Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.460
Filtrar
1.
Ecotoxicol Environ Saf ; 208: 111758, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396081

RESUMO

The cultivation of leafy vegetables on metal contaminated soil embodies a serious threat to yield and quality. In the present study, the potential role of exogenous jasmonic acid (JA; 0, 5, 10, and 20 µM) on mitigating chromium toxicity (Cr; 0, 150, and 300 µM) was investigated in choysum (Brassica parachinensis L.). With exposure to increasing Cr stress levels, a dose-dependent decline in growth, photosynthesis, and physio-biochemical attributes of choysum plants was observed. An increase in Cr levels also resulted in oxidative stress closely associated with higher lipoxygenase activity (LOX), hydrogen peroxide (H2O2) generation, lipid peroxidation (MDA), and methylglyoxal (MG) levels. Exogenous application of JA alleviated the Cr-induced phytotoxic effects on photosynthetic pigments, gas exchange parameters, and restored growth of choysum plants. While exposed to Cr stress, JA supplementation induced plant defense system via enhanced regulation of antioxidant enzymes, ascorbate and glutathione pool, and the glyoxalase system enzymes. The coordinated regulation of antioxidant and glyoxalase systems expressively suppressed the oxidative and carbonyl stress at both Cr stress levels. More importantly, JA restored the mineral nutrient contents, restricted Cr uptake, and accumulation in roots and shoots of choysum plants when compared to the only Cr-stressed plants. Overall, the application of JA2 treatment (10 µM JA) was more effective and counteracted the detrimental effects of 150 µM Cr stress by restoring the growth and physio-biochemical attributes to the level of control plants, while partially mitigated the detrimental effects of 300 µM Cr stress. Hence, JA application might be considered as an effective approach for minimizing Cr uptake and its detrimental effects in choysum plants grown on contaminated soils.


Assuntos
Antioxidantes/farmacologia , Brassica/fisiologia , Cromo/toxicidade , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Poluentes do Solo/toxicidade , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Brassica/efeitos dos fármacos , Brassica/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/metabolismo
2.
Food Chem ; 338: 128044, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32932092

RESUMO

The effects of preharvest treatments with 0.1 mM methyl jasmonate (MeJA) and 0.5 mM salicylic acid (SA) on quality parameters of lemon fruit and their relationship with antioxidant systems, gene expression and bioactive compounds at harvest and during cold storage were evaluated. Results showed that total antioxidant activity, total phenolic content and the major individual phenolics (hesperidin and eriocitrin) were always higher in treated fruit than in controls. The activity of the antioxidant enzymes catalase, peroxidase and ascorbate peroxidase was also increased at harvest by SA and MeJA treatments, especially the last enzyme, for which the expression of its codifying gene was also enhanced. In addition, treated fruit had lower weight and firmness losses, respiration rate and production of ethylene than controls. Moreover, sugars and organic acids were maintained at higher concentration in flavedo and juice as a consequence of preharvest SA and MeJA treatments, showing an effect on maintaining fruit quality properties.


Assuntos
Acetatos/farmacologia , Antioxidantes/metabolismo , Citrus/efeitos dos fármacos , Ciclopentanos/farmacologia , Armazenamento de Alimentos/métodos , Oxilipinas/farmacologia , Ácido Salicílico/farmacologia , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Citrus/química , Citrus/metabolismo , Temperatura Baixa , Frutas/química , Frutas/efeitos dos fármacos , Frutas/metabolismo , Peroxidase/metabolismo , Fenóis/análise
3.
Food Chem ; 338: 127846, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32836001

RESUMO

Cold storage is widely used for delaying ripening and senescence; however, fruit aroma diminishes noticeably after long-term cold storage. The esters synthesized by the lipoxygenase (LOX) pathway are responsible for 'Nanguo' pear aroma. As methyl jasmonate (MeJA) is known to act on various fruit qualities, we investigated whether it acts via the LOX pathway in cold-stored 'Nanguo' pears. MeJA treatment increased the content of volatile esters and unsaturated fatty acids and the activities of alcohol acyltransferase, alcohol dehydrogenase, and LOX. It also up-regulated the expression of key genes (PuAAT, PuADH3, PuADH5, PuADH9, PuLOX1, and PuLOX3) in the LOX pathway and that of transcription factors (PuMYB21-like, PuMYB108-like, PuWRKY61, PuWRKY72, and PuWRKY31), whose genes were differentially expressed in preliminary transcriptome analysis. Therefore, considering its effects on LOX pathway-related genes and transcription factors, MeJA may be useful in preventing cold-storage-induced decline in ester biosynthesis, aroma, and consequently the quality of cold-stored 'Nanguo' pears.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Ésteres/metabolismo , Armazenamento de Alimentos/métodos , Oxilipinas/farmacologia , Pyrus/efeitos dos fármacos , Compostos Orgânicos Voláteis/metabolismo , Ácidos Graxos Insaturados/análise , Frutas/química , Frutas/efeitos dos fármacos , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lipoxigenase/genética , Lipoxigenase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Pyrus/química , Pyrus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Food Chem ; 338: 128005, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32977138

RESUMO

Peach (Prunus persica L.) fruit are highly susceptible to chilling injury during cold storage, resulting in internal flesh browning and a failure to soften normally. We have examined the effect of a postharvest treatment consisting of a brief (30 s) dip in the natural plant hormone jasmonic acid, prior to storage at 4 °C. Jasmonic acid treatment reduced the severity of internal flesh browning and did not inhibit fruit softening over a 35 d storage period. Two major physiological effects of jasmonic acid on the fruit were observed, an increase in ethylene production and a prevention of the decline in soluble sugar content seen in controls. An increased soluble sugar content may have multiple benefits in resisting chilling stress, scavenging reactive oxygen species and acting to stabilize membranes. Our results show that a treatment with jasmonic acid can enhance chilling tolerance of peach fruit by regulating ethylene and sugar metabolism.


Assuntos
Ciclopentanos/farmacologia , Etilenos/metabolismo , Frutas/efeitos dos fármacos , Oxilipinas/farmacologia , Prunus persica/efeitos dos fármacos , Prunus persica/metabolismo , Açúcares/metabolismo , Temperatura Baixa , Armazenamento de Alimentos/métodos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Planta/farmacologia , Proteínas de Plantas/genética , Prunus persica/genética
5.
Exp Appl Acarol ; 82(1): 59-79, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32860179

RESUMO

The possibility of inducing resistance to the two-spotted spider mite, Tetranychus urticae Koch, in 'Gala' apple trees growing under optimal fertilization or nitrogen-deficiency conditions was investigated. The effects of jasmonic acid (JA) at 1.5 and 2.5 mM, and acibenzolar-S-methyl (benzothiadiazole, BTH) at 0.5 and 1.5 mM, applied separately or together, on the fecundity of T. urticae females in a laboratory test as well as on the population growth of the pest in a greenhouse experiment were determined. The influence of both elicitors on the induction of LOX and PAL gene expression was assessed in a parallel experiment using real-time PCR. Jasmonic acid showed significantly higher effectiveness in inducing apple tree resistance to T. urticae, as compared to BTH. This was particularly evident in the reduction in pest numbers that was observed in the greenhouse experiment and was also confirmed by increased LOX gene expression after treatment with JA. BTH induced the expression of the PAL gene more strongly than jasmonic acid; however, this was not reflected in the performance of the two-spotted spider mite in the laboratory and greenhouse experiments. It was also found that the antagonistic effect of BTH on JA might lead to decreased effectiveness of the jasmonic acid used to induce apple tree resistance to the two-spotted spider mite. Although nitrogen fertilization stimulated the development of spider mite populations, the resistance induction mechanism was more effective in N-fertilized plants, which was especially evident at the higher jasmonic acid concentration.


Assuntos
Ciclopentanos/farmacologia , Malus , Oxilipinas/farmacologia , Tetranychidae , Tiadiazóis/farmacologia , Animais , Feminino , Fertilização , Nitrogênio
6.
PLoS One ; 15(7): e0236565, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32730299

RESUMO

Flavonoids are key components of licorice plant that directly affect its medicinal quality. Importantly, the MYB family of transcription factors serves to regulate the synthesis of flavonoids in plants. The MYB transcription factors represent one of the largest families of transcription factors in plants and play important roles in the process of plant growth and development. MYB gene expression is induced by a number of plant hormones, including the lipid-based hormone jasmonate (JA). Methyl jasmonate (MeJA) is an endogenous plant growth regulator that can induce the JA signaling pathway, which functions to regulate the synthesis of secondary metabolites, including flavonoids. In this study, MeJA was added to licorice cell suspensions, and RNA-seq analysis was performed to identify the differentially expressed genes. As a result, the MYB transcription factors GlMYB4 and GlMYB88 were demonstrated to respond significantly to MeJA induction. Subsequently, the GlMYB4 and GlMYB88 protein were shown to localize to the cell nucleus, and it was verified that GlMYB4 and GlMYB88 could positively regulate the synthesis of flavonoids in licorice cells. Overall, this research helps illustrate the molecular regulation of licorice flavonoid biosynthesis induced by MeJA.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glycyrrhiza uralensis/metabolismo , Oxilipinas/farmacologia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Flavonoides/química , Glycyrrhiza uralensis/química , Glycyrrhiza uralensis/crescimento & desenvolvimento , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Fatores de Transcrição/classificação , Fatores de Transcrição/genética
7.
Ecotoxicol Environ Saf ; 201: 110735, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32480163

RESUMO

Methyl jasmonate (Me-JA) is a plant growth regulator known for modulating plant responses to various abiotic and biotic stresses. The unavoidable arsenic (As) contamination in rice (Oryza sativa) results in reduced crop yield and greater carcinogenic risk to humans. The present work examines the significance of Me-JA induced molecular signaling and tolerance towards arsenic toxicity in rice. The arsenite (AsIII; 25 µM) stress hampered the overall growth and development of the rice seedling. However, the co-application (25 µM AsIII+0.25 µM Me-JA) resulted in increased biomass, chlorophyll content, enhanced antioxidant enzyme activities as compared to AsIII treated plants. The co-application also demonstrated a marked decrease in malondialdehyde content, electrolyte leakage and accumulation of total AsIII content (root + shoot) as compared to AsIII treated plants. The co-application also modulated the expression of genes involved in downstream JA signaling pathway (OsCOI, OsJAZ3, OsMYC2), AsIII uptake (OsLsi1, OsLsi2, OsNIP1;1, OsNIP3;1), translocation (OsLsi6, and OsINT5) and detoxification (OsNRAMP1, OsPCS2, and OsABCC2) which revealed the probable adaptive response of the rice plant to cope up arsenic stress. Our findings reveal that Me-JA alleviates AsIII toxicity by modulating signaling components involved in As uptake, translocation, and detoxification and JA signaling in rice. This study augments our knowledge for the future use of Me-JA in improving tolerance against AsIII stress.


Assuntos
Acetatos/farmacologia , Arsênico/toxicidade , Ciclopentanos/farmacologia , Oryza/efeitos dos fármacos , Oxilipinas/farmacologia , Reguladores de Crescimento de Planta/farmacologia , Acetatos/metabolismo , Arsênico/metabolismo , Arsenitos/metabolismo , Arsenitos/toxicidade , Transporte Biológico , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Humanos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
8.
Ecotoxicol Environ Saf ; 201: 110832, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32563158

RESUMO

Ozone (O3), an oxidizing toxic air pollutant, is ubiquitous in industrialized and developing countries. To understand the effects of O3 exposure on apple (Malus) and to explore its defense mechanisms, we exposed 'Hongjiu' crabapple to O3 and monitored its responses using physiological, transcriptomics, and metabolomics analyses. Exposure to 300 nL L-1 O3 for 3 h caused obvious damage to the leaves of Malus crabapple, affected chlorophyll and anthocyanin contents, and activated antioxidant enzymes. The gene encoding phospholipase A was highly responsive to O3 in Malus crabapple. McWRKY75 is a key transcription factor in the response to O3 stress, and its transcript levels were positively correlated with those of flavonoid-related structural genes (McC4H, McDFR, and McANR). The ethylene response factors McERF019 and McERF109-like were also up-regulated by O3. Exogenous methyl jasmonate (MeJA) decreased the damaging effects of O3 on crabapple and was most effective at 200 µmol L -1. Treatments with MeJA altered the metabolic pathways of crabapple under O3 stress. In particular, MeJA activated the flavonoid metabolic pathway in Malus, which improved its resistance to O3 stress.


Assuntos
Acetatos/farmacologia , Poluentes Atmosféricos/toxicidade , Ciclopentanos/farmacologia , Malus , Oxilipinas/farmacologia , Ozônio/toxicidade , Reguladores de Crescimento de Planta/farmacologia , Transcriptoma/efeitos dos fármacos , Antocianinas/genética , Antocianinas/metabolismo , Antioxidantes/metabolismo , Clorofila/metabolismo , Flavonoides/metabolismo , Malus/efeitos dos fármacos , Malus/genética , Malus/metabolismo , Metabolômica , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fatores de Transcrição/genética
9.
PLoS One ; 15(5): e0232756, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32407323

RESUMO

Mitogen-activated protein kinase (MAPK) is a form of serine/threonine protein kinase that activated by extracellular stimulation acting through the MAPK cascade (MAPKKK-MAPKK-MAPK). The MAPK cascade gene family, an important family of protein kinases, plays a vital role in responding to various stresses and hormone signal transduction processes in plants. In this study, we identified 14 CmMAPKs, 6 CmMAPKKs and 64 CmMAPKKKs in melon genome. Based on structural characteristics and a comparison of phylogenetic relationships of MAPK gene families from Arabidopsis, cucumber and watermelon, CmMAPKs and CmMAPKKs were categorized into 4 groups, and CmMAPKKKs were categorized into 3 groups. Furthermore, chromosome location revealed an unevenly distribution on chromosomes of MAPK cascade genes in melon, respectively. Eventually, qRT-PCR analysis showed that all 14 CmMAPKs had different expression patterns under drought, salt, salicylic acid (SA), methyl jasmonate (MeJA), red light (RL), and Podosphaera xanthii (P. xanthii) treatments. Overall, the expression levels of CmMAPK3 and CmMAPK7 under different treatments were higher than those in control. Our study provides an important basis for future functional verification of MAPK genes in regulating responses to stress and signal substance in melon.


Assuntos
Cucumis melo/enzimologia , Cucumis melo/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Sistema de Sinalização das MAP Quinases/genética , Acetatos/farmacologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Cromossomos de Plantas/genética , Cucumis melo/efeitos dos fármacos , Ciclopentanos/farmacologia , Secas , Éxons/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Íntrons/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/química , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oxilipinas/farmacologia , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Domínios Proteicos , Ácido Salicílico/farmacologia , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/genética , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
10.
PLoS One ; 15(5): e0232269, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32357181

RESUMO

Susceptibility of plants to abiotic stresses, including extreme temperatures, salinity and drought, poses an increasing threat to crop productivity worldwide. Here the drought-induced response of maize was modulated by applications of methyl jasmonate (MeJA) and salicylic acid (SA) to seeds prior to sowing and to leaves prior to stress treatment. Pot experiments were conducted to ascertain the effects of exogenous applications of these hormones on maize growth, physiology and biochemistry under drought stress and well-watered (control) conditions. Maize plants were subjected to single as well as combined pre-treatments of MeJA and SA. Drought stress severely affected maize morphology and reduced relative water content, above and below-ground biomass, rates of photosynthesis, and protein content. The prolonged water deficit also led to increased relative membrane permeability and oxidative stress induced by the production of malondialdehyde (from lipid peroxidation), lipoxygenase activity (LOX) and the production of H2O2. The single applications of MeJA and SA were not found to be effective in maize for drought tolerance while the combined pre-treatments with exogenous MeJA+SA mitigated the adverse effects of drought-induced oxidative stress, as reflected in lower levels of lipid peroxidation, LOX activity and H2O2. The same pre-treatment also maintained adequate water status of the plants under drought stress by increasing osmolytes including proline, total carbohydrate content and total soluble sugars. Furthermore, exogenous applications of MeJA+SA approximately doubled the activities of the antioxidant enzymes catalase, peroxidase and superoxide dismutase. Pre-treatment with MeJA alone gave the highest increase in drought-induced production of endogenous abscisic acid (ABA). Pre-treatment with MeJA+SA partially prevented drought-induced oxidative stress by modulating levels of osmolytes and endogenous ABA, as well as the activities of antioxidant enzymes. Taken together, the results show that seed and foliar pre-treatments with exogenous MeJA and/or SA can have positive effects on the responses of maize seedlings to drought.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Secas , Oxilipinas/farmacologia , Reguladores de Crescimento de Planta/farmacologia , Ácido Salicílico/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Antioxidantes/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Concentração Osmolar , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Sementes/efeitos dos fármacos , Solo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
11.
Plant Mol Biol ; 103(3): 341-354, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32227258

RESUMO

KEY MESSAGE: We employed both metabolomic and transcriptomic approaches to explore the accumulation patterns of physalins, flavonoids and chlorogenic acid in Physalis angulata and revealed the genes associated with the biosynthesis of bioactive compounds under methyl-jasmonate (MeJA) treatment. Physalis angulata L. is an annual Solanaceae plant with a number of medicinally active compounds. Despite the potential pharmacological benefits of P. angulata, the scarce genomic information regarding this plant has limited the studies on the mechanisms of bioactive compound biosynthesis. To facilitate the basic understanding of the main chemical constituent biosynthesis pathways, we performed both metabolomic and transcriptomic approaches to reveal the genes associated with the biosynthesis of bioactive compounds under methyl-jasmonate (MeJA) treatment. Untargeted metabolome analysis showed that most physalins, flavonoids and chlorogenic acid were significantly upregulated. Targeted HPLC-MS/MS analysis confirmed variations in the contents of two important representative steroid derivatives (physalins B and G), total flavonoids, neochlorogenic acid, and chlorogenic acid between MeJA-treated plants and controls. Transcript levels of a few steroid biosynthesis-, flavonoid biosynthesis-, and chlorogenic acid biosynthesis-related genes were upregulated, providing a potential explanation for MeJA-induced active ingredient synthesis in P. angulata. Systematic correlation analysis identified a number of novel candidate genes associated with bioactive compound biosynthesis. These results may help to elucidate the regulatory mechanism underlying MeJA-induced active compound accumulation and provide several valuable candidate genes for further functional study.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Physalis/efeitos dos fármacos , Physalis/metabolismo , Proteínas de Plantas/metabolismo , Flavonoides/biossíntese , Flavonoides/química , Metaboloma , Estrutura Molecular , Reguladores de Crescimento de Planta/farmacologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , RNA de Plantas/genética , Transcriptoma
12.
Plant Sci ; 294: 110433, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32234222

RESUMO

Triterpenoids produced by the secondary metabolism of Betula platyphylla Suk. exhibit important pharmacological activities, such as tumor inhibition, anti-HIV, and defense against pathogens, but the yield of natural synthesis is low, which is insufficient to meet people's needs. In this study, we identified two OSC genes of birch, named as BpCAS and Bpß-AS, respectively. The expression of BpCAS and Bpß-AS were higher levels in roots and in stems, respectively, and they induced expression in response to methyl jasmonate (MeJA), gibberellin (GA3), abscisic acid (ABA), ethylene and mechanical damage. The function of the two genes in the triterpene synthesis of birch was identified by reverse genetics. The inhibition of Bpß-AS gene positively regulates synthesis of betulinic acid. BpCAS interference can significantly promote the upregulation of lupeol synthase gene (BPW) and ß-amyrin synthase gene(BPY), and conversion of 2,3-oxidosqualene to the downstream products betulinic acid and oleanolic acid. This study provided a basis for the genetic improvement of triterpenoid synthesis in birch through genetic engineering. The obtained transgenic birch and suspension cells served as material resources for birch triterpenoid applications in further.


Assuntos
Betula/metabolismo , Triterpenos/metabolismo , Ácido Abscísico/farmacologia , Acetatos/farmacologia , Betula/efeitos dos fármacos , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas , Giberelinas/farmacologia , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Ácido Oleanólico/metabolismo , Oxilipinas/farmacologia , Triterpenos Pentacíclicos , Esqualeno/análogos & derivados , Esqualeno/metabolismo
13.
Food Chem ; 318: 126478, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32126466

RESUMO

With people's increasing needs for health concern, rutin and emodin in tartary buckwheat have attracted much attention for their antioxidant, anti-diabetic and reducing weight function. However, the biosynthesis of rutin and emodin in tartary buckwheat is still unclear; especially their later glycosylation contributing to make them more stable and soluble is uncovered. Based on tartary buckwheat' genome, the gene structures of 106 UGTs were analyzed; 21 candidate FtUGTs were selected to enzymatic test by comparing their transcript patterns. Among them, FtUGT73BE5 and other 4 FtUGTs were identified to glucosylate flavonol or emodin in vitro; especially rFtUGT73BE5 could catalyze the glucosylation of all tested flavonoids and emodin. Furthermore, the identical in vivo functions of FtUGT73BE5 were demonstrated in tartary buckwheat hairy roots. The transcript profile of FtUGT73BE5 was consistent with the accumulation trend of rutin in plant; this gene may relate to anti-adversity for its transcripts were up-regulated by MeJA, and repressed by ABA.


Assuntos
Emodina/metabolismo , Fagopyrum/genética , Glucosiltransferases/genética , Rutina/biossíntese , Acetatos/farmacologia , Ciclopentanos/farmacologia , Fagopyrum/efeitos dos fármacos , Fagopyrum/metabolismo , Flavonoides/metabolismo , Flavonóis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genoma de Planta , Estudo de Associação Genômica Ampla , Glucosídeos/metabolismo , Glucosiltransferases/metabolismo , Oxilipinas/farmacologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Rutina/genética , Rutina/metabolismo
14.
PLoS One ; 15(3): e0226055, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32176699

RESUMO

The APETALA2/Ethylene Responsive Factor (AP2/ERF) gene family has been shown to play a crucial role in plant growth and development, stress responses and secondary metabolite biosynthesis. Nevertheless, little is known about the gene family in ginseng (Panax ginseng C.A. Meyer), an important medicinal herb in Asia and North America. Here, we report the systematic analysis of the gene family in ginseng using several transcriptomic databases. A total of 189 putative AP2/ERF genes, defined as PgERF001 through PgERF189, were identified and these PgERF genes were spliced into 397 transcripts. The 93 PgERF genes that have complete AP2 domains in open reading frame were classified into five subfamilies, DREB, ERF, AP2, RAV and Soloist. The DREB subfamily and ERF subfamily were further clustered into four and six groups, respectively, compared to the 12 groups of these subfamilies found in Arabidopsis thaliana. Gene ontology categorized these 397 transcripts of the 189 PgERF genes into eight functional subcategories, suggesting their functional differentiation, and they have been especially enriched for the subcategory of nucleic acid binding transcription factor activity. The expression activity and networks of the 397 PgERF transcripts have substantially diversified across tissues, developmental stages and genotypes. The expressions of the PgERF genes also significantly varied, when ginseng was subjected to cold stress, as tested using six PgERF genes, PgERF073, PgERF079, PgERF110, PgERF115, PgERF120 and PgERF128, randomly selected from the DREB subfamily. This result suggests that the DREB subfamily genes play an important role in plant response to cold stress. Finally, we studied the responses of the PgERF genes to methyl jasmonate (MeJA). We found that 288 (72.5%) of the 397 PgERF gene transcripts responded to the MeJA treatment, with 136 up-regulated and 152 down-regulated, indicating that most members of the PgERF gene family are responsive to MeJA. These results, therefore, provide new resources and knowledge necessary for family-wide functional analysis of the PgERF genes in ginseng and related species.


Assuntos
Acetatos/farmacologia , Resposta ao Choque Frio , Ciclopentanos/farmacologia , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Panax , Proteínas de Plantas , Resposta ao Choque Frio/efeitos dos fármacos , Resposta ao Choque Frio/genética , Proteínas de Homeodomínio , Panax/genética , Panax/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética
15.
PLoS One ; 15(3): e0230177, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32182273

RESUMO

Jasmonates (JAs) are key phytohormones involved in regulation of plant growth and development, stress responses, and secondary metabolism. It has been reported that treatments with JAs could increase the contents of Amaryllidaceae alkaloids in Amaryllidaceae plants. Jasmonate ZIM (zinc-finger inflorescence meristem) domain (JAZ) proteins are key components in JA signal processes. However, JAZ proteins have not been characterized in genus Lycoris. In this study, we identified and cloned seven differentially expressed JAZ genes (namely LaJAZ1-LaJAZ7) from Lycoris aurea. Bioinformatic analyses revealed that these seven LaJAZ proteins contain the ZIM domain and JA-associated (Jas, also named CCT_2) motif. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis revealed that these LaJAZ genes display different expression patterns in L. aurea tissues, and most of them are inducible when treated with methyl jasmonate (MeJA) treatment. Subcellular localization assay demonstrated that LaJAZ proteins are localized in the cell nucleus or cytoplasm. In addition, LaJAZ proteins could interact with each other to form homodimer and/or heterodimer. The findings in this study may facilitate further functional research of the LaJAZ genes, especially the potential regulatory mechanism of plant secondary metabolites including Amaryllidaceae alkaloids in L. aurea.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Lycoris/genética , Proteínas de Plantas/genética , Dedos de Zinco/genética , Acetatos/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Biologia Computacional/métodos , Ciclopentanos/farmacologia , Citoplasma/efeitos dos fármacos , Citoplasma/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lycoris/efeitos dos fármacos , Oxilipinas/farmacologia , Reguladores de Crescimento de Planta/farmacologia , Domínios Proteicos/genética
16.
Food Chem ; 319: 126561, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32172047

RESUMO

The effect of simulated transport vibration on the quality of broccoli and the ability of methyl jasmonate (MeJA) to ameliorate vibration damage in broccoli were investigated. Results indicated that transport injury, simulated by vibrational stress, promoted the deterioration in broccoli quality during subsequent storage. Treatment of broccoli with methyl jasmonate (MeJA), however, effectively ameliorated the impact of vibrational injury, maintained the appearance quality and delayed the yellowing and senescence of florets after simulated transportation stress. The effect of the MeJA may be related to of its ability to suppress the accumulation of reactive oxygen species, enhance vitamin C content, and induce antioxidant gene expression and enzyme activity, as well as suppress chlorophyll-degrading enzyme activity and gene expression. Overall, the MeJA treatment inhibited the adverse physiological changes that occur in broccoli as a result of vibrational and mechanical injury. Thus, MeJA has the potential to be used to decrease stress-induced reductions in the postharvest quality of horticultural crops that occur during transport and storage, thus, prolonging their shelf life.


Assuntos
Acetatos/farmacologia , Brassica/efeitos dos fármacos , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Antioxidantes/farmacologia , Brassica/metabolismo , Viscosidade
17.
Int J Mol Sci ; 21(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033119

RESUMO

Treatment by volatile plant hormone methyl jasmonate (MeJA) leads to release of methanol and volatiles of lipoxygenase pathway (LOX volatiles) in a dose-dependent manner, but how the dose dependence is affected by stomatal openness is poorly known. We studied the rapid (0-60 min after treatment) response of stomatal conductance (Gs), net assimilation rate (A), and LOX and methanol emissions to varying MeJA concentrations (0.2-50 mM) in cucumber (Cucumis sativus) leaves with partly open stomata and in leaves with reduced Gs due to drought and darkness. Exposure to MeJA led to initial opening of stomata due to an osmotic shock, followed by MeJA concentration-dependent reduction in Gs, whereas A initially decreased, followed by recovery for lower MeJA concentrations and time-dependent decline for higher MeJA concentrations. Methanol and LOX emissions were elicited in a MeJA concentration-dependent manner, whereas the peak methanol emissions (15-20 min after MeJA application) preceded LOX emissions (20-60 min after application). Furthermore, peak methanol emissions occurred earlier in treatments with higher MeJA concentration, while the opposite was observed for LOX emissions. This difference reflected the circumstance where the rise of methanol release partly coincided with MeJA-dependent stomatal opening, while stronger stomatal closure at higher MeJA concentrations progressively delayed peak LOX emissions. We further observed that drought-dependent reduction in Gs ameliorated MeJA effects on foliage physiological characteristics, underscoring that MeJA primarily penetrates through the stomata. However, despite reduced Gs, dark pretreatment amplified stress-volatile release upon MeJA treatment, suggesting that increased leaf oxidative status due to sudden illumination can potentiate the MeJA response. Taken together, these results collectively demonstrate that the MeJA dose response of volatile emission is controlled by stomata that alter MeJA uptake and volatile release kinetics and by leaf oxidative status in a complex manner.


Assuntos
Acetatos/farmacologia , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/fisiologia , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Estresse Fisiológico/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Cucumis sativus/metabolismo , Metanol/farmacologia , Osmose/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Reguladores de Crescimento de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/metabolismo , Estresse Fisiológico/efeitos dos fármacos
18.
J Agric Food Chem ; 68(10): 3267-3276, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32101430

RESUMO

Cross-talk between various hormones is important in regulating many aspects of plant growth, development, and senescence, including fruit ripening. Here, exogenous ethylene (ETH, 100 µL/L, 12 h) rapidly accelerated 'Hayward' kiwifruit (Actinidia deliciosa) softening and ethylene production and was enhanced by supplementing with continuous treatment with methyl jasmonate (MeJA, 100 µM/L, 12 h) (ETH+MeJA). ETH+MeJA enhanced ACC synthase (ACS) activities and 1-aminocyclopropane-1-carboxylic acid (ACC) accumulation but not ACC oxidase (ACO) activity. Increased transcripts of ACS genes AdACS1 and AdACS2, ACS activity, and ethylene production were positively correlated. The abundance of AdACS1 was about 6-fold higher than AdACS2. RNA-seq identified 6 transcription factors among the 87 differentially expressed unigenes induced by ETH+MeJA. Dual-luciferase and electrophoretic mobility shift assays (EMSA) indicated that AdNAC2/3 physically interacted with and trans-activated the AdACS1 promoter 2.2- and 3.5-fold, respectively. Collectively, our results indicate that MeJA accelerates ethylene production in kiwifruit induced by exogenous ethylene, via a preferential activation of AdACS1 and AdACS2.


Assuntos
Acetatos/farmacologia , Actinidia/efeitos dos fármacos , Coenzima A Ligases/metabolismo , Ciclopentanos/farmacologia , Etilenos/biossíntese , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Reguladores de Crescimento de Planta/farmacologia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Actinidia/enzimologia , Actinidia/genética , Actinidia/metabolismo , Frutas/efeitos dos fármacos , Frutas/enzimologia , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/genética
19.
Sci Rep ; 10(1): 3018, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080225

RESUMO

The WRKY proteins are a superfamily of transcription factor that regulate diverse developmental and physiological processes in plants. Completion of the whole-genome sequencing of Aquilaria sinensis allowed us to perform a genome-wide investigation for WRKY proteins. Here, we predicted 70 WRKY genes from the A. sinensis genome and undertaken a comprehensive bioinformatic analysis. Due to their diverse structural features, the 70 AsWRKY genes are classified into three main groups (group I-III), with five subgroups (IIa-IIe) in group II, except two belong to none of them. Distinct expression profiles of AsWRKYs with RNA sequencing data revealed their diverse expression patterns among different tissues and in the process of whole-tree-inducing agarwood formation. Based on the expression characteristics, we predict some AsWRKYs are pseudogenes, and some may be involved in the biosynthesis of agarwood sesquiterpenes as activators or repressors. Among the tested genes treated with MeJA and H2O2, most of them are induced by H2O2, but downregulated by MeJA, implying the complexity of their involvement in signal transduction regulation. Our results not only provide a basic platform for functional identification of WRKYs in A. sinensis but important clues for further analysis their regulation role in agarwood formation.


Assuntos
Genoma de Planta , Thymelaeaceae/genética , Thymelaeaceae/metabolismo , Fatores de Transcrição/metabolismo , Acetatos/farmacologia , Cromossomos de Plantas/genética , Sequência Conservada/genética , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Peróxido de Hidrogênio/farmacologia , Motivos de Nucleotídeos/genética , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Oxilipinas/farmacologia , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Thymelaeaceae/efeitos dos fármacos , Madeira/genética
20.
Int J Mol Sci ; 21(2)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963133

RESUMO

Jasmonates (JAs) regulate the defense of biotic and abiotic stresses, growth, development, and many other important biological processes in plants. The comprehensive proteomic profiling of plants under JAs treatment provides insights into the regulation mechanism of JAs. Isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomic analysis was performed on the Arabidopsis wild type (Ws) and JA synthesis deficiency mutant opr3-1. The effects of exogenous MeJA treatment on the proteome of opr3-1, which lacks endogenous JAs, were investigated. A total of 3683 proteins were identified and 126 proteins were differentially regulated between different genotypes and treatment groups. The functional classification of these differentially regulated proteins showed that they were involved in metabolic processes, responses to abiotic stress or biotic stress, the defense against pathogens and wounds, photosynthesis, protein synthesis, and developmental processes. Exogenous MeJA treatment induced the up-regulation of a large number of defense-related proteins and photosynthesis-related proteins, it also induced the down-regulation of many ribosomal proteins in opr3-1. These results were further verified by a quantitative real-time PCR (qRT-PCR) analysis of 15 selected genes. Our research provides the basis for further understanding the molecular mechanism of JAs' regulation of plant defense, photosynthesis, protein synthesis, and development.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Proteômica/métodos , Proteínas de Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Oxirredutases/efeitos dos fármacos , Oxirredutases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA