nervoso/genética , Fatores de Processamento de RNA/genética , Reparo de DNA por Recombinação/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Adenosina/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Bleomicina/farmacologia , Linhagem Celular Tumoral , DNA/genética , DNA/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Células HEK293 , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas do Tecido Nervoso/metabolismo , Hibridização de Ácido Nucleico , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Processamento de RNA/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Ribonuclease H/genética , Ribonuclease H/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Life Sci ; 257: 118044, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32622944

RESUMO

AIMS: High-dose glucocorticoid (GC) administration causes osteoporosis. Many previous studies from our group and other groups have shown that melatonin participates in the regulation of osteoblast proliferation and differentiation, especially low concentrations of melatonin, which enhance osteoblast osteogenesis. However, the role of melatonin in glucocorticoid-induced osteoblast differentiation remains unknown. MATERIALS AND METHODS: An examination of the expression of osteoblast differentiation markers (ALP, OCN, COLL-1), as well as alkaline phosphatase staining and alkaline phosphatase enzymatic activity assay to measure osteoblast differentiation and quantifying Alizarin red S staining to measure mineralization, were performed to determine the effects of dexamethasone (Dex) and melatonin on the differentiation of MC3T3-E1 cells. We used immunofluorescence staining to detect the expression of Runx2 in melatonin-treated MC3T3-E1 cells. The expression of mRNA was determined by qRT-PCR, and protein levels were measured by western blotting. KEY FINDINGS: In the present study, we found that 100 µM Dex significantly reduced osteoblast differentiation and mineralization in MC3T3-E1 cells and that 1 µM melatonin attenuated these inhibitory effects. We found that only inhibition of PI3K/AKT (MK2206) and BMP/Smad (LDN193189) signalling abolished melatonin-induced differentiation and mineralization. Meanwhile, MK2206 decreased the expression of P-AKT and P-Smad1/5/9 and LDN193189 decreased the expression of P-Smad1/5/9 but had no obvious effect on P-AKT expression in melatonin-treated and Dex-induced MC3T3-E1 cells. SIGNIFICANCE: These findings suggest that melatonin rescues Dex-induced inhibition of osteoblast differentiation in MC3T3-E1 cells via the PI3K/AKT and BMP/Smad signalling pathways and that PI3K/AKT signalling may be the upstream signal of BMP/Smad signalling.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Melatonina/metabolismo , Osteoblastos/metabolismo , Animais , Biomineralização/efeitos dos fármacos , Proteína Morfogenética Óssea 2/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Linhagem Celular , Dexametasona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/efeitos adversos , Glucocorticoides/farmacologia , Melatonina/farmacologia , Camundongos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo
14.
Ecotoxicol Environ Saf ; 203: 110930, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32684523

RESUMO

Benzo[a]pyrene(BaP), a polycyclic aromatic hydrocarbons (PAH) of environmental pollutants, is one of the main ingredients in cigarettes and an agonist of the aryl hydrocarbon receptor (AhR). Mesenchymal stem cells (MSCs) including C3H10T1/2 and MEF cells, adult multipotent stem cells, can be differentiated toward osteoblasts during the induction of osteogenic induction factor-bone morphogenetic protein 2(BMP2). Accumulating evidence suggests that BaP decreases bone development in mammals, but the further mechanisms of BaP on BMP2-induced bone formation involved are unknown. Here, we researched the role of BaP on BMP2-induced osteoblast differentiation and bone formation. We showed that BaP significantly suppressed early and late osteogenic differentiation, and downregulated the runt-related transcription factor 2(Runx2), osteocalcin(OCN) and osteopontin (OPN) during the induction of BMP2 in MSCs. Consistent with in vitro results, administration of BaP inhibited BMP2-induced subcutaneous ectopic osteogenesis in vivo. Interestingly, blocking AhR reversed the inhibition of BaP on BMP2-induced osteogenic differentiation, which suggested that AhR played an important role in this process. Moreover, BaP significantly decreased BMP2-induced Smad1/5/8 phosphorylation. Furthermore, BaP significantly reduced bone morphogenetic protein receptor 2(BMPRII) expression and excessively activated Hey1. Thus, our data demonstrate the role of BaP in BMP2-induced bone formation and suggest that impaired BMP/Smad pathways through AhR regulating BMPRII and Hey1 may be an underlying mechanism for BaP inhibiting BMP2-induced osteogenic differentiation.


Assuntos
Benzo(a)pireno/toxicidade , Proteína Morfogenética Óssea 2/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Benzo(a)pireno/metabolismo , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Células HCT116 , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Nus , Osteoblastos/metabolismo
15.
Life Sci ; 256: 117964, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32534036

RESUMO

AIMS: Vascular smooth muscle cells (VSMCs) are important regulators of vascular functions and their conversion to osteoblasts is a key to development of vascular calcification. This study aimed to characterize in vitro effect of hepatoma-derived growth factor (HDGF) on phenotypic conversion of cultured aortic VSMCs into osteoblast-like cells. MATERIALS AND METHODS: Cell proliferation and migration assays were used to examine cell behaviors. Western blotting, alkaline phosphatase activity and calcium staining were used to evaluate osteoblastic marker expression and function, respectively. KEY FINDINGS: Recombinant HDGF treatment enhanced VSMC growth and motility. Treatment of osteogenic medium (OM) increased expression of not only HDGF but also osteoblastic markers, including Runx2 and osteopontin (OPN), while VSMC marker α-smooth muscle actin (α-SMA) declined. Coincidentally, HDGF and OM treatment alone stimulated signaling activities in both PI3K/Akt and MAPK pathways. Conversely, inhibition of Akt and p38 significantly blocked the OM-upregulated HDGF, Runx2, and OPN expression and NF-κB phosphorylation, but did not reversed the α-SMA downregulation, implicating the involvement of Akt and p38 activities in the osteoblastic transformation of VSMCs. Small interfering RNA-mediated HDGF gene silencing effectively prevented the Runx2 and OPN upregulation, alkaline phosphatase activation, and calcium deposition, but did not affect the α-SMA levels in the transformed cells, supporting the involvement of HDGF in regulation of Runx2 and OPN expression. SIGNIFICANCE: In conclusion, in synergism with other osteogenic factor, HDGF may promote the progression of osteobastic transformation of VSMCs via Akt and p38 signaling pathways and contribute to vascular calcification in arteriosclerosis. CHEMICAL COMPOUNDS STUDIED IN THIS STUDY: HDGF (PubChem CID:); LY294002 (PubChem CID: 3973); PD98059 (PubChem CID: 4713); SB203580 (PubChem CID: 176155); SB431542 (PubChem CID: 4521392); SP600125 (PubChem CID: 8515); Wortmannin (PubChem CID: 312145).


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Osteoblastos/citologia , Animais , Biomarcadores/metabolismo , Linhagem Celular Transformada , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Inativação Gênica/efeitos dos fármacos , Cinética , Miócitos de Músculo Liso/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteopontina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Sci Rep ; 10(1): 9456, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32528137

RESUMO

A silicalite-1 film (SF) deposited on Ti-6Al-4V alloy was investigated in this study as a promising coating for metallic implants. Two forms of SFs were prepared: as-synthesized SFs (SF-RT), and SFs heated up to 500 °C (SF-500) to remove the excess of template species from the SF surface. The SFs were characterized in detail by X-ray photoelectron spectroscopy (XPS), by Fourier transform infrared spectroscopy (FTIR), by scanning electron microscopy (SEM) and water contact angle measurements (WCA). Two types of bone-derived cells (hFOB 1.19 non-tumor fetal osteoblast cell line and U-2 OS osteosarcoma cell line) were used for a biocompatibility assessment. The initial adhesion of hFOB 1.19 cells, evaluated by cell numbers and cell spreading area, was better supported by SF-500 than by SF-RT. While no increase in cell membrane damage, in ROS generation and in TNF-alpha secretion of bone-derived cells grown on both SFs was found, gamma H2AX staining revealed an elevated DNA damage response of U-2 OS cells grown on heat-treated samples (SF-500). This study also discusses differences between osteosarcoma cell lines and non-tumor osteoblastic cells, stressing the importance of choosing the right cell type model.


Assuntos
Citotoxinas/farmacologia , Osteoblastos/efeitos dos fármacos , Osteócitos/efeitos dos fármacos , Titânio/química , Materiais Biocompatíveis/química , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citotoxinas/química , Temperatura Alta , Humanos , Teste de Materiais/métodos , Microscopia Eletrônica de Varredura/métodos , Espectroscopia Fotoeletrônica/métodos , Propriedades de Superfície/efeitos dos fármacos
17.
Proc Natl Acad Sci U S A ; 117(25): 14386-14394, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513693

RESUMO

We report that two widely-used drugs for erectile dysfunction, tadalafil and vardenafil, trigger bone gain in mice through a combination of anabolic and antiresorptive actions on the skeleton. Both drugs were found to enhance osteoblastic bone formation in vivo using a unique gene footprint and to inhibit osteoclast formation. The target enzyme, phosphodiesterase 5A (PDE5A), was found to be expressed in mouse and human bone as well as in specific brain regions, namely the locus coeruleus, raphe pallidus, and paraventricular nucleus of the hypothalamus. Localization of PDE5A in sympathetic neurons was confirmed by coimmunolabeling with dopamine ß-hydroxylase, as well as by retrograde bone-brain tracing using a sympathetic nerve-specific pseudorabies virus, PRV152. Both drugs elicited an antianabolic sympathetic imprint in osteoblasts, but with net bone gain. Unlike in humans, in whom vardenafil is more potent than tadalafil, the relative potencies were reversed with respect to their osteoprotective actions in mice. Structural modeling revealed a higher binding energy of tadalafil to mouse PDE5A compared with vardenafil, due to steric clashes of vardenafil with a single methionine residue at position 806 in mouse PDE5A. Collectively, our findings suggest that a balance between peripheral and central actions of PDE5A inhibitors on bone formation together with their antiresorptive actions specify the osteoprotective action of PDE5A blockade.


Assuntos
Disfunção Erétil/tratamento farmacológico , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Inibidores da Fosfodiesterase 5/farmacologia , Envelhecimento/fisiologia , Animais , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/fisiologia , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Reposicionamento de Medicamentos , Disfunção Erétil/complicações , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Animais , Modelos Moleculares , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/fisiologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/fisiologia , Osteoporose/complicações , Fraturas por Osteoporose/etiologia , Fraturas por Osteoporose/prevenção & controle , Inibidores da Fosfodiesterase 5/química , Inibidores da Fosfodiesterase 5/uso terapêutico , Cultura Primária de Células , Tadalafila/química , Tadalafila/farmacologia , Tadalafila/uso terapêutico , Dicloridrato de Vardenafila/química , Dicloridrato de Vardenafila/farmacologia , Dicloridrato de Vardenafila/uso terapêutico
18.
Int J Nanomedicine ; 15: 3921-3936, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581537

RESUMO

Background: Mesoporous calcium-silicate nanoparticles (MCSNs) have good prospects in the medical field due to their great physicochemical characteristics, antibacterial activity and drug delivery capacity. This study was to analyze the antibiofilm activity and mechanisms of silver (Ag) and zinc (Zn) incorporated MCSNs (Ag/Zn-MCSNs) with different percentages of Ag and Zn. Methods: Ag/Zn(1:9, molar ratio)-MCSNs and Ag/Zn(9:1, molar ratio)-MCSNs were prepared and characterized. Endocytosis of nanoparticles by Enterococcus faecalis (E. faecalis) treated with Ag/Zn-MCSNs was observed using TEM to explore the antibacterial mechanisms. The antibiofilm activity of Ag/Zn-MCSNs with different ratios of Ag and Zn was tested by E. faecalis biofilm model in human roots. The human roots pretreated by different Ag/Zn-MCSNs were cultured with E. faecalis. Then, SEM and CLSM were used to observe the survival of E. faecalis on the root canal wall. Cytotoxicity of the nanoparticles was tested by CCK8 kits. Results: The Ag/Zn-MCSNs release Ag+ and destroy the cell membranes to kill bacteria. The MCSNs containing Ag showed antibacterial activity against E. faecalis biofilms in different degrees, and they can adhere to dentin surfaces to get a continuous antibacterial effect. However, MTA, MCSNs and Zn-MCSNs could not disrupt the bacterial biofilms obviously. MCSNs, Ag/Zn(1:1, molar ratio)-MCSNs and Ag/Zn(1:9)-MCSNs showed no obvious cytotoxicity, while Ag-MCSNs and Ag/Zn(9:1)-MCSNs showed cytotoxicity. Zn-MCSNs can slightly promote cell proliferation. Conclusion: Ag/Zn-MCSNs have good antibiofilm activity. They might achieve an appropriate balance between the antibacterial activity and cytotoxicity by adjusting the ratio of Ag and Zn. Ag/Zn-MCSNs are expected to be a new type of root canal disinfectant or sealer for root canal treatment.


Assuntos
Antibacterianos/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Nanopartículas/química , Prata/química , Zinco/química , Animais , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Compostos de Cálcio/química , Cavidade Pulpar/microbiologia , Dentina/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Enterococcus faecalis/fisiologia , Infecções por Bactérias Gram-Positivas/prevenção & controle , Humanos , Camundongos , Osteoblastos/efeitos dos fármacos , Porosidade , Silicatos/química , Prata/farmacologia , Zinco/farmacologia
19.
Mol Med Rep ; 22(1): 257-264, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32468046

RESUMO

The incidence of peri-implant bone loss is high, and is a difficult condition to treat. Previous studies have shown that titanium (Ti) ions released from implants can lead to osteoblast cell damage, but the specific mechanisms have not been elucidated. The present study established a Ti ion damage osteoblast cell model. The levels of mitochondrion­derived reactive oxygen species (mROS) and autophagy, cell viability and the sirtuin 3 (SIRT3)/superoxide dismutase 2 (SOD2) pathway were examined in this model. It was found that Ti ions decreased osteoblast viability. Moreover, with increased Ti ion concentration, the expression levels of microtubule associated protein 1 light chain 3α (LC3) progressively increased, P62 decreased, autophagic flow increased and mROS levels increased. After the addition of an autophagy inhibitor Bafilomycin A1 and Mito­TEMPO, a mitochondrial antioxidant, the production of mROS was inhibited, the level of autophagy was decreased and cell activity was improved. In addition, with increased Ti ion concentration, the activity of SOD2 decreased, the acetylation level of SOD2 increased, the SIRT3 mRNA and protein expression levels decreased, and the activity of SIRT3 was significantly decreased. Furthermore, it was demonstrated that SIRT3 overexpression reduced the acetylation of SOD2 and increased the activity of SOD2, as well as reducing the production of mROS and the expression level of LC3, thus increasing cell viability. Therefore, the present results suggested that excessive production of mROS induced by Ti ions led to autophagic cell death of osteoblasts, which is dependent on the SIRT3/SOD2 pathway.


Assuntos
Morte Celular Autofágica/genética , Mitocôndrias/metabolismo , Osteoblastos/metabolismo , Sirtuína 3/metabolismo , Superóxido Dismutase/metabolismo , Titânio/toxicidade , Acetilação , Antioxidantes/farmacologia , Morte Celular Autofágica/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Humanos , Íons/metabolismo , Íons/toxicidade , Macrolídeos/farmacologia , Proteínas Associadas aos Microtúbulos/metabolismo , Compostos Organofosforados/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Piperidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Sirtuína 3/genética , Regulação para Cima
20.
Vascul Pharmacol ; 130: 106681, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32387336

RESUMO

Vascular calcification (VC) is a common complication of chronic kidney disease (CKD). However, its mechanisms remain unclear. VC, similar to atherosclerosis, is an inflammatory disease. Vascular smooth muscle cells (VSMCs) play a key role in VC progression. The androgen receptor (AR) in monocytes/macrophages plays an important role in inflammatory diseases. Here, we define the role of macrophage (MФ) AR in inorganic phosphate-induced VSMC calcification. Our results show that the conditioning medium (CM) of silencing AR in macrophages inhibits inorganic phosphate-induced human aortic smooth muscle cell (HASMC) calcification, and alleviates the transdifferentiation of HASMCs into osteoblasts for the protein expression of osteoblasts marker Runt-related transcription factor-2 (Runx2) in HASMCs decreased while that of smooth muscle cell marker SM22α increased. The effect of AR on HASMC calcification might mainly be mediated by the inflammatory cytokine IL-6. Silencing AR in monocytes/macrophages can dramatically decrease IL-6 expression. We also investigated how macrophage AR regulates IL-6. ChIP and luciferase assays indicate that AR directly binds to the ARE sequence in the promoter of the IL-6 gene to accelerate transcription and expression. To our knowledge, this is the first investigation that has established the correlation between AR and VC and identified the contribution of AR in the calcification of VSMCs. In addition, this study describes a novel target for therapeutic intervention in VC.


Assuntos
Interleucina-6/metabolismo , Macrófagos/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Comunicação Parácrina , Fosfatos/toxicidade , Receptores Androgênicos/metabolismo , Calcificação Vascular/metabolismo , Actinas/metabolismo , Transdiferenciação Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação para Baixo , Humanos , Interleucina-6/genética , Macrófagos/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteogênese/efeitos dos fármacos , Receptores Androgênicos/genética , Transdução de Sinais , Células THP-1 , Calcificação Vascular/genética , Calcificação Vascular/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA