Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.185
Filtrar
1.
Gene ; 763: 144956, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-32739586

RESUMO

Sox transcription factors play essential roles in a variety of critical physiological processes. Still, members of the sox gene family have not yet been genome-wide identified in shrimps. In this study, a total of five members of the sox gene family were identified from the genome of Pacific white shrimp Litopenaeus vannamei and classified into three subgroups based on the conserved HMG-box domain. Among them, three belong to the SoxB subgroup (one in B1 and two in B2), one in the SoxC subgroup, and one in the SoxE subgroup. The five sox genes had different sex-biased expression in some tissues. Sox21, soxB1, and sox14 had a higher expression in ovary than in testis. In comparison, sox4 had a male-biased specific expression in the gonad, hepatopancreas, gill, and eyestalk. There was no difference in soxE gene expression between testis and ovary. During embryonic development, the expression level of three sox genes (soxB1, sox21, and soxE) was higher in gastrulation stage compared to previous stages, declined in limb bud stage and then increased in intramembrane nauplius stage; the expression of sox4 was detected in blastula stage and continued to increase in the following two stages and then surged in intramembrane nauplius stage; the highest expression of sox14 was in the fertilized egg stage, and the expression level decreased with the development of the embryo. These results suggest that the shrimp sox gene family may be involved in gametogenesis, tridermogenesis, and neurogenesis.


Assuntos
Proteínas de Artrópodes/genética , Penaeidae/genética , Fatores de Transcrição SOX/genética , Animais , Proteínas de Artrópodes/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Brânquias/embriologia , Brânquias/metabolismo , Hepatopâncreas/embriologia , Hepatopâncreas/metabolismo , Masculino , Especificidade de Órgãos , Ovário/embriologia , Ovário/metabolismo , Penaeidae/embriologia , Fatores de Transcrição SOX/metabolismo , Testículo/embriologia , Testículo/metabolismo
2.
Am J Physiol Regul Integr Comp Physiol ; 319(3): R376-R386, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32755464

RESUMO

The present study was conducted to understand key biochemical, physiological, and molecular changes associated with ovarian growth and with lipid transfer and/or accumulation into the ovary during oogenesis in captive beluga sturgeon. Plasma levels of triacylglycerides, cholesterol, phospholipid, and sex steroid hormones were determined and all were found to increase notably throughout development from the perinucleolar to the tertiary yolk stage. Using fast protein liquid chromatography, we recognized three major lipoprotein peaks in chromatograms from all samples. These peaks were characterized as containing very low-density lipoprotein (Vldl), low-density lipoprotein/high-density lipoprotein (Ldl/Hdl), and plasma proteins. While Ldl/Hdl represented the most abundant lipoprotein fraction, the relative abundance of different lipoprotein classes did not change with the stage of oogenesis. Eluted lipoproteins were separated using sodium dodecyl-sulfate polyacrylamide gel electrophoresis and sequenced. The peptide sequence spectra for 66-kDa, 205-kDa, 29-kDa, and 70-kDa bands matched with albumin, vitellogenin (Vtg) AB2b, immunoglobulin light-chain precursor, and immunoglobulin heavy-chain, respectively. The large amount of albumin in the plasma protein peak and the confined presence of Vtg AB2b to within Ldl/Hdl reinforce the lipoprotein classification. Lastly, transcript levels of genes encoding ovarian lipoprotein lipase (lpl), apolipoprotein E (apoe), very low-density lipoprotein receptors (vldlr), and low-density lipoprotein receptor-related protein 8-like (lrp8) were estimated using quantitative RT-PCR. The high mRNA levels of lpl, apoe, and lipoprotein receptors vldlr and lrp8 in previtellogenic females suggest that sturgeon oocytes need to be prepared to accept and traffic Vtg and lipids internally, before the start of vitellogenesis.


Assuntos
Lipase Lipoproteica/metabolismo , Lipoproteínas VLDL/sangue , Ovário/crescimento & desenvolvimento , Triglicerídeos/metabolismo , Animais , Apolipoproteínas E/metabolismo , Colesterol/sangue , Feminino , Lipoproteínas LDL/metabolismo , Ovário/metabolismo
3.
Fertil Steril ; 114(1): 33-43, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32622411

RESUMO

OBJECTIVE: To identify cell types in the male and female reproductive systems at risk for SARS-CoV-2 infection because of the expression of host genes and proteins used by the virus for cell entry. DESIGN: Descriptive analysis of transcriptomic and proteomic data. SETTING: Academic research department and clinical diagnostic laboratory. PATIENT(S): Not applicable (focus was on previously generated gene and protein expression data). INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Identification of cell types coexpressing the key angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) genes and proteins as well as other candidates potentially involved in SARS-CoV-2 cell entry. RESULT(S): On the basis of single-cell RNA sequencing data, coexpression of ACE2 and TMPRSS2 was not detected in testicular cells, including sperm. A subpopulation of oocytes in nonhuman primate ovarian tissue was found to express ACE2 and TMPRSS2, but coexpression was not observed in ovarian somatic cells. RNA expression of TMPRSS2 in 18 samples of human cumulus cells was shown to be low or absent. There was general agreement between publicly available bulk RNA and protein datasets in terms of ACE2 and TMPRSS2 expression patterns in testis, ovary, endometrial, and placental cells. CONCLUSION(S): These analyses suggest that SARS-CoV-2 infection is unlikely to have long-term effects on male and female reproductive function. Although the results cannot be considered definitive, they imply that procedures in which oocytes are collected and fertilized in vitro are associated with very little risk of viral transmission from gametes to embryos and may indeed have the potential to minimize exposure of susceptible reproductive cell types to infection in comparison with natural conception.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/metabolismo , Fertilidade/fisiologia , Regulação Viral da Expressão Gênica/fisiologia , Pneumonia Viral/metabolismo , Reprodução/fisiologia , Internalização do Vírus , Adolescente , Adulto , Animais , Betacoronavirus/genética , Linhagem Celular , Infecções por Coronavirus/genética , Feminino , Humanos , Macaca fascicularis , Masculino , Ovário/citologia , Ovário/metabolismo , Ovário/virologia , Pandemias , Peptidil Dipeptidase A/biossíntese , Peptidil Dipeptidase A/genética , Pneumonia Viral/genética , Gravidez , Proteômica/métodos , Serina Endopeptidases/biossíntese , Serina Endopeptidases/genética , Testículo/citologia , Testículo/metabolismo , Testículo/virologia , Transcriptoma/fisiologia , Adulto Jovem
4.
PLoS One ; 15(7): e0234795, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32645018

RESUMO

Forkhead box L2 (FOXL2) is a single-exon gene encoding a forkhead transcription factor, which is mainly expressed in the ovary, eyelids and the pituitary gland. FOXL2 plays an essential role in ovarian development. To reveal the effects of FOXL2 on the biological process and gene expression of ovarian granulosa cells (GCs), we established stable FOXL2-knockdown GCs and then analysed them using transcriptome sequencing. It was observed that knocking down FOXL2 affected the biological processes of cell proliferation, DNA replication, and apoptosis and affected cell cycle progression. FOXL2 knockdown promoted cell proliferation and DNA replication, decreased cell apoptosis, and promoted mitosis. In addition, by comparing the transcriptome after FOXL2 knockdown, we found a series of DEGs (differentially expressed genes) and related pathways. These results indicated that, through mediating these genes and pathways, the FOXL2 might induce the cell proliferation, cycle, and DNA replication, and play a key role during ovarian development and maintenance.


Assuntos
Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Ovário/metabolismo , Animais , Ciclo Celular/genética , Divisão Celular/genética , Proliferação de Células/genética , Galinhas/genética , Replicação do DNA/genética , Feminino , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica/genética , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo , RNA Mensageiro/genética , Transcriptoma , Sequenciamento Completo do Exoma
5.
Gene ; 758: 144955, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32683076

RESUMO

Cyclin B functions as a regulatory protein through association with its catalytic partner Cdc2 kinase forming M-phase promoting factor (MPF), which plays a central role in the meiotic maturation of oocyte. To gain insight into the molecular events, we here cloned a cyclin B cDNA from the ovary of the prawn Macrobrachium rosenbergii and compared its spatial-temporal expression patterns during oocyte maturation with those of crab Eriocheir sinensis. The prawn cyclin B cDNA encodes a 398 amino acid protein with predicted molecular weight of 45.16 kDa. Immunodetection of cyclin B protein by Western blot showed that a target band of approximately 53 kDa protein in the prawn ovaries at both late vitellogenesis (lVt) and germinal vesicle breakdown (GVBD) stages, whereas a 41 kDa band was present in the crab ovaries. Cyclin B protein expression changes indicating that the newly synthesis of cyclin B proteins could be required for GVBD in both prawn and crab. Immunohistochemical analysis revealed that both the prawn and crab cyclin B proteins, were localized in the ooplasm of previtellogenic oocytes, then relocated into germinal vesicle at vitellogenesis stage and localized on meiotic spindle at M phase. These similar behaviors suggested that the prawn and the crab cyclin B proteins associated with Cdc2 kinase have conserved roles in inducing GVBD and regulating the formation of meiotic spindle. The similar expression patterns of the cyclin B proteins during oocyte maturation implicated that the molecular mechanisms for MPF activation could be identical between the prawn and the crab.


