Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.100
Filtrar
1.
Artigo em Chinês | MEDLINE | ID: mdl-35680832

RESUMO

Multiple myeloma bone disease is the most common complication of multiple myeloma, which mutually promotes the progression of multiple myeloma, severely affects patients' survival quality and prognosis. Recently, many studies revealed that non-coding RNAs play an important role in the imbalance of bone remodeling by regulating gene expression and participating in various signaling pathways. Additionally, most bone lesions fail to heal even when myeloma patients are in complete remission due to the sustained suppression of osteoblast activity, while non-coding RNAs may become a novel research field and clinical intervention targets. In this review, the latest research advances of non-coding RNAs which affect the occurrence and progress of multiple myeloma bone disease are summarized briefly.


Assuntos
Doenças Ósseas , Mieloma Múltiplo , Doenças Ósseas/complicações , Doenças Ósseas/patologia , Humanos , Mieloma Múltiplo/patologia , Osteoblastos/metabolismo , Osteoblastos/patologia , Prognóstico , Transdução de Sinais
2.
Bioengineered ; 13(4): 10866-10874, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35473505

RESUMO

Osteoporosis is a systemic disorder of bone metabolism. This study aimed to investigate the impacts and possible mechanisms of Arctiin, a lignin isolated from Arctium lappa on MC3T3-E1 osteoblast differentiation. In this study, after treatment with different concentrations of Arctiin, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to estimate the expression of osteogenesis markers. Then, the activity of alkaline phosphatase (ALP) was detected by an ALP assay kit and calcium nodules staining was evaluated by alizarin red staining (ARS). Additionally, the regulatory effects of Arctiin on cyclin D1 (Ccnd1) was assessed by measurement of protein expression. Subsequently, the functions of Ccnd1 silencing on the osteogenic differentiation was examined in Arctiin-treated MC3T3-E1 cells. Results indicated that Arctiin dose-dependently upregulated the expression of runt-related transcription factor 2 (RUNX2), collagen type 1 (COL1A1), osteocalcin (OCN) and osteopontin (OPN). Elevated ALP activity and calcification degree was prominently observed in the Arctiin-treated groups. Moreover, Ccnd1 expression was notably enhanced after Arctiin intervention. Importantly, Ccnd1-knockdown abrogated the impacts of Arctiin on osteogenic differentiation of MC3T3-E1. To conclude, findings in this study suggested that Arctiin could regulate MC3T3-E1 osteoblast differentiation via up-regulating Ccnd1, supporting that Arctiin might be a therapeutic target for osteoporosis.


Assuntos
Ciclina D1 , Furanos , Glucosídeos , Osteogênese , Osteoporose , Animais , Ciclina D1/genética , Ciclina D1/metabolismo , Furanos/farmacologia , Glucosídeos/farmacologia , Camundongos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteogênese/genética , Osteoporose/genética , Osteoporose/metabolismo , Osteoporose/patologia
3.
Int J Rheum Dis ; 25(5): 592-600, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35238474

RESUMO

AIM: Ankylosing spondylitis (AS) is a chronic inflammatory disease. However, the key inflammatory cytokines disrupted in this disease are not well defined. In this study, we performed protein array and multiple protein quantification to investigate the differentially expressed cytokines in plasma between AS patients and healthy subjects. METHOD: In the discovery cohort, 5 AS patients who never underwent biologic therapy and 5 gender- and age-matched healthy subjects were enrolled in the protein array analysis. Another 40 AS patients and 20 healthy participants were recruited in the validation stage. In addition, the messenger RNA and protein levels of osteogenesis-related genes were quantified in hFOB1.19 cells in an in vitro osteoblast model. RESULTS: Of the 318 cytokines found to be differentially expressed by protein array, leukemia inhibitor factor (LIF) was significantly increased in AS patients as compared to controls. The "signaling by interleukins" pathway was the most enriched pathway in AS patients, and "signaling by interleukins"-related cytokines, including LIF, interleukin (IL)-6, IL-23, and IL-31, were significantly differentially expressed in the validation stage. Additionally, we correlated the expression of LIF with C-reactive protein (CRP) and inflammation of magnetic resonance imaging lesions in the spine (MRI-SPINE) in AS patients. We further analyzed the effects of LIF in hFOB cells and found that LIF promoted the growth factor receptor-bound protein 2 / phospho-extracellular signal-regulated kinase / runt-related transcription factor 2 / alkaline phosphatase pathway at the protein level and activated several osteogenesis-related genes (RUNX2 and BGLAP). CONCLUSION: LIF was increased in the plasma of AS patients as compared with healthy subjects and significantly correlated with inflammation indices (CRP and MRI-SPINE) in AS patients. Thus, LIF may play a critical role in the pathogenesis of AS via promoting osteogenic differentiation.


Assuntos
Osteogênese , Espondilite Anquilosante , Humanos , Inflamação/metabolismo , Interleucina-6/metabolismo , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/farmacologia , Osteoblastos/patologia , Espondilite Anquilosante/diagnóstico , Espondilite Anquilosante/genética
4.
Ann Clin Lab Sci ; 52(1): 48-59, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35181618

RESUMO

OBJECTIVE: Osteoporosis is likely becoming a new disease challenge with increasing aging population. Circ_0006873 dysregulation may serve as an event linked to osteoporosis. Thus, this study sought to evaluate the function and mechanism of circ_0006873 on osteoporosis. METHODS: Clinical serum samples collected from 30 osteoporosis patients were utilized to obtain circ_0006873 and miR-142-5p expression data. The link between circ_0006873, miR-142-5p, and phosphatase and tensin homolog (PTEN) was demonstrated via online tools (starBase, circinteractome), RNA Immunoprecipitation (RIP) and dual-Luciferase reporter assays. After knockdown or overexpression, cell counting kit-8 (CCK-8) assay measured cell viability. Alizarin red S (ARS) staining as well Alkaline phosphatase (ALP) staining detected osteoblastic differentiation levels. Quantitative real-time PCR (qRT-PCR) and western blot analyzed expression of RNAs and proteins after transfection or during osteoblastic differentiation. RESULTS: circ_0006873 was upregulated in osteoporosis patients and decreased during osteoblastic differentiation. Following experiments revealed that cell viability, proliferation-related factors, osteogenic marker genes (ALP, Runx2, Bglap) and osteoblastic differentiation degree were promoted after circ_0006873 knockdown but inhibited after overexpression. Circ_0006873 sponged miR-142-5p, which was downregulated in osteoporosis patients and became higher during osteoblastic differentiation. Rescue assay indicated miR-142-5p mimic could reverse the effects of circ_0006873 overexpression on cell viability and osteogenic markers, and also could activate Akt pathway. Furthermore, circ_0006873 can negatively target miR-142-5p via regulating PTEN to inhibit osteoblastic differentiation. CONCLUSION: Circ_0006873 sponges miR-142-5p thereby enhances PTEN expression to suppress osteoblastic differentiation via regulation of Akt signaling pathway, thus, may provide a treatment approach for osteoporosis.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteoblastos , Osteoporose , PTEN Fosfo-Hidrolase , Proteínas Proto-Oncogênicas c-akt , RNA Circular , Idoso , Diferenciação Celular , Humanos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoporose/sangue , Osteoporose/genética , Osteoporose/metabolismo , Osteoporose/patologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Transdução de Sinais
5.
J Healthc Eng ; 2022: 3282860, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126917

RESUMO

Multiple myeloma is one of the hematological malignancies and inhibited osteoblast differentiation of bone marrow mesenchymal stem cells (BM-MSCs) which has been proved as a major complication of the patients with multiple myeloma. However, the pathomechanism of symptom remains unclear. Besides, several studies have indicated that LINC00461 plays an important role in the progression of multiple tumors. Hence, this study attempted to reveal the role of LINC00461 in the osteoblast differentiation of MSCs. In this study, the expression level of LINC00461 in the exosomes of multiple myeloma cells was measured, and BM-MSCs were cultured with the exosomes to observe the change of cellular phenotype. Moreover, downstream target of LINC00461 was searched and verified with dual-luciferase reporter assay, and the activation of the Wnt/ß-catenin pathway was also observed by Western blot. The results showed that the isolated BMSCs exhibited special biomarkers of MSCs. LINC00461 was significantly upregulated in the exosomes originated multiple myeloma cells, and increased LINC00461 significantly impeded the osteoblast differentiation of MSCs. Moreover, LINC00461 could significantly suppress the activation of the Wnt/ß-catenin pathway in MSCs. In conclusion, this study suggested that LINC00461 in exosomes of multiple myeloma could reduce the activity of the Wnt/ß-catenin pathway to inhibit the osteoblast differentiation of BM-MSCs via targeting miR-324-3p.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Mieloma Múltiplo , Exossomos/genética , Exossomos/metabolismo , Exossomos/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , MicroRNAs/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Osteoblastos/metabolismo , Osteoblastos/patologia , RNA Longo não Codificante , beta Catenina/metabolismo
6.
Molecules ; 27(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35163998

RESUMO

Toll-like receptor 4 (TLR4) is a pattern-recognizing receptor that can bind exogenous and endogenous ligands. It is expressed by acute myeloid leukemia (AML) cells, several bone marrow stromal cells, and nonleukemic cells involved in inflammation. TLR4 can bind a wide range of endogenous ligands that are present in the bone marrow microenvironment. Furthermore, the TLR4-expressing nonleukemic bone marrow cells include various mesenchymal cells, endothelial cells, differentiated myeloid cells, and inflammatory/immunocompetent cells. Osteoblasts are important stem cell supporting cells localized to the stem cell niches, and they support the proliferation and survival of primary AML cells. These supporting effects are mediated by the bidirectional crosstalk between AML cells and supportive osteoblasts through the local cytokine network. Finally, TLR4 is also important for the defense against complicating infections in neutropenic patients, and it seems to be involved in the regulation of inflammatory and immunological reactions in patients treated with allogeneic stem cell transplantation. Thus, TLR4 has direct effects on primary AML cells, and it has indirect effects on the leukemic cells through modulation of their supporting neighboring bone marrow stromal cells (i.e., modulation of stem cell niches, regulation of angiogenesis). Furthermore, in allotransplant recipients TLR4 can modulate inflammatory and potentially antileukemic immune reactivity. The use of TLR4 targeting as an antileukemic treatment will therefore depend both on the biology of the AML cells, the biological context of the AML cells, aging effects reflected both in the AML and the stromal cells and the additional antileukemic treatment combined with HSP90 inhibition.


Assuntos
Carcinogênese , Leucemia Mieloide Aguda/patologia , Osteoblastos/patologia , Nicho de Células-Tronco , Receptor 4 Toll-Like/metabolismo , Microambiente Tumoral , Animais , Humanos , Leucemia Mieloide Aguda/etiologia , Leucemia Mieloide Aguda/metabolismo , Osteoblastos/metabolismo
7.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35216140

RESUMO

Osteoporosis (OP) is a systemic bone disease characterized by decreased bone strength, microarchitectural changes in bone tissues, and increased risk of fracture. Its occurrence is closely related to various factors such as aging, genetic factors, living habits, and nutritional deficiencies as well as the disturbance of bone homeostasis. The dysregulation of bone metabolism is regarded as one of the key influencing factors causing OP. Cholesterol oxidation products (COPs) are important compounds in the maintenance of bone metabolic homeostasis by participating in several important biological processes such as the differentiation of mesenchymal stem cells, bone formation in osteoblasts, and bone resorption in osteoclasts. The effects of specific COPs on mesenchymal stem cells are mainly manifested by promoting osteoblast genesis and inhibiting adipocyte genesis. This review aims to elucidate the biological roles of COPs in OP development, starting from the molecular mechanisms of OP, pointing out opportunities and challenges in current research, and providing new ideas and perspectives for further studies of OP pathogenesis.


Assuntos
Colesterol/metabolismo , Osteoporose/metabolismo , Osteoporose/patologia , Animais , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Humanos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteogênese/fisiologia , Oxirredução
8.
Anticancer Res ; 42(3): 1295-1299, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35220219

RESUMO

BACKGROUND/AIM: Zoledronic acid (ZA) treatment of in vitro cultured osteoblasts (OB) results in reduction in viability, proliferation and differentiation. These effects are slightly attenuated when platelets-rich fibrin and plasma (PRF and PRP) are added. However, it is still unknown whether application of PRP/PRF on ZA-treated OB in a 3D-environment would influence the viability in relation to 2D-cultivation. MATERIALS AND METHODS: Non-treated and ZA-treated OB were cultivated in 2D conditions or seeded in a 3D collagen scaffold with and without PRP/PRF. MTT test was carried out after 5 days of colonization. 4,6-diamidino-2'-phenylindole, dihydrochloride (DAPI)-staining was performed in OB grown in 3D scaffolds to ensure spatial distribution of OB. RESULTS: ZA led to a significant reduction in cell viability compared to the control group. Addition of either PRF or PRP to the 3D colonized and ZA-treated OB significantly enhanced their survival and viability in relation to 2D monolayer cultivation. CONCLUSION: The use of 3D-scaffolds has a positive effect on OB viability, and stimulation by PRF and PRP may provide a therapeutic approach to transfer these results into clinical routine for the treatment of patients with bisphosphonate related osteonecrosis of the jaw (BR-ONJ).


Assuntos
Conservadores da Densidade Óssea/toxicidade , Osteoblastos/efeitos dos fármacos , Fibrina Rica em Plaquetas/metabolismo , Plasma Rico em Plaquetas/metabolismo , Ácido Zoledrônico/toxicidade , Sobrevivência Celular , Células Cultivadas , Humanos , Osteoblastos/metabolismo , Osteoblastos/patologia , Cultura Primária de Células , Tecidos Suporte
9.
Sci Rep ; 12(1): 1846, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115632

RESUMO

Adolescent idiopathic scoliosis (AIS) is the most prevalent pediatric spinal deformity. We previously demonstrated elongated cilia and an altered molecular mechanosensory response in AIS osteoblasts. The purpose of this exploratory study was to characterize the mechanosensory defect occurring in AIS osteoblasts. We found that cilia length dynamics in response to flow significantly differ in AIS osteoblasts compared to control cells. In addition, strain-induced rearrangement of actin filaments was compromised resulting in a failure of AIS osteoblasts to position or elongate in function of the bidirectional-applied flow. Contrary to control osteoblasts, fluid flow had an inhibitory effect on AIS cell migration. Moreover, flow induced an increase in secreted VEGF-A and PGE2 in control but not AIS cells. Collectively our data demonstrated that in addition to the observed primary cilium defects, there are cytoskeletal abnormalities correlated to impaired mechanotransduction in AIS. Thus, we propose that the AIS etiology could be a result of generalized defects in cellular mechanotransduction given that an adolescent growing spine is under constant stimulation for growth and bone remodeling in response to applied mechanical forces. Recognition of an altered mechanotransduction as part of the AIS pathomechanism must be considered in the conception and development of more effective bracing treatments.


Assuntos
Citoesqueleto de Actina/metabolismo , Cílios/metabolismo , Mecanotransdução Celular , Osteoblastos/metabolismo , Escoliose/metabolismo , Coluna Vertebral/metabolismo , Citoesqueleto de Actina/patologia , Adolescente , Braquetes , Estudos de Casos e Controles , Movimento Celular , Células Cultivadas , Criança , Cílios/patologia , Dinoprostona/metabolismo , Feminino , Humanos , Osteoblastos/patologia , Escoliose/patologia , Escoliose/terapia , Coluna Vertebral/patologia , Estresse Mecânico , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
J Transl Med ; 20(1): 16, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991592

RESUMO

Multiple myeloma is characterized by osteolytic lesions caused by reduced bone formation and activated bone resorption. An important feature of myeloma is a failure of bone healing after successful treatment. In this work, clinical studies indicated a highly positive correlation between bone marrow bacteria abundance and bone lesion numbers of myeloma patients in complete remission. Coculture experiments demonstrated that marrow Escherichia coli (E. coli) promotes osteoclast differentiation and inhibits osteoblast differentiation. Mechanism studies showed that E. coli lipopolysaccharides (LPS) activated NF-κB p65 signaling and reduced phosphorylated smad1/5/9 binding ability with RUNX2 promoter, leading to decreased RUNX2 expression in osteoblast progenitors. Additionally, LPS enhanced phosphorylated NF-κB p65 binding ability with NFATc1 promoter, leading to increased NFATc1 expression in osteoclast progenitors. In vivo studies revealed E. coli contributes to osteolytic bone lesion, and elimination of E. coli infection assists healing of bone lesion in mouse model of myeloma in complete remission. These findings establish a heretofore unrecognized effect for E. coli in the genesis of myeloma bone disease and suggest a new treatment strategy.


Assuntos
Infecções Bacterianas , Reabsorção Óssea , Mieloma Múltiplo , Osteólise , Animais , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular , Escherichia coli , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , NF-kappa B/metabolismo , Osteoblastos/patologia , Osteoclastos/patologia , Osteólise/complicações , Ligante RANK/metabolismo
11.
Semin Cell Dev Biol ; 123: 14-21, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34024716

RESUMO

Postmenopausal osteoporosis is a systemic disease characterized by the loss of bone mass and increased bone fracture risk largely resulting from significantly reduced levels of the hormone estrogen after menopause. Besides the direct negative effects of estrogen-deficiency on bone, indirect effects of altered immune status in postmenopausal women might contribute to ongoing bone destruction, as postmenopausal women often display a chronic low-grade inflammatory phenotype with altered cytokine expression and immune cell profile. In this context, it was previously shown that various immune cells interact with osteoblasts and osteoclasts either via direct cell-cell contact, or more likely via paracrine mechanisms. For example, specific subtypes of T lymphocytes express TNFα, which was shown to increase osteoblast apoptosis and to indirectly stimulate osteoclastogenesis via B cell-produced receptor-activator of NF-κB ligand (RANKL), thereby triggering bone loss during postmenopausal osteoporosis. Th17 cells release interleukin-17 (IL-17), which directs mesenchymal stem cell differentiation towards the osteogenic lineage, but also indirectly increases osteoclast differentiation. B lymphocytes are a major regulator of osteoclast formation via granulocyte colony-stimulating factor secretion and the RANKL/osteoprotegerin system under estrogen-deficient conditions. Macrophages might act differently on bone cells dependent on their polarization profile and their secreted paracrine factors, which might have implications for the development of postmenopausal osteoporosis, because macrophage polarization is altered during disease progression. Likewise, neutrophils play an important role during bone homeostasis, but their over-activation under estrogen-deficient conditions contributes to osteoblast apoptosis via the release of reactive oxygen species and increased osteoclastogenesis via RANKL signaling. Furthermore, mast cells might be involved in the development of postmenopausal osteoporosis, because they store high levels of osteoclastic mediators, including IL-6 and RANKL, in their granules and their numbers are greatly increased in osteoporotic bone. Additionally, bone fracture healing is altered under estrogen-deficient conditions with the increased presence of pro-inflammatory cytokines, including IL-6 and Midkine, which might contribute to healing disturbances. Consequently, in addition to the direct negative influence of estrogen-deficiency on bone, immune cell alterations contribute to the pathogenesis of postmenopausal osteoporosis.


Assuntos
Reabsorção Óssea , Osteoporose Pós-Menopausa , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Osso e Ossos/patologia , Diferenciação Celular , Estrogênios/metabolismo , Estrogênios/farmacologia , Feminino , Humanos , Osteoblastos/patologia , Osteoclastos/metabolismo , Osteoporose Pós-Menopausa/metabolismo , Osteoporose Pós-Menopausa/patologia
12.
Exp Cell Res ; 411(1): 112972, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34914964

RESUMO

Calcification of the bicuspid aortic valve (BAV) involves differential expression of various RNA genes, which is achieved through complex regulatory networks that are controlled in part by transcription factors and microRNAs. We previously found that miR-195-5p regulates the osteogenic differentiation of valvular interstitial cells (VICs) by targeting the TGF-ß pathway. However, the transcriptional regulation of miR-195-5p in calcified BAV patients is not yet clear. In this study, stenotic aortic valve tissues from patients with BAVs and tricuspid aortic valves (TAVs) were collected. Candidate transcription factors of miR-195-5p were predicted by bioinformatics analysis and tested in diseased valves and in male porcine VICs. SP2 gene expression and the corresponding protein levels in BAV were significantly lower than those in TAV, and a low SP2 expression level environment in VICs resulted in remarkable increases in RNA expression levels of RUNX2, BMP2, collagen 1, MMP2, and MMP9 and the corresponding proteins. ChIP assays revealed that SP2 directly bound to the transcription promoter region of miR-195-5p. Cotransfection of SP2 shRNA and a miR-195-5p mimic in porcine VICs demonstrated that SP2 repressed SMAD7 expression via miR-195-5p, while knockdown of SP2 increased the mRNA expression of SMAD7 and the corresponding protein and attenuated Smad 2/3 expression. Immunofluorescence staining of diseased valves confirmed that the functional proteins of osteogenesis differentiation, including RUNX2, BMP2, collagen 1, and osteocalcin, were overexpressed in BAVs. In Conclusion, the transcription factor Sp2 is expressed at low levels in VICs from BAV patients, which has a negative impact on miR-195-5p expression by binding its promoter region and partially promotes calcification through a SMAD-dependent pathway.


Assuntos
Doença da Válvula Aórtica Bicúspide/patologia , Calcinose/patologia , Osteoblastos/patologia , Proteína Smad7/metabolismo , Fator de Transcrição Sp2/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Valva Tricúspide/patologia , Animais , Doença da Válvula Aórtica Bicúspide/genética , Doença da Válvula Aórtica Bicúspide/metabolismo , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Calcinose/genética , Calcinose/metabolismo , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Humanos , Masculino , MicroRNAs , Pessoa de Meia-Idade , Osteoblastos/metabolismo , Osteogênese , Proteína Smad7/genética , Fator de Transcrição Sp2/genética , Suínos , Fator de Crescimento Transformador beta1/genética , Valva Tricúspide/metabolismo
13.
Am J Physiol Cell Physiol ; 322(2): C177-C184, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34910601

RESUMO

Over the years, numerous studies demonstrated reciprocal communications between processes of bone marrow hematopoiesis and bone remodeling. Megakaryocytes, rare bone marrow cells responsible for platelet production, were demonstrated to be involved in bone homeostasis. Myelofibrosis, characterized by an increase in pleomorphic megakaryocytes in the bone marrow, commonly leads to the development of osteosclerosis. In vivo, an increase in megakaryocyte number was shown to result in osteosclerosis in GATA-1low, Nf-e2-/-, TPOhigh, Mplf/f;PF4cre, Lnk-/-, Mpig6b-/-, Mpig6bfl/fl;Gp1ba-Cr+/KI, and Pt-vWD mouse models. In vitro, megakaryocytes stimulate osteoblast proliferation and have variable effects on osteoclast proliferation and activity through soluble factors and direct cell-cell communications. Intriguingly, new studies revealed that the ability of megakaryocytes to communicate with bone cells is affected by the age and sex of animals. This mini-review summarizes changes seen in bone architecture and bone cell function in mouse models with an elevated number of megakaryocytes and the effects megakaryocytes have on osteoblasts and osteoclasts in vitro, and discusses potential molecular players that can mediate these effects.


Assuntos
Comunicação Celular/fisiologia , Modelos Animais de Doenças , Megacariócitos/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Mielofibrose Primária/metabolismo , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Humanos , Megacariócitos/patologia , Camundongos , Camundongos Knockout , Osteoblastos/patologia , Osteoclastos/patologia , Mielofibrose Primária/patologia
14.
Int J Mol Sci ; 22(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34948128

RESUMO

Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive disorder characterized by bone marrow failure, exocrine pancreatic insufficiency, and skeletal abnormalities, caused by loss-of-function mutations in the SBDS gene, a factor involved in ribosome biogenesis. By analyzing osteoblasts from SDS patients (SDS-OBs), we show that SDS-OBs displayed reduced SBDS gene expression and reduced/undetectable SBDS protein compared to osteoblasts from healthy subjects (H-OBs). SDS-OBs cultured in an osteogenic medium displayed a lower mineralization capacity compared to H-OBs. Whole transcriptome analysis showed significant differences in the gene expression of SDS-OBs vs. H-OBs, particularly in the ossification pathway. SDS-OBs expressed lower levels of the main genes responsible for osteoblastogenesis. Of all downregulated genes, Western blot analyses confirmed lower levels of alkaline phosphatase and collagen type I in SDS-OBs than in H-OBs. Interestingly, SDS-OBs showed higher protein levels of p53, an inhibitor of osteogenesis, compared to H-OBs. Silencing of Tp53 was associated with higher collagen type I and alkaline phosphatase protein levels and an increase in SDS-OB mineralization capacity. In conclusion, our results show that the reduced capacity of SDS-OBs to mineralize is mediated, at least in part, by the high levels of p53 and highlight an important role of SBDS in osteoblast functions.


Assuntos
Calcificação Fisiológica , Osteoblastos/metabolismo , Síndrome de Shwachman-Diamond/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células Cultivadas , Feminino , Humanos , Masculino , Osteoblastos/patologia , Proteínas/genética , Proteínas/metabolismo , Síndrome de Shwachman-Diamond/genética , Síndrome de Shwachman-Diamond/patologia , Proteína Supressora de Tumor p53/genética
15.
Cells ; 10(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34943934

RESUMO

BACKGROUND: Overexposure to glucocorticoid (GC) produces various clinical complications, including osteoporosis (OP), dyslipidemia, and hypercholesterolemia. Geniposide (GEN) is a natural iridoid compound isolated from Eucommia ulmoides. Our previous study found that GEN could alleviate dexamethasone (DEX)-induced differentiation inhibition of MC3T3-E1 cells. However, whether GEN protected against Dex-induced cholesterol accumulation in osteoblasts was still unclear. METHODS: DEX was used to induce rat OP. Micro-CT data was obtained. The ALP activity and mineralization were determined by the staining assays, and the total intracellular cholesterol was determined by the ELISA kits. The protein expression was detected by western blot. RESULTS: GEN ameliorated Dex-induced micro-structure damages and cell differentiation inhibition in the bone trabecula in rats. In MC3T3-E1 cells, Dex enhanced the total intracellular cholesterol, which reduced the activity of cell proliferation and differentiation. Effectively, GEN decreased DEX-induced cholesterol accumulation, enhanced cell differentiation, and upregulated the expression of the GLP-1R/ABCA1 axis. In addition, inhibition of ABAC1 expression reversed the actions of GEN. Treatment with Exendin9-39, a GLP-1R inhibitor, could abrogate the protective activity of GEN. CONCLUSIONS: GEN ameliorated Dex-induced accumulation of cholesterol and inhibition of cell differentiation by mediating the GLP-1R/ABCA1 axis in MC3T3-E1 cells.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Iridoides/farmacologia , Osteoporose/tratamento farmacológico , Células 3T3 , Animais , Diferenciação Celular/efeitos dos fármacos , Colesterol/genética , Dexametasona/toxicidade , Modelos Animais de Doenças , Eucommiaceae/química , Regulação da Expressão Gênica/efeitos dos fármacos , Iridoides/química , Camundongos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoporose/induzido quimicamente , Osteoporose/genética , Osteoporose/patologia , Ratos , Transdução de Sinais/efeitos dos fármacos
16.
Biomolecules ; 11(12)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34944519

RESUMO

We earlier reported that cell-projection pumping transfers fibroblast contents to cancer cells and this alters the cancer cell phenotype. Here, we report on single-cell tracking of time lapse recordings from co-cultured fluorescent fibroblasts and SAOS-2 osteosarcoma cells, tracking 5201 cells across 7 experiments. The fluorescent lipophilic marker DiD was used to label fibroblast organelles and to trace the transfer of fibroblast cytoplasm into SAOS-2 cells. We related SAOS-2 phenotypic change to levels of fluorescence transfer from fibroblasts to SAOS-2 cells, as well as what we term 'compensated fluorescence', that numerically projects mother cell fluorescence post-mitosis into daughter cells. The comparison of absolute with compensated fluorescence allowed us to deduct if the phenotypic effects in mother SAOS-2 cells were inherited by their daughters. SAOS-2 receipt of fibroblast fluorescence correlated by Kendall's tau with cell-profile area and without evidence of persistence in daughter cells (median tau = 0.51, p < 0.016); negatively and weakly with cell circularity and with evidence of persistence (median tau = -0.19, p < 0.05); and very weakly with cell migration velocity and without evidence of persistence (median tau = 0.01, p < 0.016). In addition, mitotic SAOS-2 cells had higher rates of prior fluorescence uptake (median = 64.9 units/day) than non-dividing cells (median = 35.6 units/day, p < 0.016) and there was no evidence of persistence post-mitosis. We conclude that there was an appreciable impact of cell-projection pumping on cancer cell phenotype relevant to cancer histopathological diagnosis, clinical spread and growth, with most effects being 'reset' by cancer cell mitosis.


Assuntos
Neoplasias Ósseas/patologia , Fibroblastos/citologia , Osteoblastos/citologia , Osteossarcoma/patologia , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Fibroblastos/patologia , Humanos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteossarcoma/metabolismo , Fenótipo , Análise de Célula Única , Imagem com Lapso de Tempo
17.
Front Endocrinol (Lausanne) ; 12: 703167, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925225

RESUMO

Osteoporosis is a complex multifactorial disorder linked to various risk factors and medical conditions. Bone marrow-derived mesenchymal stem cell (BMSC) dysfunction potentially plays a critical role in osteoporosis pathogenesis. Herein, the study identified that miR-4739 was upregulated in BMSC cultures harvested from osteoporotic subjects. BMSCs were isolated from normal and osteoporotic bone marrow tissues and identified for their osteogenic differentiation potential. In osteoporotic BMSCs, miR-4739 overexpression significantly inhibited cell viability, osteoblast differentiation, mineralized nodule formation, and heterotopic bone formation, whereas miR-4739 inhibition exerted opposite effects. Through direct binding, miR-4739 inhibited distal-less homeobox 3 (DLX3) expression. In osteoporotic BMSCs, DLX3 knockdown also inhibited BMSC viability and osteogenic differentiation. Moreover, DLX3 knockdown partially attenuated the effects of miR-4739 inhibition upon BMSCs. Altogether, the miR-4739/DLX3 axis modulates the capacity of BMSCs to differentiate into osteoblasts, which potentially plays a role in osteoporosis pathogenesis. The in vivo and clinical functions of the miR-4739/DLX3 axis require further investigation.


Assuntos
Medula Óssea/patologia , Proteínas de Homeodomínio/metabolismo , Células-Tronco Mesenquimais/patologia , MicroRNAs/genética , Osteoblastos/patologia , Osteogênese , Osteoporose/patologia , Fatores de Transcrição/metabolismo , Biomarcadores/análise , Medula Óssea/metabolismo , Diferenciação Celular , Feminino , Seguimentos , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteoporose/genética , Osteoporose/metabolismo , Prognóstico , Fatores de Transcrição/genética
18.
Cell Mol Life Sci ; 78(24): 8283-8300, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34779895

RESUMO

Secretion and quality control of large extracellular matrix proteins remain poorly understood and debated, particularly transport intermediates delivering folded proteins from the ER to Golgi and misfolded ones to lysosomes. Discrepancies between different studies are related to utilization of exogenous cargo, off-target effects of experimental conditions and cell manipulation, and identification of transport intermediates without tracing their origin and destination. To address these issues, here we imaged secretory and degradative trafficking of type I procollagen in live MC3T3 osteoblasts by replacing a region encoding N-propeptide in endogenous Col1a2 gDNA with GFP cDNA. We selected clones that produced the resulting fluorescent procollagen yet had normal expression of key osteoblast and ER/cell stress genes, normal procollagen folding, and normal deposition and mineralization of extracellular matrix. Live-cell imaging of these clones revealed ARF1-dependent transport intermediates, which had no COPII coat and delivered procollagen from ER exit sites (ERESs) to Golgi without stopping at ER-Golgi intermediate compartment (ERGIC). It also confirmed ERES microautophagy, i.e., lysosomes engulfing ERESs containing misfolded procollagen. Beyond validating these trafficking models for endogenous procollagen, we uncovered a probable cause of noncanonical cell stress response to procollagen misfolding. Recognized and retained only at ERESs, misfolded procollagen does not directly activate the canonical UPR, yet it disrupts the ER lumen by blocking normal secretory export from the ER.


Assuntos
Autofagia , Colágeno Tipo I/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Lisossomos/metabolismo , Osteoblastos/patologia , Pró-Colágeno/metabolismo , Animais , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Células Cultivadas , Camundongos , Osteoblastos/metabolismo , Pró-Colágeno/química , Transporte Proteico
19.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830256

RESUMO

Novel interest has arisen in recent years regarding bone, which is a very complex and dynamic tissue deputed to several functions ranging from mechanical and protective support to hematopoiesis and calcium homeostasis maintenance. In order to address these tasks, a very refined, continuous remodeling process needs to occur involving the coordinated action of different types of bone cells: osteoblasts (OBs), which have the capacity to produce newly formed bone, and osteoclasts (OCs), which can remove old bone. Bone remodeling is a highly regulated process that requires many hormones and messenger molecules, both at the systemic and the local level. The whole picture is still not fully understood, and the role of novel actors, such as the components of the endocannabinoids system (ECS), including endogenous cannabinoid ligands (ECs), cannabinoid receptors (CBRs), and the enzymes responsible for endogenous ligand synthesis and breakdown, is extremely intriguing. This article reviews the connection between the ECS and skeletal health, supporting the potential use of cannabinoid receptor ligands for the treatment of bone diseases associated with accelerated osteoclastic bone resorption, including osteoporosis and bone metastasis.


Assuntos
Neoplasias Ósseas/metabolismo , Reabsorção Óssea/metabolismo , Endocanabinoides/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoporose/metabolismo , Antineoplásicos/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Remodelação Óssea/fisiologia , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Reabsorção Óssea/prevenção & controle , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Regulação da Expressão Gênica , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Humanos , Metástase Neoplásica , Osteoblastos/patologia , Osteoclastos/patologia , Osteoporose/tratamento farmacológico , Osteoporose/genética , Osteoporose/patologia , Ligante RANK/genética , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo , Transdução de Sinais
20.
Cells ; 10(11)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34831397

RESUMO

Complex disease states, like bacterial chondronecrosis with osteomyelitis (BCO), not only result in physiological symptoms, such as lameness, but also a complex systemic reaction involving immune and growth factor responses. For the modern broiler (meat-type) chickens, BCO is an animal welfare, production, and economic concern involving bacterial infection, inflammation, and bone attrition with a poorly defined etiology. It is, therefore, critical to define the key inflammatory and bone-related factors involved in BCO. In this study, the local bone and systemic blood profile of inflammatory modulators, cytokines, and chemokines was elucidated along with inflammasome and key FGF genes. BCO-affected bone showed increased expression of cytokines IL-1ß, while BCO-affected blood expressed upregulated TNFα and IL-12. The chemokine profile revealed increased IL-8 expression in both BCO-affected bone and blood in addition to inflammasome NLRC5 being upregulated in circulation. The key FGF receptor, FGFR1, was significantly downregulated in BCO-affected bone. The exposure of two different bone cell types, hFOB and chicken primary chondrocytes, to plasma from BCO-affected birds, as well as recombinant TNFα, resulted in significantly decreased cell viability. These results demonstrate an expression of proinflammatory and bone-resorptive factors and their potential contribution to BCO etiology through their impact on bone cell viability. This unique profile could be used for improved non-invasive detection of BCO and provides potential targets for treatments.


Assuntos
Infecções Bacterianas/complicações , Quimiocinas/metabolismo , Galinhas/microbiologia , Condrócitos/patologia , Citocinas/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Osteomielite/complicações , Osteomielite/microbiologia , Animais , Infecções Bacterianas/sangue , Infecções Bacterianas/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Quimiocinas/genética , Galinhas/sangue , Galinhas/genética , Condrócitos/efeitos dos fármacos , Citocinas/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Feto/citologia , Fatores de Crescimento de Fibroblastos/genética , Perfilação da Expressão Gênica , Humanos , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/sangue , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Necrose , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteomielite/sangue , Osteomielite/genética , Proteínas Recombinantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...