Assuntos
Braquiúros/embriologia , Ciclina B/metabolismo , Oócitos/crescimento & desenvolvimento , Oogênese/fisiologia , Palaemonidae/embriologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteína Quinase CDC2/metabolismo , Clonagem Molecular , Ciclina B/genética , Feminino , Regulação da Expressão Gênica/genética , Oogênese/genética , Ovário/metabolismo , RNA Mensageiro/genética , Fuso Acromático/metabolismo , Vitelogênese/fisiologia
6.
Toxicol Lett ; 332: 42-55, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32629074

RESUMO

Obesity is associated with several female reproductive complications, such as polycystic ovary syndrome (PCOS). The exact mechanism of this relationship remains unclear. Few previous studies using diet containing refined carbohydrate (HCD) leading to obesity have been performed and it is unclear if HCD is linked with reproductive dysfunctions. In this investigation, we assessed whether subchronic HCD exposure results in reproductive and other irregularities. Female rats were fed with HCD for 15 days and metabolic outcomes and reproductive tract morphophysiology were assessed. We further assessed reproductive tract inflammation, oxidative stress (OS) and fibrosis. HCD rats displayed metabolic impairments, such as an increase in body weight/adiposity, adipocyte hypertrophic, abnormal lipid profile, glucose tolerance and insulin resistance (IR) and hyperleptinemia. Improper functioning of the HCD reproductive tract was observed. Specifically, irregular estrous cyclicity, high LH levels and abnormal ovarian morphology coupled with reduction in primordial and primary follicle numbers was observed, suggesting ovarian reserve depletion. Improper follicular development and a reduction in antral follicles, corpora lutea and granulosa layer area together with an increase in cystic follicles were apparent. Uterine atrophy and reduction in endometrial gland (GE) number was observed in HCD rats. Reproductive tract inflammation, OS and fibrosis were seen in HCD rats. Further, strong positive correlations were observed between body weight/adiposity and IR with estrous cycle length, cystic follicles, ovarian reserve, GE and other abnormalities. Thus, these data suggest that the subchronic HCD exposure led to PCOS-like features, impaired ovarian reserve, GE number, and other reproductive abnormalities in female rats.


Assuntos
Carboidratos da Dieta/toxicidade , Reserva Ovariana/efeitos dos fármacos , Ovário/metabolismo , Síndrome do Ovário Policístico/induzido quimicamente , Adiposidade/efeitos dos fármacos , Animais , Peso Corporal , Dieta , Ciclo Estral/efeitos dos fármacos , Feminino , Fibrose , Intolerância à Glucose/sangue , Intolerância à Glucose/induzido quimicamente , Resistência à Insulina , Leptina/sangue , Metabolismo dos Lipídeos , Folículo Ovariano/efeitos dos fármacos , Ovário/patologia , Estresse Oxidativo , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Ratos , Ratos Wistar
7.
Nature ; 584(7821): 415-419, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641829

RESUMO

Sexual dimorphism arises from genetic differences between male and female cells, and from systemic hormonal differences1-3. How sex hormones affect non-reproductive organs is poorly understood, yet highly relevant to health given the sex-biased incidence of many diseases4. Here we report that steroid signalling in Drosophila from the ovaries to the gut promotes growth of the intestine specifically in mated females, and enhances their reproductive output. The active ovaries of the fly produce the steroid hormone ecdysone, which stimulates the division and expansion of intestinal stem cells in two distinct proliferative phases via the steroid receptors EcR and Usp and their downstream targets Broad, Eip75B and Hr3. Although ecdysone-dependent growth of the female gut augments fecundity, the more active and more numerous intestinal stem cells also increase female susceptibility to age-dependent gut dysplasia and tumorigenesis, thus potentially reducing lifespan. This work highlights the trade-offs in fitness traits that occur when inter-organ signalling alters stem-cell behaviour to optimize organ size.


Assuntos
Drosophila melanogaster/metabolismo , Fertilidade/fisiologia , Intestinos/crescimento & desenvolvimento , Longevidade/fisiologia , Tamanho do Órgão/fisiologia , Ovário/metabolismo , Esteroides/metabolismo , Envelhecimento , Animais , Carcinogênese , Proliferação de Células , Copulação/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Ecdisona/metabolismo , Feminino , Mucosa Intestinal/anatomia & histologia , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestinos/anatomia & histologia , Intestinos/citologia , Intestinos/patologia , Masculino , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
8.
Nat Commun ; 11(1): 2818, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499524

RESUMO

In eukaryotes, trimethylation of lysine 9 on histone H3 (H3K9) is associated with transcriptional silencing of transposable elements (TEs). In drosophila ovaries, this heterochromatic repressive mark is thought to be deposited by SetDB1 on TE genomic loci after the initial recognition of nascent transcripts by PIWI-interacting RNAs (piRNAs) loaded on the Piwi protein. Here, we show that the nucleosome remodeler Mi-2, in complex with its partner MEP-1, forms a subunit that is transiently associated, in a MEP-1 C-terminus-dependent manner, with known Piwi interactors, including a recently reported SUMO ligase, Su(var)2-10. Together with the histone deacetylase Rpd3, this module is involved in the piRNA-dependent TE silencing, correlated with H3K9 deacetylation and trimethylation. Therefore, drosophila piRNA-mediated transcriptional silencing involves three epigenetic effectors, a remodeler, Mi-2, an eraser, Rpd3 and a writer, SetDB1, in addition to the Su(var)2-10 SUMO ligase.


Assuntos
Adenosina Trifosfatases/metabolismo , Autoantígenos/metabolismo , Proteínas de Drosophila/metabolismo , Heterocromatina/química , Histona Desacetilase 1/metabolismo , Nucleossomos/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Proteínas Argonauta/metabolismo , Drosophila melanogaster , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Inativação Gênica , Histonas/química , Ovário/metabolismo , Proteínas Inibidoras de STAT Ativados
9.
Ecotoxicol Environ Saf ; 201: 110826, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32521368

RESUMO

As an effective feed additive in the livestock industry, olaquindox (OLA) has been widely used in domestic animal production. However, it is unclear whether OLA has negative effects on mammalian oocyte quality and fetal development. In this study, toxic effects of OLA were tested by intragastric gavage ICR mice with water, low-dose OLA (5 mg/kg/day), or high-dose OLA (60 mg/kg/day) for continuous 45 days. Results showed that high-dose OLA gavage severely affected the offspring birth and growth. Significantly, high-dose OLA impaired oocyte maturation and early embryo development, indicated by the decreased percentage of germinal vesicle breakdown, first polar body extrusion and blastocyst formation. Meanwhile, oxidative stress levels were increased in oocytes or ovaries, indexed by the increased levels of ROS, MDA, H2O2, NO, and decreased levels of GSH, SOD, CAT, GSH-Px and GSH-Rd. Furthermore, aberrant mitochondria distribution, defective spindle assembly, abnormal H3K4me2/H3K9me3 levels, increased DNA double-strand breaks and early apoptosis rate, were observed after high-dose OLA gavage. Taken together, our results for the first time illustrated that high-dose OLA gavage led to sub-fertility of females, which means that restricted utilization of OLA as feed additive should be considered.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Aditivos Alimentares/toxicidade , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Quinoxalinas/toxicidade , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Peróxido de Hidrogênio/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/efeitos dos fármacos , Oócitos/metabolismo , Oócitos/patologia , Ovário/efeitos dos fármacos , Ovário/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos
10.
Nat Commun ; 11(1): 3147, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561720

RESUMO

Transposons are known to participate in tissue aging, but their effects on aged stem cells remain unclear. Here, we report that in the Drosophila ovarian germline stem cell (GSC) niche, aging-related reductions in expression of Piwi (a transposon silencer) derepress retrotransposons and cause GSC loss. Suppression of Piwi expression in the young niche mimics the aged niche, causing retrotransposon depression and coincident activation of Toll-mediated signaling, which promotes Glycogen synthase kinase 3 activity to degrade ß-catenin. Disruption of ß-catenin-E-cadherin-mediated GSC anchorage then results in GSC loss. Knocking down gypsy (a highly active retrotransposon) or toll, or inhibiting reverse transcription in the piwi-deficient niche, suppresses GSK3 activity and ß-catenin degradation, restoring GSC-niche attachment. This retrotransposon-mediated impairment of aged stem cell maintenance may have relevance in many tissues, and could represent a viable therapeutic target for aging-related tissue degeneration.


Assuntos
Proteínas Argonauta/metabolismo , Senescência Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células Germinativas/metabolismo , Animais , Proteínas Argonauta/genética , Caderinas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Inativação Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Ovário/citologia , Ovário/metabolismo , Retroelementos/genética , Transdução de Sinais , Nicho de Células-Tronco/fisiologia , Células-Tronco/metabolismo , Receptores Toll-Like/metabolismo , beta Catenina/metabolismo
11.
Gene ; 754: 144891, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32535048

RESUMO

Characterized by ankyrin repeat motifs, the feminization-1 (fem-1) gene plays an essential role in sex determination/differentiation in Caenorhabditis elegans. However, there are only a few reports on fem-1 in crustaceans. In this study, a fem-1 gene (Mrfem-1) was first isolated from the giant freshwater prawn Macrobrachium rosenbergii. The full-length cDNA of Mrfem-1 was 2607 bp long, containing an open reading frame encoding 615 amino acids, and presenting eight ankyrin repeats. The full-length cDNA has been submitted to GenBank with the accession no. MT160093. According to the RT-PCR results, Mrfem-1 was exclusively expressed in the ovary. The expression level of Mrfem-1 had increased with ovarian maturation and reached the highest peak at vitellogenic stage. In situ hybridization results showed that positive signals were concentrated in the cytoplasm of previtellogenic stage, and scattered in the cytoplasm and follicular cells at vitellogenic stage, suggesting that Mrfem-1 might be associated with ovarian maturation. Moreover, two effective siRNAs targeting Mrfem-1 were found and their effectiveness verified in vitro. These results on Mrfem-1 will help us to better understand the fem family and provide a new resource for subsequent investigations of siRNA-mediated regulation on ovarian development in M. rosenbergii.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Palaemonidae/metabolismo , RNA Interferente Pequeno/genética , Animais , Sequência de Bases , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Feminino , Especificidade de Órgãos , Palaemonidae/genética , Filogenia
12.
PLoS One ; 15(6): e0235043, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32589675

RESUMO

Captive breeding has been explored in Chinese sturgeon (Acipenser sinensis) for species protection. However, gonad development from stage II to IV of cultured female broodstocks is a handicap. This study aimed to explore the physiological and metabolic changes during the ovary development from stage II to IV of female Chinese sturgeon and the related energy regulatory mechanism, which may be helpful to address the developmental obstacle. The results showed that the oocyte volume increased and the muscle lipid content decreased with the ovary development. Ovarian RNA levels of most genes related to lipid and amino acid metabolism were higher in stage II and III than in stage IV. Serum contents of differential metabolites in arginine, cysteine, methionine, purine, tyrosine, lysine, valine, leucine and isoleucine metabolism pathways peaked at stage III, while the contents of sarcosine, alanine and histidine, as well as most oxylipins derived from fatty acids peaked at stage IV. These results indicated the more active amino acids, lipid metabolism, and energy dynamics of fish body in response to the high energy input of ovary developing from stage II to III, and the importance of alanine, histidine, taurine, folate and oxylipins for fish with ovary at stage IV.


Assuntos
Aminoácidos/metabolismo , Ácidos Graxos/metabolismo , Peixes/fisiologia , Metabolômica/métodos , Oogênese/fisiologia , Ovário/metabolismo , Animais , China , Espécies em Perigo de Extinção , Feminino , Expressão Gênica/fisiologia
13.
Gene ; 755: 144906, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32554048

RESUMO

The olive flounder Paralichthys olivaceus, an important marine fish, shows gender differences in growth. The mechanism on its gonadal differentiation direction affected with exogenous factors still needs to be clarified. The anti-Müllerian hormone (amh) gene is involved in fish testicular differentiation and maintenance. The aim of this study was to investigate the expression of the flounder amh in tissues and the gonads. The quantitative expression analysis results showed that it was highly expressed in the testis, especially in the testis at stages I - IV (P < 0.05). Also, amh was detected in Sertoli cells surrounding spermatogonia and peripheral seminiferous lobule of the testis with in situ hybridization (ISH) and immunohistochemistry (IHC). During the differentiation period, the amh expression in the testis of the tamoxifen treatment group (100 ppm) was higher than that in the ovary of the 17ß-estradiol (E2, 5 ppm) group, and the expression levels of amh during process of the male differentiation in the tamoxifen group were higher than those in the 17ɑ-methyltestosterone (MT, 5 ppm) group (P < 0.05). ISH results also exhibited that amh was expressed in the somatic cells that surrounded the germ cells of juvenile flounder similar to adult ones. Furthermore, the flounder gonads in the tamoxifen group maintained more germ cells and somatic cells than those in the MT group from 20 to 80 mm total length (TL). Especially, at 60 and 80 mm TL, the numbers of germ and somatic cells in the tamoxifen group were significantly higher than those in the MT group (P < 0.05). In summary, amh might initiate the process of testicular differentiation, and is involved in the early development and maintenance of testis.


Assuntos
Hormônio Antimülleriano/genética , Linguado/genética , Células de Sertoli/metabolismo , Animais , Hormônio Antimülleriano/metabolismo , Diferenciação Celular , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Gônadas/metabolismo , Hibridização In Situ/métodos , Masculino , Metiltestosterona/farmacologia , Ovário/metabolismo , Diferenciação Sexual/genética , Espermatogônias/metabolismo , Tamoxifeno/farmacologia , Testículo/metabolismo
14.
Proc Natl Acad Sci U S A ; 117(24): 13680-13688, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32493750

RESUMO

Sex determination in mammals is governed by antagonistic interactions of two genetic pathways, imbalance in which may lead to disorders/differences of sex development (DSD) in human. Among 46,XX individuals with testicular DSD (TDSD) or ovotesticular DSD (OTDSD), testicular tissue is present in the gonad. Although the testis-determining gene SRY is present in many cases, the etiology is unknown in most SRY-negative patients. We performed exome sequencing on 78 individuals with 46,XX TDSD/OTDSD of unknown genetic etiology and identified seven (8.97%) with heterozygous variants affecting the fourth zinc finger (ZF4) of Wilms' tumor 1 (WT1) (p.Ser478Thrfs*17, p.Pro481Leufs*15, p.Lys491Glu, p.Arg495Gln [x3], p.Arg495Gly). The variants were de novo in six families (P = 4.4 × 10-6), and the incidence of WT1 variants in 46,XX DSD is enriched compared to control populations (P < 1.8 × 10-4). The introduction of ZF4 mutants into a human granulosa cell line resulted in up-regulation of endogenous Sertoli cell transcripts and Wt1 Arg495Gly/Arg495Gly XX mice display masculinization of the fetal gonads. The phenotype could be explained by the ability of the mutated proteins to physically interact with and sequester a key pro-ovary factor ß-CATENIN, which may lead to up-regulation of testis-specific pathway. Our data show that unlike previous association of WT1 and 46,XY DSD, ZF4 variants of WT1 are a relatively common cause of 46,XX TDSD/OTDSD. This expands the spectrum of phenotypes associated with WT1 variants and shows that the WT1 protein affecting ZF4 can function as a protestis factor in an XX chromosomal context.


Assuntos
Transtornos Testiculares 46, XX do Desenvolvimento Sexual/metabolismo , Testículo/metabolismo , Proteínas WT1/metabolismo , Transtornos Testiculares 46, XX do Desenvolvimento Sexual/genética , Transtornos Testiculares 46, XX do Desenvolvimento Sexual/patologia , Animais , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Camundongos , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Testículo/crescimento & desenvolvimento , Testículo/patologia , Proteínas WT1/química , Proteínas WT1/genética , Dedos de Zinco , beta Catenina/genética , beta Catenina/metabolismo
15.
Biol Res ; 53(1): 24, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471519

RESUMO

BACKGROUND: BMPR-1B is part of the transforming growth factor ß super family and plays a pivotal role in ewe litter size. Functional loss of exon-8 mutations in the BMPR-1B gene (namely the FecB gene) can increase both the ewe ovulation rate and litter size. RESULTS: This study constructed a eukaryotic expression system, prepared a monoclonal antibody, and characterized BMPR-1B/FecB protein-protein interactions (PPIs). Using Co-immunoprecipitation coupled to mass spectrometry (Co-IP/MS), 23 proteins were identified that specifically interact with FecB in ovary extracts of ewes. Bioinformatics analysis of selected PPIs demonstrated that FecB associated with several other BMPs, primarily via signal transduction in the ovary. FecB and its associated interaction proteins enriched the reproduction process via BMP2 and BMP4 pathways. Signal transduction was identified via Smads proteins and TGF-beta signaling pathway by analyzing the biological processes and pathways. Moreover, other target proteins (GDF5, GDF9, RhoD, and HSP 10) that interact with FecB and that are related to ovulation and litter size in ewes were identified. CONCLUSIONS: In summary, this research identified a novel pathway and insight to explore the PPi network of BMPR-1B.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Eucariotos/genética , Ovário/metabolismo , Mapas de Interação de Proteínas/genética , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Biologia Computacional , Eucariotos/metabolismo , Feminino , Genótipo , Espectrometria de Massas , Mutação , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Ovinos , Transdução de Sinais
16.
PLoS One ; 15(5): e0232629, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32365144

RESUMO

PIWI-interacting RNAs (piRNAs) play an important role in gametogenesis, fertility and embryonic development. The current study investigated the effect of different doses of pregnant mare serum gonadotrophin/human chorionic gonadotrophin (PMSG/hCG) and repeated ovarian stimulation (OS) on the expression of the Mili, Miwi, Mael, Tdrd1, Tdrd9, qnd Mitopld genes, which have crucial roles in the biogenesis and function of piRNAs. Here, we found that after treatment with 7.5 I.U. PMSG/hCG and two repeated rounds of OS, both the mRNA and protein levels of Tdrd9, Tdrd1 and Mael showed the greatest decrease in the ovarian tissue, but the plasma E2 levels showed the strongest increases (p<0.05). However, we found that the Mitopld, Miwi and Mili gene levels were decreased significantly after treatment with 12.5 I.U. PMSG/hCG. Our results suggested that exogenous gonadotropin administration leads to a significant decrease in the expression of the Mili, Miwi, Mael, Tdrd1, Tdrd9 and Mitopld genes, which are critically important in the piRNA pathway, and the changes in the expression levels of Tdrd9, Tdrd1 and Mael may be associated with plasma E2 levels. New comprehensive studies are needed to reduce the potential effects of OS on the piRNA pathway, which silences transposable elements and maintains genome integrity, and to contribute to the safety of OS.


Assuntos
Gonadotropina Coriônica/farmacologia , Estradiol/sangue , Regulação da Expressão Gênica/efeitos dos fármacos , Gonadotropinas/farmacologia , Ovário/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Animais , Elementos de DNA Transponíveis , Feminino , Fertilização In Vitro , Células da Granulosa/metabolismo , Cavalos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Ovário/metabolismo , Indução da Ovulação , RNA Mensageiro/metabolismo
17.
PLoS One ; 15(5): e0233169, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32407420

RESUMO

In broiler hens, the genetic selection increased susceptibility to metabolic disorders and reproductive dysfunctions. In human ovarian cells, grape seed extracts (GSE) improved steroid production. Here, we investigated the effects of a GSE dietary supplementation on egg production and quality, fertility parameters, Reactive Oxygen Species (ROS) and steroid content in yolk egg associated to plasma adipokines in broiler hens. For this, we designed two in vivo experiments, the first one included three groups of hens: A (control), B and C (supplemented with GSE at 0.5% and 1% of the total diet composition, respectively, since week 4), and the second one used two groups of hens: A (control) and D (supplemented with GSE at 1% of the total diet composition since hatching). We assessed the egg production from 23th to 40th weeks and quality at 33th week. After artificial inseminations, the fertility parameters were calculated. In egg yolk, Reactive Oxygen Species (ROS) level and steroid production were evaluated by Ros-Glo H202 and ELISA assay, respectively. Expression of steroidogenic enzymes and adipokines and their receptors was determined by RT-qPCR in ovarian cells and plasma adipokines (RARRES2, ADIPOQ and NAMPT) were evaluated by specific ELISA assays. The fertility parameters and egg production were unaffected by GSE supplementation whatever the experiment (exp.). However, the rate of double-yolk eggs decreased for all GSE supplemented groups (exp. 1 P <0.01, exp.2, P<0.02). In exp.1, C group eggs were bigger and larger (P<0.0001) and the shell elasticity was higher for both B and C (P<0.0003) as compared to control. In the egg yolk, GSE supplementation in both exp. reduced ROS content and steroidogenesis consistent with a decrease in P450 aromatase and StAR mRNA expression and basal in vitro progesterone secretion in granulosa cells (P<0.001). Interestingly, in both exp. RARRES2 plasma levels were positively correlated while ADIPOQ and NAMPT plasma levels were negatively correlated, with steroids and ROS in yolk (P<0.0001). Taken together, maternal dietary GSE supplementation did not affect egg production and fertility parameters whereas it reduced ROS content and steroidogenesis in yolk egg. Furthermore, it ameliorated egg quality by decreasing the number of double-yolk eggs and by improving the size of normal eggs and the elasticity of the shell. Taken together, our data suggest the possibility of using dietary maternal GSE to improve egg quality.


Assuntos
Galinhas/fisiologia , Suplementos Nutricionais , Fertilidade/efeitos dos fármacos , Extrato de Sementes de Uva/farmacologia , Ovário/metabolismo , Óvulo/metabolismo , Reprodução/efeitos dos fármacos , Esteroides/biossíntese , Adipocinas/sangue , Animais , Galinhas/sangue , Galinhas/genética , Dieta , Gema de Ovo/efeitos dos fármacos , Gema de Ovo/metabolismo , Feminino , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Ovário/efeitos dos fármacos , Oviposição/efeitos dos fármacos , Óvulo/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Adipocina/genética , Receptores de Adipocina/metabolismo , Células Tecais/efeitos dos fármacos , Células Tecais/metabolismo
18.
Ecotoxicol Environ Saf ; 199: 110675, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32402895

RESUMO

An oral painless dietary therapy is also indispensable in the management of arsenic toxicity despite of its conventional painful therapeutic management. The present study focused on the management of arsenic mediated female reproductive dysfunctions by dietary therapy of N-acetyl cysteine (NAC). Here, sodium arsenite was given at the dose of 10 mg/kg body weight orally for the first 8 day. Day 9 onwards up to day 16 these arsenicated rats were provided with NAC (250 mg/kg body weight) enriched basal diet once daily. Arsenic intoxicated group exhibited a comparable inactivation of antioxidant enzymes superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) due to oxidative stress in reproductive organs along with a simultaneous elevation of lipid peroxidation state and decline in non-protein soluble thiols (NPSH) level in female reproductive organs. Arsenic intoxication also accomplished with the up-regulation of inflammatory markers tumour necrosis factor (TNF α) and nuclear factor κB (NF κB). Pro-apoptotic Bax gene and p53 gene expressions were also raised due to arsenic intoxication while anti-apoptotic Bcl-2 gene expression was suppressed. In fact, arsenication decreased the circulating level of vitamin B12 and folic acid. Dietary NAC supplementation significantly reversed back the activity of antioxidant enzymes in arsenite fed rats towards normalcy and also sustained the normal reproductive cyclicity, utero-ovarian histo-morphology and estradiol receptor α (ER-α) expression in these reproductive organs. Dietary NAC exerted its positive action against arsenic intoxication by up-regulation of Bcl-2 gene expression along with the suppression of pro-apoptotic Bax gene and p53 gene. Thus, dietary NAC also plays anti-apoptotic, anti-inflammatory, and anti-oxidative role against arsenic toxicity. NAC also regulates the components (vitamin B12 and folic acid) of S-adenosylmethionine pool in the way of probable removal of arsenic from the system.


Assuntos
Acetilcisteína/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Apoptose/efeitos dos fármacos , Arsenitos/toxicidade , Expressão Gênica/efeitos dos fármacos , Ovário/efeitos dos fármacos , Útero/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Apoptose/genética , Suplementos Nutricionais , Feminino , Masculino , Ovário/metabolismo , Ovário/patologia , Ovário/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Útero/metabolismo , Útero/patologia , Útero/fisiopatologia
19.
Gene ; 753: 144777, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32428695

RESUMO

As a crucial member of the Forkhead Box family, class O (FoxO) plays an essential role in growth, cell differentiation, metabolism, immunization, and apoptosis. Meanwhile, FoxO3 is the primary regulator and effective inhibitor of primordial follicle activation. In this study, seven foxo genes were identified in black rockfish (Sebastes schlegelii), including two foxo1 genes (foxo1a, foxo1b), two foxo3 genes (foxo3, foxo3l), one foxo4 gene, and two foxo6 genes (foxo6a, foxo6b). foxo3l was derived from teleost-specific whole-genome duplication events. Evaluation of tissue expression pattern revealed that foxo3l displayed sexually dimorphic expression with a high level in the ovary and spatial expression only in the cytoplasm of follicle cells and oocytes. When the ovaries were stimulated by estrogen and gonadotropin, foxo3l expression was remarkably reduced, and the effect of androgen was completely different. We considered that foxo3l lost its ability to inhibit follicular precocity because of mass ovulation by hormone stimulation, resulting in its decreased expression. Such evidence indicated that foxo3l is an important regulator of reproduction-related functions in black rockfish. This study provides new insights into foxo3l genes for further functional research in teleost.


Assuntos
Proteína Forkhead Box O3/genética , Perciformes/genética , Sequência de Aminoácidos , Animais , Feminino , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteína Forkhead Box O3/metabolismo , Fatores de Transcrição Forkhead/genética , Duplicação Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Imunidade Inata/genética , Oócitos/metabolismo , Oogênese/genética , Ovário/metabolismo , Filogenia , Alinhamento de Sequência
20.
Hum Genet ; 139(10): 1325-1343, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32399598

RESUMO

Perrault syndrome is a rare heterogeneous condition characterised by sensorineural hearing loss and premature ovarian insufficiency. Additional neuromuscular pathology is observed in some patients. There are six genes in which variants are known to cause Perrault syndrome; however, these explain only a minority of cases. We investigated the genetic cause of Perrault syndrome in seven affected individuals from five different families, successfully identifying the cause in four patients. This included previously reported and novel causative variants in known Perrault syndrome genes, CLPP and LARS2, involved in mitochondrial proteolysis and mitochondrial translation, respectively. For the first time, we show that pathogenic variants in PEX6 can present clinically as Perrault syndrome. PEX6 encodes a peroxisomal biogenesis factor, and we demonstrate evidence of peroxisomal dysfunction in patient serum. This study consolidates the clinical overlap between Perrault syndrome and peroxisomal disorders, and highlights the need to consider ovarian function in individuals with atypical/mild peroxisomal disorders. The remaining patients had variants in candidate genes such as TFAM, involved in mtDNA transcription, replication, and packaging, and GGPS1 involved in mevalonate/coenzyme Q10 biosynthesis and whose enzymatic product is required for mouse folliculogenesis. This genomic study highlights the diverse molecular landscape of this poorly understood syndrome.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Aminoacil-tRNA Sintetases/genética , Proteínas de Ligação a DNA/genética , Dimetilaliltranstransferase/genética , Endopeptidase Clp/genética , Farnesiltranstransferase/genética , Predisposição Genética para Doença , Geraniltranstransferase/genética , Disgenesia Gonadal 46 XX/genética , Perda Auditiva Neurossensorial/genética , Proteínas Mitocondriais/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Sequência de Bases , Criança , DNA Mitocondrial/genética , Feminino , Expressão Gênica , Disgenesia Gonadal 46 XX/diagnóstico , Disgenesia Gonadal 46 XX/patologia , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Ovário/metabolismo , Ovário/patologia , Linhagem , Peroxissomos/metabolismo , Peroxissomos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA